Please wait a minute...
浙江大学学报(医学版)  2020, Vol. 49 Issue (4): 508-513    DOI: 10.3785/j.issn.1008-9292.2020.08.10
综述     
γ-氨基丁酸能中间神经元与自闭症谱系障碍的研究进展
李杰1(),许均瑜1,2,罗建红1,*()
1. 浙江大学医学院脑科学与脑医学系, 浙江 杭州 310058
2. 浙江大学医学院附属儿童医院, 浙江 杭州 310052
Advances on GABAergic interneurons in autism spectrum disorders
LI Jie1(),XU Junyu1,2,LUO Jianhong1,*()
1. School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, China
2. Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
 全文: PDF(1062 KB)   HTML( 12 )
摘要:

越来越多的研究证据支持γ-氨基丁酸能中间神经元异常与自闭症谱系障碍(ASD)、癫痫以及精神分裂症等神经发育类疾病有关。近年来研究发现多种药物能靶向调控γ-氨基丁酸能中间神经元上的离子通道及受体,其中主要是钠离子通道和N-甲基-D-天冬氨酸(NMDA)受体等。钠离子通道的激活剂通过降低钠离子通道的失活来增强γ-氨基丁酸能中间神经元的动作电位;NMDA受体作为ASD的潜在治疗靶点,可以通过药物恢复γ-氨基丁酸能中间神经元的NMDA功能来治疗行为学缺陷。此外,γ-氨基丁酸能中间神经元上还有多种离子通道及受体均与ASD有关,未来会有更多药物应用于对γ-氨基丁酸能中间神经元的治疗中。本文回顾和讨论了γ-氨基丁酸能中间神经元在ASD发病过程中的作用和机制并据此进行干预的相关研究进展。

关键词: 自闭症谱系障碍皮层γ-氨基丁酸能神经元离子通道受体    
Abstract:

More and more evidences support that the abnormality of GABAergic interneurons is associated with autism spectrum disorders (ASD), epilepsy, schizophrenia and other neurodevelopmental disorders. In recent years, numerous drugs have been developed to regulate ion channels and receptors in GABAergic interneurons, including sodium channels and N-methyl-D-aspartate (NMDA) receptors. The activators of Na+ channel can enhance the action potential of GABAergic interneurons by reducing the inactivation of Na+ channel. NMDA receptor, as a potential therapeutic target of ASD, can restore the NMDA function of GABAergic interneurons, which would be used to treat behavioral defects. In addition, there are many ion channels and receptors on GABAergic interneurons related to ASD. This article reviews GABAergic interneurons in the pathogenesis of ASD and the related interventions.

Key words: Autism spectrum disorders    Cortex    GABAergic neurons    Ion channels    Receptors
收稿日期: 2020-05-20 出版日期: 2020-09-27
:  R741  
基金资助: 浙江省自然科学基金(LD19H090002);广东省重点领域研发计划(2019B030335001)
通讯作者: 罗建红     E-mail: 21718545@zju.edu.cn;luojianhong@zju.edu.cn
作者简介: 李杰(1995-), 男, 硕士研究生, 主要从事神经生物学研究; E-mail: 21718545@zju.edu.cn; https://orcid.org/0000-0002-0132-1848
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
李杰
许均瑜
罗建红

引用本文:

李杰,许均瑜,罗建红. γ-氨基丁酸能中间神经元与自闭症谱系障碍的研究进展[J]. 浙江大学学报(医学版), 2020, 49(4): 508-513.

LI Jie,XU Junyu,LUO Jianhong. Advances on GABAergic interneurons in autism spectrum disorders. J Zhejiang Univ (Med Sci), 2020, 49(4): 508-513.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2020.08.10        http://www.zjujournals.com/med/CN/Y2020/V49/I4/508

