综述 |
|
|
|
|
模式生物神经轴突再生的研究进展 |
蒋沛然( ),王志萍*( ) |
浙江大学医学院脑科学与脑医学系, 浙江 杭州 310058 |
|
Progress on axon regeneration in model organisms |
JIANG Peiran( ),WANG Zhiping*( ) |
School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China |
1 |
SHINN E, PATE A, PINTO F, et al. Long-term outcomes after mild traumatic brain injury[J/OL]. J Am Coll Surgeons, 2014, 219(4, Supplement): e144-e145. DOI: 10.1016/j.jamcollsurg.2014.07.775.
|
2 |
HE Z , JIN Y . Intrinsic control of axon regeneration[J]. Neuron, 2016, 90 (3): 437- 451
doi: 10.1016/j.neuron.2016.04.022
|
3 |
HAMMARLUND M , JIN Y . Axon regeneration in C. elegans[J]. Curr Opin Neurobiol, 2014, 27 199- 207
doi: 10.1016/j.conb.2014.04.001
|
4 |
CHEN L , WANG Z , GHOSH-ROY A et al. Axon regeneration pathways identified by systematic genetic screening in C. elegans[J]. Neuron, 2011, 71 (6): 1043- 1057
doi: 10.1016/j.neuron.2011.07.009
|
5 |
EDWARDS T J , HAMMARLUND M . Syndecan promotes axon regeneration by stabilizing growth cone migration[J]. Cell Rep, 2014, 8 (1): 272- 283
doi: 10.1016/j.celrep.2014.06.008
|
6 |
QIU J , CAI D , DAI H et al. Spinal axon regeneration induced by elevation of cyclic AMP[J]. Neuron, 2002, 34 (6): 895- 903
doi: 10.1016/S0896-6273(02)00730-4
|
7 |
YAN D , WU Z , CHISHOLM A D et al. The DLK-1 kinase promotes mRNA stability and local translation in C. elegans synapses and axon regeneration[J]. Cell, 2009, 138 (5): 1005- 1018
doi: 10.1016/j.cell.2009.06.023
|
8 |
QIU J , CAI D , DAI H et al. Spinal axon regeneration induced by elevation of cyclic AMP[J]. Neuron, 2002, 34 (6): 895- 903
doi: 10.1016/S0896-6273(02)00730-4
|
9 |
GHOSH-ROY A , WU Z , GONCHAROV A et al. Calcium and cyclic AMP promote axonal regeneration in Caenorhabditis elegans and require DLK-1 kinase[J]. J Neurosci, 2010, 30 (9): 3175- 3183
doi: 10.1523/JNEUROSCI.5464-09.2010
|
10 |
YAN D , WU Z , CHISHOLM A D et al. The DLK-1 kinase promotes mRNA stability and local translation in C. elegans synapses and axon regeneration[J]. Cell, 2009, 138 (5): 1005- 1018
doi: 10.1016/j.cell.2009.06.023
|
11 |
GHOSH-ROY A , WU Z , GONCHAROV A et al. Calcium and cyclic AMP promote axonal regeneration in Caenorhabditis elegans and require DLK-1 kinase[J]. J Neurosci, 2010, 30 (9): 3175- 3183
doi: 10.1523/JNEUROSCI.5464-09.2010
|
12 |
PEARSE D D , PEREIRA F C , MARCILLO A E et al. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury[J]. Nat Med, 2004, 10 (6): 610- 616
doi: 10.1038/nm1056
|
13 |
HAO Y , FREY E , YOON C et al. An evolutionarily conserved mechanism for cAMP elicited axonal regeneration involves direct activation of the dual leucine zipper kinase DLK[J]. Elife, 2016, 5
doi: 10.7554/eLife.14048
|
14 |
NIKOLAEVA M A , MUKHERJEE B , STYS P K . Na+-dependent sources of intra-axonal Ca2+ release in rat optic nerve during in vitro chemical ischemia[J]. J Neurosci, 2005, 25 (43): 9960- 9967
doi: 10.1523/JNEUROSCI.2003-05.2005
|
15 |
GIROUARD M P , BUENO M , JULIAN V et al. The molecular interplay between axon degeneration and regeneration[J]. Dev Neurobiol, 2018, 78 (10): 978- 990
