Please wait a minute...
浙江大学学报(医学版)  2020, Vol. 49 Issue (3): 364-374    DOI: 10.3785/j.issn.1008-9292.2020.06.03
原著     
叶酸修饰壳聚糖纳米载药胶束的制备及其体外抗肿瘤效果研究
刘露1,2(),黄国俊1,白宏震1,汤谷平1,*()
1. 浙江大学化学系, 浙江 杭州 310028
2. 浙江圣达生物药业股份有限公司, 浙江 台州 317200
Synthesis of folate modified chitosan-based nanomicelles and its in vitro anti-tumor activity
LIU Lu1,2(),HUANG Guojun1,BAI Hongzhen1,TANG Guping1,*()
1. Department of Chemistry, Zhejiang University, Hangzhou 310028, China
2. Zhejiang Shengda Bio-pharm Co., Ltd., Taizhou 317200, Zhejiang Province, China
 全文: PDF(16027 KB)   HTML( 13 )
摘要:

目的: 设计并合成叶酸修饰酸碱度响应壳聚糖纳米胶束,考察材料及其载药胶束对肿瘤细胞的体外生物活性。方法: 醛基化的壳聚糖与亲水性的胺类化合物经还原胺化反应得CHI-DMA,进一步与月桂酸(LA)经缩合反应得CHI-DMA-LA;叶酸(FA)修饰后得FA-CHI-DMA-LA;包载阿霉素(DOX)后得载药纳米胶束FA-CHI-DMA-LA/DOX。采用氢核磁共振测定材料结构;透射电子显微镜考察材料形态;动态光散射法测定粒径和表面电位;紫外分光光度法测定材料中叶酸的接入率、载药胶束的载药率和包封率;荧光分光光度法测试不同酸碱度下载药胶束体外释放药物的性能;MTT法检测胶束对KB细胞的毒性;荧光显微镜和流式细胞仪考察载药胶束在KB细胞中的吞噬情况。结果: 合成了叶酸修饰的壳聚糖胶束材料FA-CHI-DMA-LA,后续用于实验的FA-CHI-DMA-LA-1和FA-CHI-DMA-LA-2胶束的粒径分别为(73±14)nm和(106±15)nm,表面电位分别为(15.59±1.98)mV和(21.20±2.35)mV。其载药胶束FA-CHI-DMA-LA-1/DOX和FA-CHI-DMA-LA-2/DOX的载药率分别为(4.08±1.12)%和(4.12±0.44)%,体外药物在酸碱度5.0下累积释放分别达37%和36%,是酸碱度7.4下的1.5倍左右。FA-CHI-DMA-LA在1.25~125 μg/mL浓度下作用24 h后KB细胞存活率均在70%以上。FA-CHI-DMA-LA/DOX载药胶束的细胞摄取较CHI-DMA-LA/DOX增强,且在无叶酸培养基孵育下细胞摄取比含叶酸培养基孵育下增强。与游离阿霉素和CHI-DMA-LA/DOX比较,FA-CHI-DMA-LA/DOX对KB细胞杀伤力更高,其中FA-CHI-DMA-LA-2/DOX给药孵育24 h后细胞存活率约17%。结论: 成功制备了作为药物输送载体的叶酸修饰壳聚糖纳米胶束材料,其生物相容性良好,具有适应肿瘤微环境酸碱度的药物释放和肿瘤靶向效果。

关键词: 药物释放系统纳米粒子抗肿瘤药叶酸酸碱度响应    
Abstract:

