Please wait a minute...
浙江大学学报(医学版)  2020, Vol. 49 Issue (4): 439-446    DOI: 10.3785/j.issn.1008-9292.2020.04.16
专题报道     
瞬时受体电位通道C与阻塞性睡眠呼吸暂停低通气综合征大鼠心脏和肾脏损害的关系
温雯1(),姚巧玲2,陈玉岚1,*(),李志强3,孙晓靖4,李瑜5,张俊仕1,珠勒皮亚·司马义1,徐新娟1
1. 新疆医科大学第一附属医院高血压科, 新疆维吾尔自治区 乌鲁木齐 830011
2. 新疆医科大学基础医学院生理教研室, 新疆维吾尔自治区 乌鲁木齐 830054
3. 新疆医科大学第一附属医院临床研究院, 新疆维吾尔自治区 乌鲁木齐 830011
4. 新疆医科大学第二附属医院重症医学科, 新疆维吾尔自治区 乌鲁木齐 830000
5. 新疆医科大学第一附属医院综合内二科, 新疆维吾尔自治区 乌鲁木齐 830011
Correlation between transient receptor potential canonical channel with heart and kidney injure of rat model of obstructive sleep apnea hypopnea syndrome
WEN Wen1(),YAO Qiaoling2,CHEN Yulan1,*(),LI Zhiqiang3,SUN Xiaojing4,LI Yu5,ZHANG Junshi1,SIMAYIZhulipiya 1,XU Xinjuan1
1. Department of Hypertension, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
2. Department of Physiology, Preclinical Medicine Collage of Xinjiang Medical University, Urumqi 830054, China
3. Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
4. Department of Critical Medicine, the Second Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
5. Second Department of General Internal Medicine, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, China
 全文: PDF(2095 KB)   HTML( 14 )
摘要:

目的: 探究经典瞬时受体电位通道C(TRPC)相关蛋白在阻塞性睡眠呼吸暂停低通气综合征(OSAHS)大鼠心脏和肾脏损害中的作用。方法: 18只SD雄性大鼠随机分为实验组和对照组,每组9只。实验组大鼠在间歇性低氧舱中,每天暴露于间歇性低氧环境8 h(10:00—18:00)。此后通过实时荧光定量PCR和蛋白质印迹法分别检测大鼠心脏和肾脏组织中TRPC mRNA和相关蛋白的表达。结果: 实验组心脏组织中TRPC3、TRPC4、TRPC5的mRNA表达较对照组升高(均P < 0.05),而肾脏组织TRPC1、TRPC3、TRPC4、TRPC5、TRPC6、TRPC7的mRNA表达在两组之间差异无统计学意义(均P>0.05);实验组肾脏组织中TRPC4、TRPC5、TRPC6的mRNA表达低于心脏组织(均P < 0.05),对照组肾脏组织TRPC7的mRNA表达高于心脏组织(P < 0.05)。实验组心脏组织中的TRPC5蛋白表达较对照组升高(P < 0.05),而肾脏组织TRPC5、TRPC6、TRPC7相关蛋白的表达在两组之间差异无统计学意义(均P>0.05)。结论: TRPC5可能参与OSAHS心脏损害的病理生理过程,有望成为治疗OSAHS所致心脏损害的药物新靶点。

关键词: 瞬时受体电位通道/代谢蛋白质类睡眠呼吸暂停综合征/病理生理学低氧/病理学心脏/代谢肾/代谢疾病模型, 动物病例对照研究    
Abstract:

Objective: To investigate the expression of transient receptor potential canonical channels (TRPCs) in the heart and kidney of rat model of obstructive sleep apnea hypopnea syndrome (OSAHS). Methods: Eighteen male SD rats were randomly assigned to intermittent hypoxia (IH) group (n=9) and control group (n=9). In IH group, rats were placed in a chamber and exposed to intermittent hypoxia for 8h (10AM-6PM) daily. The expression of TRPC-related mRNA and protein in the heart and kidney tissue were detected by qRT-PCR and Western blotting, respectively. Results: The mRNA expressions of TRPC3/TRPC4/TRPC5 in heart tissues of IH group were increased significantly compared with the control group (all P>0.05); while there were no significant differences in the mRNA expressions of TRPC1/TRPC3/TRPC4/TRPC5/TRPC6/TRPC7 in kidney tissue between two groups (all P < 0.05). The mRNA expressions of TRPC4, TRPC5 and TRPC6 in kidney tissues of IH group were lower than that in heart tissues (all P < 0.05). The mRNA expression of TRPC7 in kidney tissues of control group was significantly higher than that in heart tissues (P < 0.05). The expression of TRPC5 protein in heart tissues of IH group was significantly higher than that in the control group (P < 0.05); while there was no significant differences in the expression of TRPC5/TRPC6/TRPC7 protein in kidney tissue between two groups (all P>0.05). Conclusion: The IH rat model shows that TRPC5 channel is likely to be involved in the OSAHS induced pathophysiological changes in the myocardium and may become a target to prevent OSAHS related cardiac damage.

