Please wait a minute...
浙江大学学报(医学版)  2020, Vol. 49 Issue (5): 548-555    DOI: 10.3785/j.issn.1008-9292.2020.10.01
专题报道     
先天性心脏病心音听诊筛查的人工智能技术应用现状
徐玮泽(),俞凯,徐佳俊,叶菁菁,李昊旻,舒强*()
浙江大学医学院附属儿童医院心脏中心 国家儿童健康与疾病临床医学研究中心 国家儿童区域医疗中心, 浙江 杭州 310052
Artificial intelligence technology in cardiac auscultation screening for congenital heart disease: present and future
XU Weize(),YU Kai,XU Jiajun,YE Jingjing,LI Haomin,SHU Qiang*()
The Heart Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Center for Children, Hangzhou 310052, China
 全文: PDF(1329 KB)   HTML( 29 )
摘要:

近年来,电子听诊器结合人工智能技术实现了心音的数字化采集和先天性心脏病的智能识别,为心音听诊提供了客观依据,提高了先天性心脏病诊断的准确率。现阶段基于人工智能技术的智能听诊技术主要侧重于人工智能算法的研究,国内外学者也针对心音音频数据的特点设计总结了多种有效算法,其中梅尔频率倒谱系数(MFCC)是最常用且有效的心音特征,被广泛应用于智能听诊技术中。然而,当前心音智能听诊技术均基于筛选的特定数据集实现,并且尚未在实际临床环境中基于大样本进行实验验证,因此各个算法的实际临床应用表现尚待进一步验证。心音数据匮乏,特别是高质量、标准化、带疾病标注且公开的心音数据库的缺失,进一步制约了心音智能诊断分析技术的发展和听诊筛查的应用。因此,相关医疗单位应当组织有关专家共同建立先天性心脏病心音听诊筛查的专家共识和标准化心音听诊筛查流程,并以此建立权威心音数据库。本文就现阶段基于人工智能的听诊算法和硬件设备在先天性心脏病听诊筛查中的研究及应用进行综述,提出人工智能心音听诊筛查技术在临床应用中有待解决的问题。

关键词: 心脏缺损, 先天性新生儿筛查心脏听诊人工智能    
Abstract:

The electronic stethoscope combined with artificial intelligence (AI) technology has realized the digital acquisition of heart sounds and intelligent identification of congenital heart disease, which provides objective basis for heart sound auscultation and improves the accuracy of congenital heart disease diagnosis. At the present stage, the AI based cardiac auscultation technique mainly focuses on the research of AI algorithms, and the researchers have designed and summarized a variety of effective algorithms based on the characteristics of cardiac audio data, among which the mel-frequency cepstral coefficients (MFCC) is the most effective one, and widely used in the cardiac auscultation. However, the current cardiac sound analysis techniques are based on specific data sets, and have not been validated in clinic, so the performance of algorithms need to be further verified. The lack of heart sound data, especially the high-quality, standardized, publicly available heart sound database with disease labeling, further restricts the development of heart sound diagnostic analysis and its application in screening. Therefore, expert consensus is necessary in establishing an authoritative heart sound database and standardizing the heart sound auscultation screening process for congenital heart disease. This paper provides an overview of the research and application status of auscultation algorithm and hardware equipment based on AI in auscultation screening of congenital heart disease, and puts forward the problems to be solved in clinical application of AI auscultation screening technology.

Key words: Heart defects, congenital    Neonatal screening    Heart auscultation    Artificial intelligence
收稿日期: 2020-08-27 出版日期: 2020-11-19
:  R44  
基金资助: 浙江省重点研发计划(2020C03120)
通讯作者: 舒强     E-mail: 120heart@zju.edu.cn;shuqiang@zju.edu.cn
作者简介: 徐玮泽(1983-), 男, 博士研究生, 副主任医师, 主要从事心血管疾病诊治研究; E-mail:120heart@zju.edu.cn; https://orcid.org/0000-0003-0744-7537
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐玮泽
俞凯
徐佳俊
叶菁菁
李昊旻
舒强

引用本文:

徐玮泽,俞凯,徐佳俊,叶菁菁,李昊旻,舒强. 先天性心脏病心音听诊筛查的人工智能技术应用现状[J]. 浙江大学学报(医学版), 2020, 49(5): 548-555.