Objective: To design and synthesize folate-modified pH-responsive chitosan-based nanomicelles and investigate the in vitro anti-tumor activity of the drug-loaded micelles. Methods: CHI-DMA was obtained by reductive amination reaction of aldehyde-based chitosan and hydrophilic amine compounds, and CHI-DMA-LA was obtained by condensation reaction with lauric acid; FA-CHI-DMA-LA was obtained after modification with folic acid (FA). The drug-loaded nanomicelles FA-CHI-DMA-LA/DOX were assembled by solvent change method. The physicochemical properties of polymers were characterized by hydrogen nuclear magnetic resonance and transmission electron microscope. The particle size and surface potential were determined by dynamic light scattering method. Folic acid access rate, doxorubicin (DOX) loading rate and entrapped efficiency were measured by UV-vis spectrophotometer. The drug release properties of DOX-loaded micelles in vitro were monitored by fluorescence spectrophotometer at different pHs (7.4, 6.5, 5.0). The cytotoxicity against human oral cancer KB cells was detected by MTT assay. Fluorescence microscope and flow cytometry were applied to investigate the phagocytosis of DOX-loaded micelles on KB cells. Results: FA-CHI-DMA-LA was synthesized. The particle sizes of FA-CHI-DMA-LA-1 and FA-CHI-DMA-LA-2 micelles which used for the subsequent experiments were (73±14) nm and (106±15) nm, zeta potential were (15.59±1.98) mV and (21.20±2.35) mV, respectively. The drug loading rates of drug-loaded micelles FA-CHI-DMA-LA-1/DOX and FA-CHI-DMA-LA-2/DOX are (4.08±1.12)%and (4.12±0.44)%, respectively. In vitro drug release is pH-responsive, with cumulative release of DOX up to 37%and 36%at pH 5.0, which is about 1.5 times higher than that of pH 7.4. For FA-CHI-DMA-LA micelles with 1.25 to 125 μg/mL concentration, the survival rate of KB cells is more than 70%after incubation for 24 hours. The cell uptake of FA-CHI-DMA-LA/DOX micelles was enhanced compared to CHI-DMA-LA/DOX, and the cell uptake was higher in incubation without FA medium than that with FA. Compared with free DOX or CHI-DMA-LA/DOX, FA-CHI-DMA-LA/DOX nanomicelles showed higher cyctoxicity to KB cells, especially the FA-CHI-DMA-LA-2/DOX nanomicelles, the cell survival rate was about 17% after incubation for 24 hours. Conclusion: FA-modified chitosan-based nanomicelle with good biocompatibility was successfully prepared, which exhibits tumor microenvironmental pH responsive drug release and tumor targeting.

Key words: Drug delivery systems    Nanoparticles    Antineoplastic agents    Folic acid    pH responsive
收稿日期: 2019-09-16 出版日期: 2020-07-24
CLC:  R943  
基金资助: 国家自然科学基金(51573161);浙江省博士后科研项目(zj20180092)
通讯作者: 汤谷平     E-mail: lulu0698@zju.edu.cn;tangguping@zju.edu.cn
作者简介: 刘露(1985—), 女, 博士, 主要从事药物化学、生物医用纳米材料研究; E-mail:lulu0698@zju.edu.cn; https://orcid.org/0000-0003-0641-4952
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
刘露
黄国俊
白宏震
汤谷平

引用本文:

刘露,黄国俊,白宏震,汤谷平. 叶酸修饰壳聚糖纳米载药胶束的制备及其体外抗肿瘤效果研究[J]. 浙江大学学报(医学版), 2020, 49(3): 364-374.

LIU Lu,HUANG Guojun,BAI Hongzhen,TANG Guping. Synthesis of folate modified chitosan-based nanomicelles and its in vitro anti-tumor activity. J Zhejiang Univ (Med Sci), 2020, 49(3): 364-374.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2020.06.03        http://www.zjujournals.com/med/CN/Y2020/V49/I3/364