Key words: Transient receptor potential channels/metabolism    Proteins    Sleep apnea syndromes/physiopathology    Hypoxia/pathology    Heart/metabolism    Kidney/metabolism    Disease models, animal    Case-control studies
收稿日期: 2019-09-17 出版日期: 2020-09-27
CLC:  R442.8  
基金资助: 国家自然科学基金(82060058)
通讯作者: 陈玉岚     E-mail: g.r315@163.com;sheliachen@sina.com
作者简介: 温雯(1991-), 女, 硕士研究生, 主要从事高血压及相关疾病研究; E-mail:g.r315@163.com; https://orcid.org/0000-0002-1966-7222
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

温雯, 姚巧玲, 陈玉岚, 李志强, 孙晓靖, 李瑜, 张俊仕, 珠勒皮亚·司马义, 徐新娟. 瞬时受体电位通道C与阻塞性睡眠呼吸暂停低通气综合征大鼠心脏和肾脏损害的关系[J]. 浙江大学学报(医学版), 2020, 49(4): 439-446.

WEN Wen, YAO Qiaoling, CHEN Yulan, LI Zhiqiang, SUN Xiaojing, LI Yu, ZHANG Junshi, SIMAYIZhulipiya , XU Xinjuan. Correlation between transient receptor potential canonical channel with heart and kidney injure of rat model of obstructive sleep apnea hypopnea syndrome. J Zhejiang Univ (Med Sci), 2020, 49(4): 439-446.

链接本文:

https://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2020.04.16        https://www.zjujournals.com/med/CN/Y2020/V49/I4/439