1 BAIO J , WIGGINS L , CHRISTENSEN D L et al. Prevalence of autism spectrum disorder among children aged 8 years-autism and developmental disabilities monitoring network, 11 sites, United States, 2014[J]. MMWR Surveill Summ, 2018, 67 (6): 1- 23
doi: 10.15585/mmwr.ss6706a1
2 VIJAYAKUMAR N T , JUDY M V . Autism spectrum disorders:Integration of the genome, transcriptome and the environment[J]. J Neurol Sci, 2016, 364 167- 176
doi: 10.1016/j.jns.2016.03.026
3 TREMBLAY R , LEE S , RUDY B . GABAergic interneurons in the neocortex:from cellular properties to circuits[J]. Neuron, 2016, 91 (2): 260- 292
doi: 10.1016/j.neuron.2016.06.033
4 DELEUZE C, BHUMBRA G S, PAZIENTI A, et al. Strong preference for autaptic self-connectivity of neocortical PV interneurons facilitates their tuning to gamma-oscillations[J/OL]. PLoS Biol, Sep 2019, 17(9): e3000419. DOI: 10.1371/journal.pbio.3000419.
5 WAMSLEY B , FISHELL G . Genetic and activity-dependent mechanisms underlying interneuron diversity[J]. Nat Rev Neurosci, 2017, 18 (5): 299- 309
doi: 10.1038/nrn.2017.30
6 LUKOMSKA A , DOBRZANSKI G , LIGUZ-LECZNAR M et al. Somatostatin receptors (SSTR1-5) on inhibitory interneurons in the barrel cortex[J]. Brain Struct Funct, 2020, 225 (1): 387- 401
doi: 10.1007/s00429-019-02011-7
7 FEE C , BANASR M , SIBILLE E . Somatostatin-positive gamma-aminobutyric acid interneuron deficits in depression:cortical microcircuit and therapeutic perspectives[J]. Biol Psychiatry, 2017, 82 (8): 549- 559
doi: 10.1016/j.biopsych.2017.05.024
8 PFEFFER C K , XUE M , HE M et al. Inhibition of inhibition in visual cortex:the logic of connections between molecularly distinct interneurons[J]. Nat Neurosci, 2013, 16 (8): 1068- 1076
doi: 10.1038/nn.3446
9 HUANG Z J , PAUL A . The diversity of GABAergic neurons and neural communication elements[J]. Nat Rev Neurosci, 2019, 20 (9): 563- 572
doi: 10.1038/s41583-019-0195-4
10 CHEN Q , DEISTER C A , GAO X et al. Dysfunction of cortical GABAergic neurons leads to sensory hyper-reactivity in a Shank3 mouse model of ASD[J]. Nat Neurosci, 2020, 23 (4): 520- 532
doi: 10.1038/s41593-020-0598-6
11 TUCHMAN R , MOSHé S L , RAPIN I . Convulsing toward the pathophysiology of autism[J]. Brain Dev, 2009, 31 (2): 95- 103
doi: 10.1016/j.braindev.2008.09.009
12 STAFSTROM C E , BENKE T A . Autism and epilepsy:exploring the relationship using experimental models[J]. Epilepsy Curr, 2015, 15 (4): 206- 210
doi: 10.5698/1535-7511-15.4.206
13 TAN Y , SINGHAL S M , HARDEN S W et al. Oxytocin receptors are expressed by glutamatergic prefrontal cortical neurons that selectively modulate social recognition[J]. J Neurosci, 2019, 39 (17): 3249- 3263
doi: 10.1523/JNEUROSCI.2944-18.2019
14 CHO K K , HOCH R , LEE A T et al. Gamma rhythms link prefrontal interneuron dysfunction with cognitive inflexibility in Dlx5/6(+/-) mice[J]. Neuron, 2015, 85 (6): 1332- 1343
doi: 10.1016/j.neuron.2015.02.019
15 LEBLANC J J , FAGIOLINI M . Autism:a "critical period" disorder?[J]. Neural Plast, 2011, 2011 921680
doi: 10.1155/2011/921680
16 PIRONE A , ALEXANDER J M , KOENIG J B et al. Social stimulus causes aberrant activation of the medial prefrontal cortex in a mouse model with autism-like behaviors[J]. Front Synaptic Neurosci, 2018, 10 35
doi: 10.3389/fnsyn.2018.00035
17 KOBAYASHI M , HAYASHI Y , FUJIMOTO Y et al. Decreased parvalbumin and somatostatin neurons in medial prefrontal cortex in BRINP1-KO mice[J]. Neurosci Lett, 2018, 683 82- 88
doi: 10.1016/j.neulet.2018.06.050
