Please wait a minute...
浙江大学学报(医学版)  2020, Vol. 49 Issue (5): 574-580    DOI: 10.3785/j.issn.1008-9292.2020.10.04
专题报道     
联合氧化磷酸化缺陷症1型一家系临床表型及GFM1基因突变分析
沈亚平1(),严恺2,董旻岳2,杨茹莱1,黄新文1,*()
1. 浙江大学医学院附属儿童医院遗传与代谢科 国家儿童健康与疾病临床医学研究中心 国家儿童区域医疗中心, 浙江 杭州 310052
2. 浙江大学医学院附属妇产科医院生殖遗传科 生殖遗传教育部重点实验室, 浙江 杭州 310006
Analysis of GFM1 gene mutations in a family with combined oxidative phosphorylation deficiency 1
SHEN Yaping1(),YAN Kai2,DONG Minyue2,YANG Rulai1,HUANG Xinwen1,*()
1. Department of Genetics and Metabolism, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Centre for Children, Hangzhou 310052, China
2. Department of Reproductive Genetics, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Genetics, Ministry of Education, Hangzhou 310006, China
 全文: PDF(8178 KB)   HTML( 17 )
摘要:

目的: 分析一个联合氧化磷酸化缺陷症1型家系的临床表型及遗传学特点,明确其遗传学病因。方法: 对先证者父母外周血DNA行全外显子组测序,对先证者(已故)干血斑标本、胎儿(先证者弟弟)羊水和先证者父母亲外周血行Sanger验证。结果: 全外显子组测序和Sanger测序显示,先证者及其弟弟均为GFM1基因c.688G>A(p.G230S)与c.1576C>T(p.R526X)复合杂合突变,其中c.1576C>T系首次报道。先证者及其弟弟出生后均出现代谢性酸中毒、高乳酸血症、肝功能异常、喂养困难、小头畸形、生长发育落后、癫痫等临床表现,均在婴儿早期死亡。结论: GFM1基因c.688G>A与c.1576C>T复合杂合突变是导致该家系联合氧化磷酸化缺陷症1型的遗传学原因。

关键词: 先天性遗传性新生儿疾病和畸形联合氧化磷酸化缺陷症1型GFM1基因代谢性酸中毒全外显子组测序    
Abstract:

Objective: To analyze the clinical phenotype and genetic characteristics of a family with combined oxidative phosphorylation deficiency 1 (COXPD-1). Methods: The whole exome sequencing was performed in parents of the proband; and the genetic defects were verified by Sanger sequencing technology in the dried blood spot of the proband, the amniotic fluid sample of the little brother of proband, and the peripheral blood of the parents. Results: Whole exome sequencing and Sanger validation showed compound heterozygous mutations of GFM1 gene c.688G>A(p.G230S) and c.1576C>T (p.R526X) in both the proband and her little brother, and the c.1576C>T of GFM1 variant was first reported. The two patients were died in early infancy, and presented with metabolic acidosis, high lactic acid, abnormal liver function, feeding difficulties, microcephaly, development retardation and epilepsy. Conclusion: GFM1 gene c.688G>A and c.1576C>T compound heterozygous mutations are the cause of this family of COXPD-1.

Key words: Congenital, hereditary, and neonatal diseases and abnormalities    Combined oxidative phosphorylation deficiency 1    GFM1 gene    Metabolic acidosis    Whole exome sequencing
收稿日期: 2020-05-12 出版日期: 2020-11-19
:  R394.3  
基金资助: 国家重点研发计划(2018YFC1002204)
通讯作者: 黄新文     E-mail: 6517066@zju.edu.cn;6305022@zju.edu.cn
作者简介: 沈亚平(1984-), 女, 硕士, 主管技师, 主要从事儿童遗传代谢病基因检测与分析; E-mail:6517066@zju.edu.cn; https://orcid.org/0000-0002-1600-2081
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
沈亚平
严恺
董旻岳
杨茹莱
黄新文

引用本文:

沈亚平,严恺,董旻岳,杨茹莱,黄新文. 联合氧化磷酸化缺陷症1型一家系临床表型及GFM1基因突变分析[J]. 浙江大学学报(医学版), 2020, 49(5): 574-580.