图 1  FA-CHI-DMA-LA的合成
图 2  FA-CHI-DMA-LA的核磁共振氢谱
样品编号叶酸接入率(%)粒径(nm)电位(mV)
“—”:无相关数据.
CHI-DMA-LA71±821.70±0.67
FA-CHI-DMA-LA-16.92±0.9073±1415.59±1.98
FA-CHI-DMA-LA-29.64±1.43106±1521.20±2.35
FA-CHI-DMA-LA-321.7±3.11323±2920.63±1.73
表 1  FA-CHI-DMA-LA胶束的叶酸接入率、粒径和电位
图 3  FA-CHI-DMA-LA胶束的透射电镜图
图 4  FA-CHI-DMA-LA/DOX载药胶束在不同酸碱度下的体外药物释放曲线
图 5  FA-CHI-DMA-LA胶束的细胞毒性试验结果
图 6  荧光倒置显微镜下FA-CHI-DMA-LA/DOX载药胶束的细胞摄取
图 7  流式细胞仪检测FA-CHI-DMA-LA/DOX载药胶束的细胞摄取能力
图 8  FA-CHI-DMA-LA/DOX载药胶束抗肿瘤细胞能力
1 GU F , ZHANG L , TEPLY B A et al. Precise engineering of targeted nanoparticles by using self-assembledbiointegrated block copolymers[J]. Proc Natl Acad Sci U S A, 2008, 105 (7): 2586- 2591
doi: 10.1073/pnas.0711714105
2 LEAMON C P , REDDY J A . Folate-targeted chemotherapy[J]. Adv Drug Deliv Rev, 2004, 56 (8): 1127- 1141
doi: 10.1016/j.addr.2004.01.008
3 HILGENBRINK A R , LOW P S . Folate receptor-mediated drug targeting:from therapeutics to diagnostics[J]. J Pharm Sci, 2005, 94 (10): 2135- 2146
doi: 10.1002/jps.20457
4 ROSS J F , CHAUDHURI P K , RATNAM M . Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications[J]. Cancer, 1994, 73 (9): 2432- 2443
doi: 10.1002/1097-0142(19940501)73:9<2432::aid-cncr2820730929>3.0.co;2-s
5 WEITMAN S D , LARK R H , CONEY L R et al. Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues[J]. Cancer Res, 1992, 52 (12): 3396- 3401
6 PAN X Q , LEE R J . In vivo antitumor activity of folate receptor-targeted liposomal daunorubicin in a murine leukemia model[J]. Anticancer Res, 2005, 25 (1A): 343- 346
7 HE Z , HUANG J , XU Y et al. Co-delivery of cisplatin and paclitaxel by folic acid conjugated amphiphilic PEG-PLGA copolymer nanoparticles for the treatment of non-small lung cancer[J]. Oncotarget, 2015, 6 (39): 42150- 42168
doi: 10.18632/oncotarget.6243
8 CHEN Y , PENG J , LAI Y et al. Ultrasensitive label-free detection of circulating tumor cells using conductivity matching of two-dimensional semiconductor with cancer cell[J]. Biosens Bioelectron, 2019, 142 111520
doi: 10.1016/j.bios.2019.111520
9 BITTLEMAN K R , DONG S , ROMAN M et al. Folic acid-conjugated cellulose nanocrystals show high folate-receptor binding affinity and uptake by KB and breast cancer cells[J]. ACS Omega, 2018, 3 (10): 13952- 13959
doi: 10.1021/acsomega.8b01619
10 CHEN C , KE J , ZHOU X E et al. Structural basis for molecular recognition of folic acid by folate receptors[J]. Nature, 2013, 500 (7463): 486- 489
doi: 10.1038/nature12327
11 LOW P S , HENNE W A , DOORNEWEERD D D . Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases[J]. Acc Chem Res, 2008, 41 (1): 120- 129
doi: 10.1021/ar7000815
12 GAO W , CHAN J M , FAROKHZAD O C . pH-Responsive nanoparticles for drug delivery[J]. Mol Pharm, 2010, 7 (6): 1913- 1920
doi: 10.1021/mp100253e
13 XIE J , CHEN Z , ZHANG A et al. Folate receptor targeted drug delivery-from the bench to the bedside[J]. J Biomed Mater Res, 2016, 2 (1): 46- 52
doi: 10.18088/ejbmr.2.1.2016.pp46-52
14 OZA A M , VERGOTE I B , GILBERT L G et al. A randomized double-blind phase Ⅲ trial comparingvintafolide (EC145) and pegylated liposomal doxorubicin (PLD/Doxil?/Caelyx?) in combination versus PLD in participants with platinum-resistant ovarian cancer (PROCEED)(NCT01170650)[J]. Gynecologic Oncology, 2015, 137 5- 6
doi: 10.1016/j.ygyno.2015.01.010
15 LEAMON C P , PARKER M A , VLAHOV I R et al. Synthesis and biological evaluation of EC20:a new folate-derived, (99m)Tc-based radiopharmaceutical[J]. Bioconjug Chem, 2002, 13 (6): 1200- 1210
doi: 10.1021/bc0200430