18 DO K Q , CUENOD M , HENSCH T K . Targeting oxidative stress and aberrant critical period plasticity in the developmental trajectory to schizophrenia[J]. Schizophr Bull, 2015, 41 (4): 835- 846
doi: 10.1093/schbul/sbv065
19 SELIMBEYOGLU A , KIM C K , INOUE M et al. Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior in CNTNAP2-deficient mice[J]. Sci Transl Med, 2017, 9 (401):
doi: 10.1126/scitranslmed.aah6733
20 VELMESHEV D , SCHIRMER L , JUNG D et al. Single-cell genomics identifies cell type-specific molecular changes in autism[J]. Science, 2019, 364 (6441): 685- 689
doi: 10.1126/science.aav8130
21 CAO W , LIN S , XIA Q Q et al. Gamma oscillation dysfunction in mPFC leads to social deficits in neuroligin 3 R451C knockin mice[J]. Neuron, 2018, 98 (3): 670
doi: 10.1016/j.neuron.2018.04.025
22 KALBASSI S , BACHMANN S O , CROSS E et al. Male and female mice lacking neuroligin-3 modify the behavior of their wild-type littermates[J]. eNeuro, 2017, 4 (4):
doi: 10.1523/ENEURO.0145-17.2017
23 KAPLAN J S , STELLA N , CATTERALL W A et al. Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome[J]. Proc Natl Acad Sci U S A, 2017, 114 (42): 11229- 11234
doi: 10.1073/pnas.1711351114
24 LI T, TIAN C, SCALMANI P, et al. Action potential initiation in neocortical inhibitory interneurons[J/OL]. PLoS Biol, 2014, 12(9): e1001944. DOI: 10.1371/journal.pbio.1001944.
25 JANSSEN M J , LEIVA-SALCEDO E , BUONANNO A . Neuregulin directly decreases voltage-gated sodium current in hippocampal ErbB4-expressing interneurons[J]. J Neurosci, 2012, 32 (40): 13889- 13895
doi: 10.1523/JNEUROSCI.1420-12.2012
26 HAN S , TAI C , WESTENBROEK R E et al. Autistic-like behaviour in Scn1a+/- mice and rescue by enhanced GABA-mediated neurotransmission[J]. Nature, 2012, 489 (7416): 385- 390
doi: 10.1038/nature11356
27 JENSEN H S , GRUNNET M , BASTLUND J F . Therapeutic potential of Na(V)1.1 activators[J]. Trends Pharmacol Sci, 2014, 35 (3): 113- 118
doi: 10.1016/j.tips.2013.12.007
28 VON SCHOUBYE N L , FREDERIKSEN K , KRISTIANSEN U et al. The sodium channel activator Lu AE98134 normalizes the altered firing properties of fast spiking interneurons in Dlx5/6+/- mice[J]. Neurosci Lett, 2018, 662 29- 35
doi: 10.1016/j.neulet.2017.10.004
29 FREDERIKSEN K , LU D , YANG J et al. A small molecule activator of Nav 1.1 channels increases fast-spiking interneuron excitability and GABAergic transmission in vitro and has anti-convulsive effects in vivo[J]. Eur J Neurosci, 2017, 46 (3): 1887- 1896
doi: 10.1111/ejn.13626
30 RICHARDS K L, MILLIGAN C J, RICHARDSON R J, et al. Selective NaV1.1 activation rescues Dravet syndrome mice from seizures and premature death[J/OL]. Proc Natl Acad Sci U S A, 2018, 115(34): E8077-E8085. DOI: 10.1073/pnas.1804764115.
31 ADOTEVI N K , LEITCH B . Cortical expression of AMPA receptors during postnatal development in a genetic model of absence epilepsy[J]. Int J Dev Neurosci, 2019, 73 19- 25
doi: 10.1016/j.ijdevneu.2018.12.006
32 SULLIVAN B J , AMMANUEL S , KIPNIS P A et al. Low-dose perampanel rescues cortical gamma dysregulation associated with parvalbumin interneuron GluA2 upregulation in epileptic syngap1+/- mice[J]. Biol Psychiatry, 2020, 87 (9): 829- 842
doi: 10.1016/j.biopsych.2019.12.025
33 LEE J , KIM C , YEOM H D et al. Subunit-specific effects of poricoic acid A on NMDA receptors[J]. Pharmacol Rep, 2020, 72 (2): 472- 480
doi: 10.1007/s43440-019-00036-7
34 SHEPARD R , HESLIN K , HAGERDORN P et al. Downregulation of Npas4 in parvalbumin interneurons and cognitive deficits after neonatal NMDA receptor blockade:relevance for schizophrenia[J]. Transl Psychiatry, 2019, 9 (1): 99