XU Weize,YU Kai,XU Jiajun,YE Jingjing,LI Haomin,SHU Qiang. Artificial intelligence technology in cardiac auscultation screening for congenital heart disease: present and future. J Zhejiang Univ (Med Sci), 2020, 49(5): 548-555.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2020.10.01        http://www.zjujournals.com/med/CN/Y2020/V49/I5/548

图 1  心音波形示意图[4]
图 2  心音智能听诊的主要流程
产品名称 功能 优点 缺点
Littmann 3200电子听诊器 具备环境消噪技术和蓝牙技术;
具备听诊助手客户端软件;
具备多种听诊模式,能实现全速或半速听诊
心音质量高;
浏览查看方便
无人工智能算法
eMurmur ID智能系统 具备美国食品药品监督管理局认证的人工智能心脏杂音分类算法;
集算法、手机应用程序、门户网站为一体
能够实现心音智能听诊;
浏览操作简单;
支持跨平台操作
无自主研发硬件设备, 依赖第三方电子听诊器
CliniCloud智能听诊器 具备红外线和蓝牙技术;
具备苹果iOS和安卓客户端应用程序;
集成医生点播服务;
具备数字健康工具包,实现健康跟踪和心音回溯
适合家庭使用;
操作简单;
数据管理方便;
有利于医生回溯患者数据
无人工智能算法, 医生远程听诊实时性不确定
The One智能听诊器 超100倍声音放大功能;
具备Thinklink移动套件,实现听诊器与手机、电脑及其他设备连接;
具备移动端应用程序
音质好;
工业设计优;
在医生交流、教育、培训等方面体验友好
无人工智能算法
云听G200智能听诊器 具备蓝牙传输技术;
具备手机、电脑客户端软件;
能够根据需求定制接口;
提供人工智能听诊功能
能够实现智能听诊;
数据传输浏览方便;
售价便宜
软件生态系统欠完善
表 1  五款主要电子听诊器的功能及优缺点一览
1 黄国英 . 我国开展新生儿先天性心脏病筛查的重要性[J]. 中华儿科杂志, 2017, 55 (4): 241- 243
HUANG Guoying . Importance of neonatal screening for congenital heart disease in China[J]. Chinese Journal of Pediatrics, 2017, 55 (4): 241- 243
doi: 10.3760/cma.j.issn.0578-1310.2017.04.001
2 周爱卿 . 先天性心脏病诊断思路和检查方法选择[J]. 诊断学理论与实践, 2006, 5 (3): 276- 278
ZHOU Aiqing . Thinking and selection of methods in diagnosis of congenital heart disease[J]. Journal of Diagnostics:Concepts & Practice, 2006, 5 (3): 276- 278
doi: 10.3969/j.issn.1671-2870.2006.03.029
3 郭腾飞 . 心音信号的测量与处理[J]. 南北桥, 2010, (9): 44- 46
GUO Tengfei . Heart sounds signal's measurement and processing[J]. North South Bridge, 2010, (9): 44- 46
doi: 10.3969/j.issn.1672-0407.2010.09.020
4 SPRINGER D B , TARASSENKO L , CLIFFORD G D . Logistic Regression-HSMM-based heart sound segmentation[J]. IEEE Trans Biomed Eng, 2016, 63 (4): 822- 832
doi: 10.1109/TBME.2015.2475278
5 谢梅兰.心脏杂音分级量化研究及心脏能量分析[D].重庆: 重庆大学, 2010.
XIE Meilan. The study of heart murmur grading quantification and cardiac energy[D]. Chongqing: Chongqing University, 2010. (in Chinese)
6 GHOSH S K , PONNALAGU R N , TRIPATHY R K et al. Automated detection of heart valve diseases using chirplet transform and multiclass composite classifier with PCG signals[J]. Comput Biol Med, 2020, 118 103632
doi: 10.1016/j.compbiomed.2020.103632
7 DENG M , MENG T , CAO J et al. Heart sound classification based on improved MFCC features and convolutional recurrent neural networks[J]. Neural Netw, 2020, 130 22- 32
doi: 10.1016/j.neunet.2020.06.015
8 谭朝文, 王威廉, 宗容 et al. 卷积神经网络应用于先心病心音信号分类研究[J]. 计算机工程与应用, 2019, 55 (12): 174- 180