SHEN Yaping,YAN Kai,DONG Minyue,YANG Rulai,HUANG Xinwen. Analysis of GFM1 gene mutations in a family with combined oxidative phosphorylation deficiency 1. J Zhejiang Univ (Med Sci), 2020, 49(5): 574-580.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2020.10.04        http://www.zjujournals.com/med/CN/Y2020/V49/I5/574

图 1  联合氧化磷酸化缺陷症1型一家系GFM1基因测序结果
图 2  联合氧化磷酸化缺陷症1型患儿(先证者弟弟)头颅MRI图
图 3  联合氧化磷酸化缺陷症1型患儿(先证者弟弟)长程脑电监测图
编号 核苷酸改变 氨基酸改变 外显子位置 突变类型 等位基因突变个数 等位基因突变频率 参考文献序号
1 c.100C>T p.R34X 2 无义 1 0.016 18
2 c.130_137delGAAAAAATinsAAAAAAAA p.E44_I46delinsKKK 2 插入缺失 4 0.065 12
3 c.139C>T p.R47X 2 无义 1 0.016 8
4 c.170C>A p.S57Y 2 错义 1 0.016 15
5 c.238A>G p.K80E 3 错义 1 0.016 17
6 c.248A>T p.D83V 3 错义 1 0.016 18
7 c.521A>G p.N174S) 4 错义 4 0.065 6
8 c.539delG p.G180Afs*11 4 移码 1 0.016 9
9 c.688G>A p.G230S 5 错义 5 0.081 9
10 c.689+908G>A 不造成氨基酸改变,但可能影响蛋白表达 5 内含子 2 0.032 14
11 c.748C>T p.R250W 6 错义 5 0.081 1
12 c.720delT p.E241NfsX1 6 移码 2 0.032 11
13 c.910A>G p.K304E 7 错义 1 0.016 11
14 c.958C>G p.P320A 7 错义 1 0.016 18
15 c.961T>C p.S321P 7 错义 2 0.032 7
16 c.964G>A p.E322K 7 错义 1 0.016 12
17 c.1149_1160del p.I384_T387del 9 非移码 1 0.016 18
18 c.1193T>C p.L398P 9 错义 2 0.032 10
19 c.1297_1300del p.D433Kfs*20 10 移码 1 0.016 18
20 c.1404delA p.G469Vfs*84 12 移码 2 0.032 12
21 c.1487T>G p.M496R 12 错义 1 0.016 8
22 c.1546T>C p.C516R 13 错义 1 0.016 18
23 c.1571C>T p.A524V 13 错义 1 0.016 18
24 c.1576C>T p.R526X) 13 无义 2 0.032 本文资料
25 c.1655T>G p.V552G 14 错义 1 0.016 12
26 c.1686delG p.D563Tfs*24 14 移码 2 0.032 16
27 c.1765-2_1765-1delAG p.G589 15 错义 2 0.032 7
28 c.1822C>T p.R608W 15 错义 1 0.016 18
29 c.1922C>A p.A641E 16 错义 1 0.016 18
30 c.2011C>T p.R671C 16 错义 11 0.177 12
31 exon14-18dup 不造成氨基酸改变,但可能影响蛋白表达 14~18 重复 1 0.016 18
表 1  联合氧化磷酸化缺陷症1型患者已报道的GFM1基因等位基因突变频率表
1 SMITS P , ANTONICKA H , VAN HASSELT P M et al. Mutation in subdomain G' of mitochondrial elongation factor G1 is associated with combined OXPHOS deficiency in fibroblasts but not in muscle[J]. Eur J Hum Genet, 2011, 19 (3): 275- 279
doi: 10.1038/ejhg.2010.208
2 RICHARDS S , AZIZ N , BALE S et al. Standards and guidelines for the interpretation of sequence variants:a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med, 2015, 17 (5): 405- 424
doi: 10.1038/gim.2015.30
3 GAO J , YU L , ZHANG P et al. Cloning and characterization of human and mouse mitochondrial elongation factor G, GFM and Gfm, and mapping of GFM to human chromosome 3q25.1-q26.2[J]. Genomics, 2001, 74 (1): 109- 114
doi: 10.1006/geno.2001.6536
4 SMITS P , SMEITINK J , VAN DEN HEUVEL L . Mitochondrial translation and beyond:processes implicated in combined oxidative phosphorylation deficiencies[J]. J Biomed Biotechnol, 2010, 2010 737385
doi: 10.1155/2010/737385
5 KOSCIELNY G , YAIKHOM G , IYER V et al. The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data[J]. Nucleic Acids Res, 2014, 42 (Database issue): D802- D809
doi: 10.1093/nar/gkt977
6 COENEN M J , ANTONICKA H , UGALDE C et al. Mutant mitochondrial elongation factor G1 and combined oxidative phosphorylation deficiency[J]. N Engl J Med, 2004, 351 (20): 2080- 2086