doi: 10.1038/s41398-019-0436-3
35 MURUETA-GOYENA A , ORTUZAR N , LAFUENTE J V et al. Enriched environment reverts somatostatin interneuron loss in MK-801 model of schizophrenia[J]. Mol Neurobiol, 2020, 57 (1): 125- 134
doi: 10.1007/s12035-019-01762-y
36 CADINU D , GRAYSON B , PODDA G et al. NMDA receptor antagonist rodent models for cognition in schizophrenia and identification of novel drug treatments, an update[J]. Neuropharmacology, 2018, 142 41- 62
doi: 10.1016/j.neuropharm.2017.11.045
37 HANSON J E , WEBER M , MEILANDT W J et al. GluN2B antagonism affects interneurons and leads to immediate and persistent changes in synaptic plasticity, oscillations, and behavior[J]. Neuropsychopharmacology, 2013, 38 (7): 1221- 1233
doi: 10.1038/npp.2013.19
38 SHIN W, KIM K, SERRAZ B, et al. Early correction of synaptic long-term depression improves abnormal anxiety-like behavior in adult GluN2B-C456Y-mutant mice[J/OL]. PLoS Biol, 2020, 18(4): e3000717. DOI: 10.1371/journal.pbio.3000717.
39 SESHADRI S , KLAUS A , WINKOWSKI D E et al. Altered avalanche dynamics in a developmental NMDAR hypofunction model of cognitive impairment[J]. Transl Psychiatry, 2018, 8 (1): 3
doi: 10.1038/s41398-017-0060-z
40 SESARINI C V , COSTA L , NAYMARK M et al. Evidence for interaction between markers in GABA(A) receptor subunit genes in an Argentinean autism spectrum disorder population[J]. Autism Res, 2014, 7 (1): 162- 166
doi: 10.1002/aur.1353
41 LE MAGUERESSE C , MONYER H . GABAergic interneurons shape the functional maturation of the cortex[J]. Neuron, 2013, 77 (3): 388- 405
doi: 10.1016/j.neuron.2013.01.011
42 JUNG E M , MOFFAT J J , LIU J et al. Arid1b haploinsufficiency disrupts cortical interneuron development and mouse behavior[J]. Nat Neurosci, 2017, 20 (12): 1694- 1707
doi: 10.1038/s41593-017-0013-0
43 SOUTHWELL D G , SEIFIKAR H , MALIK R et al. Interneuron transplantation rescues social behavior deficits without restoring wild-type physiology in a mouse model of autism with excessive synaptic inhibition[J]. J Neurosci, 2020, 40 (11): 2215- 2227
doi: 10.1523/JNEUROSCI.1063-19.2019
[1] 温雯, 姚巧玲, 陈玉岚, 李志强, 孙晓靖, 李瑜, 张俊仕, 珠勒皮亚·司马义, 徐新娟. 瞬时受体电位通道C与阻塞性睡眠呼吸暂停低通气综合征大鼠心脏和肾脏损害的关系[J]. 浙江大学学报(医学版), 2020, 49(4): 439-446.
[2] 黄耀凭,杨凤,周天华,谢珊珊. Hippo信号通路及其在消化系统肿瘤中的作用研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 35-43.
[3] 刘晓晓,郭莉琼,梁成. 抗N-甲基-D-天冬氨酸受体脑炎患者脑电图特点的研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 118-123.
[4] 袁雪纯,向大伟,敏琼,丁怡丹,赵安鹏,王荣. 急进高原缺氧对大鼠肝脏孕烷X受体表达的影响[J]. 浙江大学学报(医学版), 2019, 48(6): 603-608.
[5] 米爽,吴燕君,洪正华,王章富,冯兴兵,郑光彬. TLR4/MyD88/NF-κB通路基因及相关炎症因子在继发性脊髓损伤患者中的表达[J]. 浙江大学学报(医学版), 2019, 48(6): 609-616.
[6] 邵佳乐,李志忠,周建,李凯,秦荣,陈克明. 低频脉冲电磁场通过IGF-1R/NO信号通路促进大鼠颅骨成骨细胞成熟及矿化[J]. 浙江大学学报(医学版), 2019, 48(2): 158-164.
[7] 徐丽臻,杨帆. 瞬时受体电位M8型离子通道选择性滤器的三维结构计算建模[J]. 浙江大学学报(医学版), 2019, 48(1): 19-24.
[8] 宋方俊,郭江涛. 电压门控离子通道结构生物学研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 25-33.
[9] 洪非凡,李月舟. 超声遗传学技术中的机械敏感性离子通道[J]. 浙江大学学报(医学版), 2019, 48(1): 34-38.
[10] 李春桃,张会冰,张岩. 单颗粒冷冻电镜揭开G蛋白偶联受体结构生物学研究的新篇章[J]. 浙江大学学报(医学版), 2019, 48(1): 39-43.
[11] 叶培武. 人源瞬时受体电位M2型通道Nudix水解酶9同源结构域的提取和纯化[J]. 浙江大学学报(医学版), 2019, 48(1): 5-11.
[12] 林卡娜,林美丽,顾莹芬,张顺国,黄诗颖. G蛋白偶联受体17在视网膜神经节细胞缺氧损伤中的作用[J]. 浙江大学学报(医学版), 2018, 47(5): 487-492.
[13] 王安奇,刘欣跃. CXCL12及CXCR4基因多态性与冠心病发病风险和冠状动脉狭窄程度的相关性[J]. 浙江大学学报(医学版), 2018, 47(5): 514-519.
[14] 王晓蓉,卢韵碧,张纬萍,魏尔清,方三华. 半胱氨酰白三烯受体对小鼠小胶质细胞吞噬功能的调节作用[J]. 浙江大学学报(医学版), 2018, 47(1): 10-18.
[15] 丁京京,卢韵碧. 受体相互作用蛋白家族在炎症中的作用研究进展[J]. 浙江大学学报(医学版), 2018, 47(1): 89-96.