专题报道 |
|
|
|
|
先天性心脏病心音听诊筛查的人工智能技术应用现状 |
徐玮泽( ),俞凯,徐佳俊,叶菁菁,李昊旻,舒强*( ) |
浙江大学医学院附属儿童医院心脏中心 国家儿童健康与疾病临床医学研究中心 国家儿童区域医疗中心, 浙江 杭州 310052 |
|
Artificial intelligence technology in cardiac auscultation screening for congenital heart disease: present and future |
XU Weize( ),YU Kai,XU Jiajun,YE Jingjing,LI Haomin,SHU Qiang*( ) |
The Heart Center, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Center for Children, Hangzhou 310052, China |
引用本文:
徐玮泽,俞凯,徐佳俊,叶菁菁,李昊旻,舒强. 先天性心脏病心音听诊筛查的人工智能技术应用现状[J]. 浙江大学学报(医学版), 2020, 49(5): 548-555.
XU Weize,YU Kai,XU Jiajun,YE Jingjing,LI Haomin,SHU Qiang. Artificial intelligence technology in cardiac auscultation screening for congenital heart disease: present and future. J Zhejiang Univ (Med Sci), 2020, 49(5): 548-555.
链接本文:
http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2020.10.01
或
http://www.zjujournals.com/med/CN/Y2020/V49/I5/548
|
1 |
黄国英 . 我国开展新生儿先天性心脏病筛查的重要性[J]. 中华儿科杂志, 2017, 55 (4): 241- 243 HUANG Guoying . Importance of neonatal screening for congenital heart disease in China[J]. Chinese Journal of Pediatrics, 2017, 55 (4): 241- 243
doi: 10.3760/cma.j.issn.0578-1310.2017.04.001
|
2 |
周爱卿 . 先天性心脏病诊断思路和检查方法选择[J]. 诊断学理论与实践, 2006, 5 (3): 276- 278 ZHOU Aiqing . Thinking and selection of methods in diagnosis of congenital heart disease[J]. Journal of Diagnostics:Concepts & Practice, 2006, 5 (3): 276- 278
doi: 10.3969/j.issn.1671-2870.2006.03.029
|
3 |
郭腾飞 . 心音信号的测量与处理[J]. 南北桥, 2010, (9): 44- 46 GUO Tengfei . Heart sounds signal's measurement and processing[J]. North South Bridge, 2010, (9): 44- 46
doi: 10.3969/j.issn.1672-0407.2010.09.020
|
4 |
SPRINGER D B , TARASSENKO L , CLIFFORD G D . Logistic Regression-HSMM-based heart sound segmentation[J]. IEEE Trans Biomed Eng, 2016, 63 (4): 822- 832
doi: 10.1109/TBME.2015.2475278
|
5 |
谢梅兰.心脏杂音分级量化研究及心脏能量分析[D].重庆: 重庆大学, 2010. XIE Meilan. The study of heart murmur grading quantification and cardiac energy[D]. Chongqing: Chongqing University, 2010. (in Chinese)
|
6 |
GHOSH S K , PONNALAGU R N , TRIPATHY R K et al. Automated detection of heart valve diseases using chirplet transform and multiclass composite classifier with PCG signals[J]. Comput Biol Med, 2020, 118 103632
doi: 10.1016/j.compbiomed.2020.103632
|
7 |
DENG M , MENG T , CAO J et al. Heart sound classification based on improved MFCC features and convolutional recurrent neural networks[J]. Neural Netw, 2020, 130 22- 32
doi: 10.1016/j.neunet.2020.06.015
|
8 |
谭朝文, 王威廉, 宗容 et al. 卷积神经网络应用于先心病心音信号分类研究[J]. 计算机工程与应用, 2019, 55 (12): 174- 180 TAN Zhaowen , WANG Weilian , ZONG Rong et al. Research on classification of congenital heart disease heart sound signal using convolutional neural network[J]. Computer Engineering and Application, 2019, 55 (12): 174- 180
doi: 10.3778/j.issn.1002-8331.1807-0115
|
9 |
谭朝文, 王威廉, 宗容 et al. 基于卷积神经网络的先心病心音信号分类算法[J]. 生物医学工程学杂志, 2019, 36 (5): 728- 736, 744 TAN Zhaowen , WANG Weilian , ZONG Rong et al. Classification of heart sound signals in congenital heart disease based on convolutional neural network[J]. Journal of Biomedical Engineering, 2019, 36 (5): 728- 736, 744
doi: 10.7507/1001-5515.201806031
|
10 |
ZHU L L , PAN J H , SHI J H et al. Research on recognition of CHD heart sound using MFCC and LPCC[J]. JPhCS, 2019, 1169 (1): 012011
doi: 10.1088/1742-6596/1169/1/012011
|
11 |