引物名称 序列(5′→3′) 引物大小(bp)
TRPC:瞬时受体电位通道C.
TRPC1 正向:CTGCTTATCTTCATGTGCGGTC 138
反向:GAAGCTGTGGTAGGCTCTGT
TRPC3 正向:ACGCAGTACGGCAACATC 209
反向:CGCACATAGCCTTTGCTGAT
TRPC4 正向:AAGGATTAGCTTCACGGGGTG 198
反向:CCTCCTCCTGGGCGTGTTTC
TRPC5 正向:CCATACAGAGACCGCATCCC 283
反向:CCTTGCGGATGGCATAGAGT
TRPC6 正向:AAACAGACTGACTCACCGGC 238
反向:CGCCAACTGTAGGGCATTCT
TRPC7 正向:TTGGGGAGCAACACCTTCAA 97
反向:TGAACATGTAGGCAGGACCC
GAPDH 正向:CAGGGCTGCCTTCTCTTGTG 172
反向:GATGGTGATGGGTTTCCCGT
表 1  荧光定量PCR引物
图 1  实验组与对照组大鼠瞬时受体电位通道C(TRPC) mRNA水平比较
图 2  大鼠心脏组织与肾脏组织中瞬时受体电位通道C(TRPC) mRNA水平比较
图 3  瞬时受体电位通道C(TRPC)蛋白在大鼠心脏和肾脏组织中表达电泳图
组别 n TRPC5 TRPC6 TRPC7
心脏组织 肾脏组织 心脏组织 肾脏组织 心脏组织 肾脏组织
与对照组比较,*P<0.05.
对照组 3 6.822±1.909 0.164±0.192 1.460±0.537 0.018±0.011 6.030±0.675 0.136±0.023
实验组 5 11.448±2.601* 0.135±0.112 1.530±0.767 0.014±0.005 5.028±1.836 0.117±0.018
表 2  实验组和对照组大鼠心脏和肾脏组织中瞬时受体电位通道C(TRPC)各蛋白表达水平比较
1 MORAND J , ARNAUD C , PEPIN J L et al. Chronic intermittent hypoxia promotes myocardial ischemia-related ventricular arrhythmias and sudden cardiac death[J]. Sci Rep, 2018, 8 (1): 2997
doi: 10.1038/s41598-018-21064-y
2 MA L , ZHANG J , LIU Y . Roles and mechanisms of obstructive sleep apnea-hypopnea syndrome and chronic intermittent hypoxia in atherosclerosis:evidence and prospective[J]. Oxid Med Cell Longev, 2016, 2016 8215082
doi: 10.1155/2016/8215082
3 LEUNG R S . Sleep-disordered breathing:autonomic mechanisms and arrhythmias[J]. Prog Cardiovasc Dis, 2009, 51 (4): 324- 338
doi: 10.1016/j.pcad.2008.06.002
4 NILIUS B , FLOCKERZI V . Mammalian transient receptor potential (TRP) cation channels. Preface[J]. Handb Exp Pharmacol, 2014, 223 5- 6
5 CIOFFI D L . Redox regulation of endothelial canonical transient receptor potential channels[J]. Antioxid Redox Signal, 2011, 15 (6): 1567- 1582
doi: 10.1089/ars.2010.3740
6 HOF T , CHAIGNE S , RéCALDE A et al. Transient receptor potential channels in cardiac health and disease[J]. Nat Rev Cardiol, 2019, 16 (6): 344- 360
doi: 10.1038/s41569-018-0145-2
7 KONISHI T , KASHIWAGI Y , FUNAYAMA N et al. Obstructive sleep apnea is associated with increased coronary plaque instability:an optical frequency domain imaging study[J]. Heart Vessels, 2019, 34 (8): 1266- 1279
doi: 10.1007/s00380-019-01363-8
8 DRYER S E , ROSHANRAVAN H , KIM E Y . TRPC channels:Regulation, dysregulation and contributions to chronic kidney disease[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865 (6): 1041- 1066
doi: 10.1016/j.bbadis.2019.04.001
9 FROSTH S , K?NIG U , NYMAN A K et al. Sample pooling for real-time PCR detection and virulence determination of the footrot pathogen Dichelobacter nodosus[J]. Vet Res Commun, 2017, 41 (3): 189- 193
doi: 10.1007/s11259-017-9686-9
10 RODRIGUES A , MAGALH?ES R D , ROMCY K et al. A new whole mitochondrial genome qPCR (WMG-qPCR) with SYBR Green? to identify phlebotomine sand fly blood meals[J]. Vet Parasitol, 2017, 238 17- 23
doi: 10.1016/j.vetpar.2017.03.007