16 REDDY J A , DORTON R , BLOOMFIELD A et al. Pre-clinical evaluation of EC1456, a folate-tubulysin anti-cancer therapeutic[J]. Sci Rep, 2018, 8 (1): 8943
doi: 10.1038/s41598-018-27320-5
17 MOORE K N , MARTIN L P , O'MALLEY D M et al. Safety and activity of mirvetuximab soravtansine (IMGN853), a folate receptor alpha-targeting antibody-drug conjugate, in platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer:a phase I expansion study[J]. J Clin Oncol, 2017, 35 (10): 1112- 1118
doi: 10.1200/JCO.2016.69.9538
18 MANSOURI S , CUIE Y , WINNIK F et al. Characterization of folate-chitosan-DNA nanoparticles for gene therapy[J]. Biomaterials, 2006, 27 (9): 2060- 2065
doi: 10.1016/j.biomaterials.2005.09.020
19 WEN H , YIN C , DU A et al. Folate conjugated PEG-chitosan/graphene oxide nanocomplexes as potential carriers for pH-triggered drug release[J]. J Control Release, 2015, 213 e44- e45
doi: 10.1016/j.jconrel.2015.05.072
20 JOHN A A , JAGANATHAN S , MANIKANDAN D A et al. Folic acid decorated chitosan nanoparticles and its derivatives for the delivery of drugs and genes to cancer cells[J]. Current Science, 2017, 113 1530- 1542
doi: 10.18520/cs/v113/i08/1530-1542
21 DING Y , YIN H , CHEN R et al. Carboxymethyl chitosan based nanocomposites containing chemically bonded quantum dots and magnetic nanoparticles[J]. Applied Surface Science, 2018, 433 188- 196
doi: 10.1016/j.apsusc.2017.09.217
22 BIDKAR A P , SANPUI P , GHOSH SS . Combination therapy with MAPK-pathway specific inhibitor and folic acid receptor targeted selenium nanoparticles induces synergistic anti-proliferative response in BRAF-mutant cancer cells[J]. Acs Biomater-Sci Eng, 2019, 5 (5): 2222- 2234
doi: 10.1021/acsbiomaterials.9b00112
23 ZHANG S , LIU Y , GAN Y et al. Conjugates of TAT and folate with DOX-loaded chitosan micelles offer effective intracellular delivery ability[J]. Pharm Dev Technol, 2019, 24 (2): 253- 261
doi: 10.1080/10837450.2018.1469147
24 MARY LAZER L , SADHASIVAM B , PALANIYANDI K et al. Chitosan-based nano-formulation enhances the anticancer efficacy of hesperetin[J]. Int J Biol Macromol, 2018, 107 (Pt B): 1988- 1998
doi: 10.1016/j.ijbiomac.2017.10.064
25 TORCHILIN V P . Micellar nanocarriers:pharma-ceutical perspectives[J]. Pharm Res, 2007, 24 (1): 1- 16
doi: 10.1007/s11095-006-9132-0
[1] 刘婧雯,杨兴莲,沈凯莉,曾玲晖,孙燕. 氯氧喹通过下调Rho/Rho激酶信号通路抑制乳腺癌细胞转移[J]. 浙江大学学报(医学版), 2019, 48(6): 631-637.
[2] 沈洁,王启闻,高东若,吕媛媛,汤谷平. 基于聚天冬氨酸骨架的药物/基因共运输载体的制备及细胞生物学特性[J]. 浙江大学学报(医学版), 2019, 48(6): 657-667.
[3] 王晓玲,欧阳旭梅,孙晓译. 基于间充质干细胞的小分子化学药物肿瘤靶向递送系统研究进展[J]. 浙江大学学报(医学版), 2018, 47(5): 525-533.
[4] 王梦嫣 等. 耶氏肺孢子菌对磺胺类药物耐药相关基因突变的研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 563-569.
[5] 钟根龙 等. 血清叶酸水平与脑白质高信号严重程度及伴发脑微出血的相关性[J]. 浙江大学学报(医学版), 2017, 46(4): 390-396.
[6] 刘开航,孙梦莹,汤谷平,胡秀荣. 抗肿瘤药物瑞戈非尼—环糊精包合物的制备及其生物学性质研究[J]. 浙江大学学报(医学版), 2017, 46(2): 144-152.
[7] 曹鹏 等. 双氢青蒿素抗肿瘤分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 501-507.
[8] 邢桂英等. 交联壳聚糖/聚丙烯酸/聚氧化乙烯包埋三七颗粒纳米纤维的制备及其性能研究[J]. 浙江大学学报(医学版), 2015, 44(6): 665-671.
[9] 娄小娥等. 分子靶向抗肿瘤药物的毒性研究进展[J]. 浙江大学学报(医学版), 2015, 44(5): 473-478.
[10] 张洁琼等. 拉帕替尼与绿原酸联合应用抑制巨噬细胞M2型极化及抗乳腺癌转移的作用研究[J]. 浙江大学学报(医学版), 2015, 44(5): 493-499.
[11] 周朵, 赵正言. 麻疹病毒抗肿瘤作用的研究进展[J]. 浙江大学学报(医学版), 2015, 44(4): 458-464.
[12] 杨霞,江米足. 纳米氧化锌的毒性作用及机制研究进展[J]. 浙江大学学报(医学版), 2014, 43(2): 218-226.
[13] . 聚乙烯亚胺/环糊精聚合物偶合雷公藤内酯醇的体外抗肿瘤活性研究[J]. 浙江大学学报(医学版), 2012, 41(6): 610-619.
[14] . 主客体组装的金刚烷甲酸-阿霉素/聚阳离子材料及体外抗肿瘤活性的研究[J]. 浙江大学学报(医学版), 2012, 41(6): 599-609.
[15] . 口腔种植系统研发现状[J]. 浙江大学学报(医学版), 2012, 41(3): 229-233.