doi: 10.1002/dneu.22627
|
16 |
BROWN M C , LUNN E R , PERRY V H . Consequences of slow Wallerian degeneration for regenerating motor and sensory axons[J]. J Neurobiol, 1992, 23 (5): 521- 536
doi: 10.1002/neu.480230507
|
17 |
WATKINS T A , WANG B , HUNTWORK-RODRIGUEZ S et al. DLK initiates a transcriptional program that couples apoptotic and regenerative responses to axonal injury[J]. Proc Natl Acad Sci U S A, 2013, 110 (10): 4039- 4044
doi: 10.1073/pnas.1211074110
|
18 |
NIMMERJAHN A , KIRCHHOFF F , HELMCHEN F . Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo[J]. Science, 2005, 308 (5726): 1314- 1318
doi: 10.1126/science.1110647
|
19 |
NEUMANN H , KOTTER M R , FRANKLIN R J . Debris clearance by microglia:an essential link between degeneration and regeneration[J]. Brain, 2009, 132 (Pt 2): 288- 295
doi: 10.1093/brain/awn109
|
20 |
HILLA A M , DIEKMANN H , FISCHER D . Microglia are irrelevant for neuronal degeneration and axon regeneration after acute injury[J]. J Neurosci, 2017, 37 (25): 6113- 6124
doi: 10.1523/JNEUROSCI.0584-17.2017
|
21 |
CONDE C , CáCERES A . Microtubule assembly, organization and dynamics in axons and dendrites[J]. Nat Rev Neurosci, 2009, 10 (5): 319- 332
doi: 10.1038/nrn2631
|
22 |
SCHIFF P B , HORWITZ S B . Taxol stabilizes microtubules in mouse fibroblast cells[J]. Proc Natl Acad Sci U S A, 1980, 77 (3): 1561- 1565
doi: 10.1073/pnas.77.3.1561
|
23 |
YIU G , HE Z . Glial inhibition of CNS axon regeneration[J]. Nat Rev Neurosci, 2006, 7 (8): 617- 627
doi: 10.1038/nrn1956
|
24 |
SCHWAB M E . Nogo and axon regeneration[J]. Curr Opin Neurobiol, 2004, 14 (1): 118- 124
doi: 10.1016/j.conb.2004.01.004
|
25 |
SENGOTTUVEL V , LEIBINGER M , PFREIMER M et al. Taxol facilitates axon regeneration in the mature CNS[J]. J Neurosci, 2011, 31 (7): 2688- 2699
doi: 10.1523/JNEUROSCI.4885-10.2011
|
26 |
RUSCHEL J , HELLAL F , FLYNN K C et al. Axonal regeneration. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury[J]. Science, 2015, 348 (6232): 347- 352
doi: 10.1126/science.aaa2958
|
27 |
HE M , DING Y , CHU C et al. Autophagy induction stabilizes microtubules and promotes axon regeneration after spinal cord injury[J]. Proc Natl Acad Sci U S A, 2016, 113 (40): 11324- 11329
doi: 10.1073/pnas.1611282113
|
28 |
MATAMOROS A J , TOM V J , WU D et al. Knockdown of fidgetin improves regeneration of injured axons by a microtubule-based mechanism[J]. J Neurosci, 2019, 39 (11): 2011- 2024
doi: 10.1523/JNEUROSCI.1888-18.2018
|
29 |
PERIS L , WAGENBACH M , LAFANECHèRE L et al. Motor-dependent microtubule disassembly driven by tubulin tyrosination[J]. J Cell Biol, 2009, 185 (7): 1159- 1166
doi: 10.1083/jcb.200902142
|
30 |
CHO Y , CAVALLI V . HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration[J]. EMBO J, 2012, 31 (14): 3063- 3078
doi: 10.1038/emboj.2012.160
|
31 |
BOMZE H M , BULSARA K R , ISKANDAR B J et al. Spinal axon regeneration evoked by replacing two growth cone proteins in adult neurons[J]. Nat Neurosci, 2001, 4 (1): 38- 43