11 CAMPBELL S J, NERY S V, WARDELL R, et al. Water, sanitation and hygiene (WASH) and environmental risk factors for soil-transmitted helminth intensity of infection in Timor-Leste, using real time PCR[J/OL]. PLoS Negl Trop Dis, 2017, 11(3): e0005393. DOI: 10.1371/journal.pntd.0005393.
12 李秀翠, 蔡晓红, 温正旺 et al. 间歇性低氧动物模型的建立及验证[J]. 医学研究杂志, 2012, 41
LI Xiucui , CAI Xiaohong , WEN Zhengwang et al. Development and validation of intermittent hypoxia models[J]. Journal of Medical Research, 2012, 41 (7): 57- 61
doi: 10.3969/j.issn.1673-548X.2012.07.019
13 FLETCHER E C , LESSKE J , QIAN W et al. Repetitive, episodic hypoxia causes diurnal elevation of blood pressure in rats[J]. Hypertension, 1992, 19 (6 Pt 1): 555- 561
doi: 10.1161/01.hyp.19.6.555
14 MBATA G , CHUKWUKA J . Obstructive sleep apnea hypopnea syndrome[J]. Ann Med Health Sci Res, 2012, 2 (1): 74- 77
doi: 10.4103/2141-9248.96943
15 LAVIE L . Obstructive sleep apnoea syndrome——an oxidative stress disorder[J]. Sleep Med Rev, 2003, 7 (1): 35- 51
doi: 10.1053/smrv.2002.0261
16 LAVIE L , LAVIE P . Molecular mechanisms of cardiovascular disease in OSAHS:the oxidative stress link[J]. Eur Respir J, 2009, 33 (6): 1467- 1484
doi: 10.1183/09031936.00086608
17 BOMPOTIS G C , DEFTEREOS S , ANGELIDIS C et al. Altered calcium handling in reperfusion injury[J]. Med Chem, 2016, 12 (2): 114- 130
doi: 10.2174/1573406411666150928112420
18 GRANGER D N , RUTILI G , MCCORD J M . Superoxide radicals in feline intestinal ischemia[J]. Gastroenterology, 1981, 81 (1): 22- 29
doi: 10.1016/0016-5085(81)90648-X
19 NILIUS B , OWSIANIK G . The transient receptor potential family of ion channels[J]. Genome Biol, 2011, 12 (3): 218
doi: 10.1186/gb-2011-12-3-218
20 LIU D , YANG D , HE H et al. Increased transient receptor potential canonical type 3 channels in vasculature from hypertensive rats[J]. Hypertension, 2009, 53 (1): 70- 76
doi: 10.1161/HYPERTENSIONAHA.108.116947
21 ONOHARA N , NISHIDA M , INOUE R et al. TRPC3 and TRPC6 are essential for angiotensin Ⅱ-induced cardiac hypertrophy[J]. EMBO J, 2006, 25 (22): 5305- 5316
doi: 10.1038/sj.emboj.7601417
22 HARADA M , LUO X , QI X Y et al. Transient receptor potential canonical-3 channel-dependent fibroblast regulation in atrial fibrillation[J]. Circulation, 2012, 126 (17): 2051- 2064
doi: 10.1161/CIRCULATIONAHA.112.121830
23 SHARMA S H, PABLO J L, MONTESINOS M S, et al. Design, synthesis and characterization of novel N-heterocyclic-1-benzyl-1H-benzo[D]imidazole-2-amines as selective TRPC5 inhibitors leading to the identification of the selective compound, AC1903[J]. Bioorg Med Chem Lett, 2019, 29(2): 155-159. DOI: 10.1016/j.bmcl.2018.12.007.
24 STARUSCHENKO A . TRPC6 in diabetic kidney disease:good guy or bad guy?[J]. Kidney Int, 2019, 95 (2): 256- 258
doi: 10.1016/j.kint.2018.10.027
25 MAKAREWICH C A , ZHANG H , DAVIS J et al. Transient receptor potential channels contribute to pathological structural and functional remodeling after myocardial infarction[J]. Circ Res, 2014, 115 (6): 567- 580
doi: 10.1161/CIRCRESAHA.115.303831