TAN Zhaowen , WANG Weilian , ZONG Rong et al. Research on classification of congenital heart disease heart sound signal using convolutional neural network[J]. Computer Engineering and Application, 2019, 55 (12): 174- 180
doi: 10.3778/j.issn.1002-8331.1807-0115
9 谭朝文, 王威廉, 宗容 et al. 基于卷积神经网络的先心病心音信号分类算法[J]. 生物医学工程学杂志, 2019, 36 (5): 728- 736, 744
TAN Zhaowen , WANG Weilian , ZONG Rong et al. Classification of heart sound signals in congenital heart disease based on convolutional neural network[J]. Journal of Biomedical Engineering, 2019, 36 (5): 728- 736, 744
doi: 10.7507/1001-5515.201806031
10 ZHU L L , PAN J H , SHI J H et al. Research on recognition of CHD heart sound using MFCC and LPCC[J]. JPhCS, 2019, 1169 (1): 012011
doi: 10.1088/1742-6596/1169/1/012011
11 陈洁, 侯海良, 罗良才 et al. 基于双门限的第一、第二心音自动识别方法[J]. 计算机工程, 2012, 38 (16): 174- 177, 181
CHEN Jie , HOU Hailiang , LUO Liangcai et al. Automatic identification method for the first and second heart sound based on double-threshold[J]. Computer Engineering, 2012, 38 (16): 174- 177, 181
doi: 10.3969/j.issn.1000-3428.2012.16.045
12 房玉, 江钟伟, 王海滨 et al. 一种先天性心脏病杂音分割及分析方法[J]. 北京生物医学工程, 2018, 37 (2): 151- 156
FANG Yu , JIANG Zhongwei , WANG Haibin et al. A heart murmur segmentation and analysis method for congenital heart disease[J]. Beijing Biomedical Engineering, 2018, 37 (2): 151- 156
doi: 10.3969/j.issn.1002-3208.2018.02.007
13 侯雷静, 郭婷婷, 孙燕 et al. 面向心音分割的个性化高斯混合建模方法[J]. 声学学报, 2019, 44 (1): 22- 29
HOU Leijing , GUO Tingting , SUN Yan et al. A personalized Gaussian mixture model modeling method for heart sound segmentation[J]. Acta Acustica, 2019, 44 (1): 22- 29
doi: 10.15949/j.cnki.0371-0025.2019.01.003
14 FERNANDO T , GHAEMMAGHAMI H , DENMAN S et al. Heart sound segmentation using bidirectional LSTMs with attention[J]. IEEE J Biomed Health Inform, 2020, 24 (6): 1601- 1609
doi: 10.1109/JBHI.2019.2949516
15 AZIZ S , KHAN M U , ALHAISONI M et al. Phonocardiogram signal processing for automatic diagnosis of congenital heart disorders through fusion of temporal and cepstral features[J]. Sensors (Basel), 2020, 20 (13):
doi: 10.3390/s20133790
16 SON G Y , KWON S . Classification of heart sound signal using multiple features[J]. Applied Sciences, 2018, 8 (12): 2344
doi: 10.3390/app8122344
17 PATIDAR S , PACHORI R B , GARG N . Automatic diagnosis of septal defects based on tunable-Q wavelet transform of cardiac sound signals[J]. Expert Syst Appl, 2015, 42 (7): 3315- 3326
doi: 10.1016/j.eswa.2014.11.046
18 OH S L , JAHMUNAH V , OOI C P et al. Classification of heart sound signals using a novel deep WaveNet model[J]. Comput Methods Programs Biomed, 2020, 196 105604