doi: 10.1038/82881
|
32 |
CARTONI R , NORSWORTHY M W , BEI F et al. The mammalian-specific protein armcx1 regulates mitochondrial transport during axon regeneration[J]. Neuron, 2016, 92 (6): 1294- 1307
doi: 10.1016/j.neuron.2016.10.060
|
33 |
TEDESCHI A , DUPRAZ S , CURCIO M et al. ADF/Cofilin-mediated actin turnover promotes axon regeneration in the adult CNS[J]. Neuron, 2019, 103 (6): 1073- 1085
doi: 10.1016/j.neuron.2019.07.007
|
34 |
LI Z , OKAMOTO K , HAYASHI Y et al. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses[J]. Cell, 2004, 119 (6): 873- 887
doi: 10.1016/j.cell.2004.11.003
|
35 |
MORRIS R L , HOLLENBECK P J . The regulation of bidirectional mitochondrial transport is coordinated with axonal outgrowth[J]. J Cell Sci, 1993, 104 (Pt 3): 917- 927
|
36 |
BELIN S , NAWABI H , WANG C et al. Injury-induced decline of intrinsic regenerative ability revealed by quantitative proteomics[J]. Neuron, 2015, 86 (4): 1000- 1014
doi: 10.1016/j.neuron.2015.03.060
|
37 |
ZHOU B , YU P , LIN M Y et al. Facilitation of axon regeneration by enhancing mitochondrial transport and rescuing energy deficits[J]. J Cell Biol, 2016, 214 (1): 103- 119
doi: 10.1083/jcb.201605101
|
38 |
WU D , LEE S , LUO J et al. Intraneural injection of ATP stimulates regeneration of primary sensory axons in the spinal cord[J]. J Neurosci, 2018, 38 (6): 1351- 1365
doi: 10.1523/JNEUROSCI.1660-17.2017
|
39 |
PARK K K , LIU K , HU Y et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway[J]. Science, 2008, 322 (5903): 963- 966
doi: 10.1126/science.1161566
|
40 |
DU K , ZHENG S , ZHANG Q et al. Pten deletion promotes regrowth of corticospinal tract axons 1 year after spinal cord injury[J]. J Neurosci, 2015, 35 (26): 9754- 9763
doi: 10.1523/JNEUROSCI.3637-14.2015
|
41 |
SUN F , PARK K K , BELIN S et al. Sustained axon regeneration induced by co-deletion of PTEN and SOCS3[J]. Nature, 2011, 480 (7377): 372- 375
doi: 10.1038/nature10594
|
42 |
YANG L , MIAO L , LIANG F et al. The mTORC1 effectors S6K1 and 4E-BP play different roles in CNS axon regeneration[J]. Nat Commun, 2014, 5 5416
doi: 10.1038/ncomms6416
|
43 |
JIN D , LIU Y , SUN F et al. Restoration of skilled locomotion by sprouting corticospinal axons induced by co-deletion of PTEN and SOCS3[J]. Nat Commun, 2015, 6 8074
doi: 10.1038/ncomms9074
|
44 |
SMITH P D , SUN F , PARK K K et al. SOCS3 deletion promotes optic nerve regeneration in vivo[J]. Neuron, 2009, 64 (5): 617- 623
doi: 10.1016/j.neuron.2009.11.021
|
45 |
MA J J , JU X , XU R J et al. Telomerase reverse transcriptase and p53 regulate mammalian peripheral nervous system and CNS axon regeneration downstream of c-Myc[J]. J Neurosci, 2019, 39 (46): 9107- 9118
doi: 10.1523/JNEUROSCI.0419-19.2019
|
46 |
ZHANG Y , WILLIAMS P R , JACOBI A et al. Elevating growth factor responsiveness and axon regeneration by modulating presynaptic inputs[J]. Neuron, 2019, 103 (1): 39- 51
doi: 10.1016/j.neuron.2019.04.033
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|