doi: 10.1056/NEJMoa041878
7 ANTONICKA H , SASARMAN F , KENNAWAY N G et al. The molecular basis for tissue specificity of the oxidative phosphorylation deficiencies in patients with mutations in the mitochondrial translation factor EFG1[J]. Hum Mol Genet, 2006, 15 (11): 1835- 1846
doi: 10.1093/hmg/ddl106
8 VALENTE L , TIRANTI V , MARSANO R M et al. Infantile encephalopathy and defective mitochondrial DNA translation in patients with mutations of mitochondrial elongation factors EFG1 and EFTu[J]. Am J Hum Genet, 2007, 80 (1): 44- 58
doi: 10.1086/510559
9 BALASUBRAMANIAM S , CHOY Y S , TALIB A et al. Infantile progressive hepatoencephalomyopathy with combined OXPHOS deficiency due to mutations in the mitochondrial translation elongation factor gene GFM1[J]. JIMD Rep, 2012, 5 113- 122
doi: 10.1007/8904_2011_107
10 GALMICHE L , SERRE V , BEINAT M et al. Toward genotype phenotype correlations in GFM1 mutations[J]. Mitochondrion, 2012, 12 (2): 242- 247
doi: 10.1016/j.mito.2011.09.007
11 CALVO S E , COMPTON A G , HERSHMAN S G et al. Molecular diagnosis of infantile mitochondrial disease with targeted next-generation sequencing[J]. Sci Transl Med, 2012, 4 (118): 118ra10
doi: 10.1126/scitranslmed.3003310
12 RAVN K , SCH?NEWOLF-GREULICH B , HANSEN R M et al. Neonatal mitochondrial hepatoencephalopathy caused by novel GFM1 mutations[J]. Mol Genet Metab Rep, 2015, 3 5- 10
doi: 10.1016/j.ymgmr.2015.01.004
13 BRITO S , THOMPSON K , CAMPISTOL J et al. Corrigendum:Long-term survival in a child with severe encephalopathy, multiple respiratory chain deficiency and GFM1 mutations[J]. Front Genet, 2015, 6 254
doi: 10.3389/fgene.2015.00254
14 SIMON M T , NG B G , FRIEDERICH M W et al. Activation of a cryptic splice site in the mitochondrial elongation factor GFM1 causes combined OXPHOS deficiency[J]. Mitochondrion, 2017, 34 84- 90
doi: 10.1016/j.mito.2017.02.004
15 KOHDA M, TOKUZAWA Y, KISHITA Y, et al. A comprehensive genomic analysis reveals the genetic landscape of mitochondrial respiratory chain complex deficiencies[J/OL]. PLoS Genet, 2016, 12(1): e1005679. DOI: 10.1371/journal.pgen.1005679.
16 尤艺杰, AGNèSRotig, 王建设 . GFM1突变所致儿童急性肝衰竭1例:质疑GFM1错义突变位置决定临床表型[J]. 中国循证儿科杂志, 2016, 11 (5): 369- 372
YOU Yijie , AGNèS Rotig , WANG Jianshe . Acute liver failure caused by GFM1 mutations in a child:the relationship between GFM1 missense mutation and the peripheral amino acid and the change of clinical phenotype[J]. Chinese Journal of Evidence Based Pediatrics, 2016, 11 (5): 369- 372
doi: 10.3969/j.issn.1673-5501.2016.05.011
17 NASR E N , MIKKILINENI S , HEWSON S et al. Expansion of the known phenotype for mitochondrial translation elongation factor G1(EGF1) due to GFM1 mutations[J]. Clinical Biochemistry, 2014, 47 (15): 144
doi: 10.1016/j.clinbiochem.2014.07.060
[1] 胡刚, 刘蓓, 陈敏, 钱叶青, 董旻岳. 淋巴水肿-双行睫综合征一家系遗传学及临床表型分析[J]. 浙江大学学报(医学版), 2020, 49(5): 581-585.
[2] 金筱筱, 金鹏珍, 严恺, 钱叶青, 董旻岳. 一例TSC2基因低比例突变嵌合体基因学分析[J]. 浙江大学学报(医学版), 2020, 49(5): 586-590.