陈洁, 侯海良, 罗良才 et al. 基于双门限的第一、第二心音自动识别方法[J]. 计算机工程, 2012, 38 (16): 174- 177, 181 CHEN Jie , HOU Hailiang , LUO Liangcai et al. Automatic identification method for the first and second heart sound based on double-threshold[J]. Computer Engineering, 2012, 38 (16): 174- 177, 181
doi: 10.3969/j.issn.1000-3428.2012.16.045
|
12 |
房玉, 江钟伟, 王海滨 et al. 一种先天性心脏病杂音分割及分析方法[J]. 北京生物医学工程, 2018, 37 (2): 151- 156 FANG Yu , JIANG Zhongwei , WANG Haibin et al. A heart murmur segmentation and analysis method for congenital heart disease[J]. Beijing Biomedical Engineering, 2018, 37 (2): 151- 156
doi: 10.3969/j.issn.1002-3208.2018.02.007
|
13 |
侯雷静, 郭婷婷, 孙燕 et al. 面向心音分割的个性化高斯混合建模方法[J]. 声学学报, 2019, 44 (1): 22- 29 HOU Leijing , GUO Tingting , SUN Yan et al. A personalized Gaussian mixture model modeling method for heart sound segmentation[J]. Acta Acustica, 2019, 44 (1): 22- 29
doi: 10.15949/j.cnki.0371-0025.2019.01.003
|
14 |
FERNANDO T , GHAEMMAGHAMI H , DENMAN S et al. Heart sound segmentation using bidirectional LSTMs with attention[J]. IEEE J Biomed Health Inform, 2020, 24 (6): 1601- 1609
doi: 10.1109/JBHI.2019.2949516
|
15 |
AZIZ S , KHAN M U , ALHAISONI M et al. Phonocardiogram signal processing for automatic diagnosis of congenital heart disorders through fusion of temporal and cepstral features[J]. Sensors (Basel), 2020, 20 (13):
doi: 10.3390/s20133790
|
16 |
SON G Y , KWON S . Classification of heart sound signal using multiple features[J]. Applied Sciences, 2018, 8 (12): 2344
doi: 10.3390/app8122344
|
17 |
PATIDAR S , PACHORI R B , GARG N . Automatic diagnosis of septal defects based on tunable-Q wavelet transform of cardiac sound signals[J]. Expert Syst Appl, 2015, 42 (7): 3315- 3326
doi: 10.1016/j.eswa.2014.11.046
|
18 |
OH S L , JAHMUNAH V , OOI C P et al. Classification of heart sound signals using a novel deep WaveNet model[J]. Comput Methods Programs Biomed, 2020, 196 105604
doi: 10.1016/j.cmpb.2020.105604
|
19 |
NILANON T, YAO J, HAO J, et al. Normal/abnormal heart sound recordings classification using convolutional neural network[C]. IEEE: 2016 Computing in Cardiology Conference (CinC), 2016: 585-588.
|
20 |
SUJADEVI V G, SOMAN K P, VINAYAKUMAR R, et al. Deep models for phonocardiography (PCG) classification[C]. IEEE: 2017 International Conference on Intelligent Communication and Computational Techniques (ICCT), 2017: 211-216. DOI: 10.1109/INTELCCT.2017.8324047.
|
21 |
LIU C , SPRINGER D , LI Q et al. An open access database for the evaluation of heart sound algorithms[J]. Physiol Meas, 2016, 37 (12): 2181- 2213
doi: 10.1088/0967-3334/37/12/2181
|
22 |
SUN S , JIANG Z , WANG H et al. Automatic moment segmentation and peak detection analysis of heart sound pattern via short-time modified Hilbert transform[J]. Comput Methods Programs Biomed, 2014, 114 (3): 219- 230
doi: 10.1016/j.cmpb.2014.02.004
|
23 |
SUN S . An innovative intelligent system based on automatic diagnostic feature extraction for diagnosing heart diseases[J]. Knowl-based Syst, 2015, 75 224- 238
doi: 10.1016/j.knosys.2014.12.001
|
24 |
PATIDAR S , PACHORI R B . Segmentation of cardiac sound signals by removing murmurs using constrained tunable-Q wavelet transform[J]. Biomed Signal Proces, 2013, 8 (6): 559- 567
doi: 10.1016/j.bspc.2013.05.004
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|