doi: 10.1016/j.cmpb.2020.105604
19 NILANON T, YAO J, HAO J, et al. Normal/abnormal heart sound recordings classification using convolutional neural network[C]. IEEE: 2016 Computing in Cardiology Conference (CinC), 2016: 585-588.
20 SUJADEVI V G, SOMAN K P, VINAYAKUMAR R, et al. Deep models for phonocardiography (PCG) classification[C]. IEEE: 2017 International Conference on Intelligent Communication and Computational Techniques (ICCT), 2017: 211-216. DOI: 10.1109/INTELCCT.2017.8324047.
21 LIU C , SPRINGER D , LI Q et al. An open access database for the evaluation of heart sound algorithms[J]. Physiol Meas, 2016, 37 (12): 2181- 2213
doi: 10.1088/0967-3334/37/12/2181
22 SUN S , JIANG Z , WANG H et al. Automatic moment segmentation and peak detection analysis of heart sound pattern via short-time modified Hilbert transform[J]. Comput Methods Programs Biomed, 2014, 114 (3): 219- 230
doi: 10.1016/j.cmpb.2014.02.004
23 SUN S . An innovative intelligent system based on automatic diagnostic feature extraction for diagnosing heart diseases[J]. Knowl-based Syst, 2015, 75 224- 238
doi: 10.1016/j.knosys.2014.12.001
24 PATIDAR S , PACHORI R B . Segmentation of cardiac sound signals by removing murmurs using constrained tunable-Q wavelet transform[J]. Biomed Signal Proces, 2013, 8 (6): 559- 567
doi: 10.1016/j.bspc.2013.05.004
[1] 胡真真, 杨建滨, 胡凌微, 赵云飞, 张超, 杨茹莱, 黄新文. 浙江省新生儿异戊酸血症筛查及临床分析[J]. 浙江大学学报(医学版), 2020, 49(5): 556-564.
[2] 黄淑敏,赵正言. 重症联合免疫缺陷病新生儿筛查及免疫系统重建研究进展[J]. 浙江大学学报(医学版), 2019, 48(4): 351-357.
[3] 吴鼎文,芦斌,杨建滨,杨茹莱,黄新文,童凡,郑静,赵正言. 3-羟基异戊酰基肉碱代谢异常新生儿遗传学分析[J]. 浙江大学学报(医学版), 2019, 48(4): 390-396.
[4] 童凡,杨茹莱,刘畅,吴鼎文,张婷,黄新文,洪芳,钱古柃,黄晓磊,周雪莲,舒强,赵正言. 新生儿酪氨酸血症筛查及基因谱分析[J]. 浙江大学学报(医学版), 2019, 48(4): 459-464.
[5] 许晶晶 等. 影像学在肿瘤精准医疗时代的机遇和挑战[J]. 浙江大学学报(医学版), 2017, 46(5): 455-461.
[6] 董飞 等. 磁共振成像强化信号特征预测胶质母细胞瘤EGFR基因扩增状态的影像组学研究[J]. 浙江大学学报(医学版), 2017, 46(5): 492-497.
[7] 黄新文 等. 浙江省新生儿氨基酸代谢疾病筛查及随访分析[J]. 浙江大学学报(医学版), 2017, 46(3): 233-239.
[8] 朱晖 等. 高龄孕妇外周血胎儿游离DNA产前筛查胎儿常见非整倍体的临床意义[J]. 浙江大学学报(医学版), 2017, 46(3): 256-261.
[9] 洪芳 等. 浙江省新生儿有机酸尿症筛查及随访分析[J]. 浙江大学学报(医学版), 2017, 46(3): 240-247.
[10] 郑静 等. 浙江省新生儿脂肪酸氧化代谢疾病筛查及随访分析[J]. 浙江大学学报(医学版), 2017, 46(3): 248-255.
[11] 李恩书 等. 不同氧浓度培养对体外受精-胚胎移植及子代出生缺陷的影响[J]. 浙江大学学报(医学版), 2017, 46(3): 290-294.
[12] 卢汉体等. 基于支持向量机的浙江省流感样病例预警模型研究[J]. 浙江大学学报(医学版), 2015, 44(6): 653-658.
[13] 徐卫华,陈友凌,严峥. 呼吸系统常见住院疾病诊断专家系统的设计与实现[J]. 浙江大学学报(医学版), 2014, 43(2): 252-256.
[14] 毛华庆;杨茹莱;刘朝晖;徐益红;茹茵;梁建凤;赵正言. 新生儿先天性甲状腺功能低下症与出生体重及胎龄关系的研究[J]. 浙江大学学报(医学版), 2007, 36(4): 378-381.
[15] 陈肖肖;杨茹莱;施玉华;曹莉佩;周雪莲;毛华庆;赵正言. 浙江省1999-2004年新生儿先天性甲状腺功能低下症筛查分析[J]. 浙江大学学报(医学版), 2005, 34(4): 304-307.