26 SABOURIN J , BARTOLI F , ANTIGNY F et al. Transient receptor potential canonical (TRPC)/orai1-dependent store-operated Ca2+ channels:NEW TARGETS OF ALDOSTERONE IN CARDIOMYOCYTES[J]. J Biol Chem, 2016, 291 (25): 13394- 13409
doi: 10.1074/jbc.M115.693911
27 ZHANG P , LIU X , LI H et al. TRPC5-induced autophagy promotes drug resistance in breast carcinoma via CaMKKβ/AMPKα/mTOR pathway[J]. Scientific Reports, 2017, 7 (1): 3158
doi: 10.1038/s41598-017-03230-w
28 HONG C , SEO H , KWAK M et al. Increased TRPC5 glutathionylation contributes to striatal neuron loss in Huntington's disease[J]. Brain, 2015, 138 (Pt 10): 3030- 3047
doi: 10.1093/brain/awv188
29 季一楠, 郭瑞威 . 经典瞬时受体电位C亚族5与动脉粥样硬化发生发展的关系[J]. 心脑血管病防治, 2019, 19 (1): 82- 83,95
JI Yinan , GUO Ruiwei . Relationship between classical transient receptor potential C subfamily 5 and the development of atherosclerosis[J]. Prevention and Treatment of Cardio-Cerebral-Vascular Disease, 2019, 19 (1): 82- 83,95
doi: 10.3969/j.issn.1009-816X.2019.01.012
30 TAKENAKA T , SUZUKI H , OKADA H et al. Transient receptor potential channels in rat renal microcirculation:actions of angiotensin Ⅱ[J]. Kidney Int, 2002, 62 (2): 558- 565
doi: 10.1046/j.1523-1755.2002.00484.x
31 FACEMIRE C S, MOHLER P J, ARENDSHORST W J. Expression and relative abundance of short transient receptor potential channels in the rat renal microcirculation[J]. Am J Physiol Renal Physiol, 2004, 286(3):F546-F551. DOI:10.1152/ajprenal.00338.2003.
32 郭世放.阻塞性睡眠呼吸暂停低通气综合征肾功能损害的危险因素研究[D].郑州: 郑州大学, 2017.
GUO Shifang. Study on the risk factors of renal dysfunction in patients with obstructive sleep apnea hypopnea syndrome[D]. Zhengzhou: Zhengzhou University, 2017. (in Chinese)
[1] 朱紫菱, 谈静, 邓红. 肿瘤细胞膜/质蛋白转位入核研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 318-325.
[2] 徐阿巧,何红琴,施秋军,李芝清,张盛箭. 数字化乳腺断层融合摄影对致密型乳腺病变的诊断价值[J]. 浙江大学学报(医学版), 2019, 48(2): 186-192.
[3] 李春桃,张会冰,张岩. 单颗粒冷冻电镜揭开G蛋白偶联受体结构生物学研究的新篇章[J]. 浙江大学学报(医学版), 2019, 48(1): 39-43.
[4] 杜东芬,朱丽霞,王云贵,叶琇锦. 肾母细胞瘤1基因表达及其对急性髓系白血病患者预后的预测价值[J]. 浙江大学学报(医学版), 2019, 48(1): 50-57.
[5] 叶培武. 人源瞬时受体电位M2型通道Nudix水解酶9同源结构域的提取和纯化[J]. 浙江大学学报(医学版), 2019, 48(1): 5-11.
[6] 郝睿,苏力德,邵一鸣,部娜,马丽亚,那仁满都拉. PML蛋白参与三氧化二砷治疗急性早幼粒细胞白血病的分子生物学机制研究[J]. 浙江大学学报(医学版), 2018, 47(5): 541-551.
[7] 林美娜,许瑞元,章涛,张琳,梅序桥. 类风湿关节炎患者外周血单个核细胞中c-FLIP与外源性凋亡途径的相关性分析[J]. 浙江大学学报(医学版), 2018, 47(4): 381-388.
[8] 蒋滟蕲,杨雅兰,杨婷,李玥伶,陈莉玲,燕锦,杨艳芳. UCP2 rs659366位点多态性与结直肠癌术后患者生存结局的关系[J]. 浙江大学学报(医学版), 2018, 47(2): 143-149.
[9] 潘宗富,方琦璐,张轶雯,李莉,黄萍. 基于生物信息学的未分化甲状腺癌关键发病机制及其潜在干预靶点研究[J]. 浙江大学学报(医学版), 2018, 47(2): 187-193.
[10] 沈杰,陈闻东,姬开达,高平进,朱鼎良. Arg188Gln(G/A)突变对犬尿氨酸酶活性的影响[J]. 浙江大学学报(医学版), 2017, 46(6): 643-648.
[11] 丁元,孙忠权,章文燕,章向英,姜源聪,严盛,王伟林. 腹腔镜胰体尾切除术患者围手术期加速康复管理及效果评估[J]. 浙江大学学报(医学版), 2017, 46(6): 625-629.
[12] 王海凤 等. CXC趋化因子受体4通过S期激酶相关蛋白2调控乳腺癌细胞周期的机制[J]. 浙江大学学报(医学版), 2017, 46(4): 357-363.
[13] 李钰 等. 长链非编码RNA RP11-770J1.3和跨膜蛋白25对紫杉醇耐药人乳腺癌细胞株耐药性的影响[J]. 浙江大学学报(医学版), 2017, 46(4): 364-370.
[14] 陈益明 等. 中孕期母血清甲胎蛋白和游离β-hCG筛查胎儿腹裂和脐膨出的效率[J]. 浙江大学学报(医学版), 2017, 46(3): 268-273.
[15] 陈琪,吴敏,白宏震,郭则灵,周峻,王青青,汤谷平. 细菌外膜囊泡纳米载体的制备及其免疫调节作用[J]. 浙江大学学报(医学版), 2017, 46(2): 118-126.