Please wait a minute...
浙江大学学报(医学版)  2020, Vol. 49 Issue (3): 324-339    DOI: 10.3785/j.issn.1008-9292.2020.03.16
2019冠状病毒病     
三种人类高致病性冠状病毒的增殖和传播机制研究进展
何叶艳1(),郑婵颖2,3,4,*()
1. 浙江农林大学动物科技学院 动物医学院, 浙江 杭州 311300
2. 浙江大学医学院系统神经与认知科学研究所, 浙江 杭州 310029
3. 浙江大学生物医学工程与仪器科学学院 浙江大学生物医学工程教育部重点实验室, 浙江 杭州 310027
4. 浙江省心脑血管检测技术与药效评价重点实验室, 浙江 杭州 310027
Replication and transmission mechanisms of highly pathogenic human coronavirus
HE Yeyan1(),ZHENG Chanying2,3,4,*()
1. College of Animal Science and Technology·College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
2. Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou 310029, China
3. College of Biomedical Engineering and Instrument Science, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
4. Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
 全文: PDF(9898 KB)   HTML( 29 )
摘要:

严重急性呼吸综合征冠状病毒(SARS-CoV)、中东呼吸综合征冠状病毒(MERS-CoV)和严重急性呼吸综合征冠状病毒2(SARS-CoV-2)是目前已知的三种人类高致病性冠状病毒,由非结构蛋白、结构蛋白、附属蛋白和核糖核酸组成。病毒粒子通过冠状病毒的刺突糖蛋白(S蛋白)识别宿主受体,以膜融合方式进入宿主细胞,通过大型复制转录复合体在宿主细胞内复制,并通过干扰和抑制宿主的免疫应答来促进增殖。人类高致病性冠状病毒的宿主是人和脊椎动物,病毒粒子通过飞沫、接触、气溶胶等途径感染肺部细胞,也可能通过消化道、尿液、眼部等其他途径传播。本文基于现有研究结果讨论人类高致病性冠状病毒的增殖和传播机制,以期为阻断其传播和致病提供依据。

关键词: 冠状病毒严重急性呼吸综合征冠状病毒中东呼吸综合征冠状病毒严重急性呼吸综合征冠状病毒2病毒复制传播    
Abstract:

The three known highly pathogenic human coronaviruses are severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Human highly pathogenic coronaviruses are composed of non-structural proteins, structural proteins, accessory proteins and ribonucleic acid. Viral particles recognize host receptors via spike glycoprotein (S protein), enter host cells by membrane fusion, replicate in host cells through large replication-transcription complexes, and promote proliferation by interfering with and suppressing the host's immune response. Highly pathogenic human coronaviruses are hosted by humans and vertebrates. Viral particles are transmitted through droplets, contact and aerosols or likely through digestive tract, urine, eyes and other routes. This review discusses the mechanisms of replication and transmission of highly pathogenic human coronaviruses providing basis for future studies on interrupting the transmission and pathogenicity of these pathogenic viruses.

Key words: Coronavirus    Severe acute respiratory syndrome coronavirus    Middle East respiratory syndrome coronavirus    Severe acute respiratory syndrome coronavirus 2    Virus replication    Transmission
收稿日期: 2020-03-23 出版日期: 2020-04-16
CLC:  R373.1  
通讯作者: 郑婵颖     E-mail: yeyanhe1997@163.com;zhengchanying@zju.edu.cn
作者简介: 何叶艳(1997-), 女, 大学生, 主要从事动物科学研究; E-mail:yeyanhe1997@163.com; https://orcid.org/0000-0001-9558-9572
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
何叶艳
郑婵颖

引用本文:

何叶艳,郑婵颖. 三种人类高致病性冠状病毒的增殖和传播机制研究进展[J]. 浙江大学学报(医学版), 2020, 49(3): 324-339.

HE Yeyan,ZHENG Chanying. Replication and transmission mechanisms of highly pathogenic human coronavirus. J Zhejiang Univ (Med Sci), 2020, 49(3): 324-339.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2020.03.16        http://www.zjujournals.com/med/CN/Y2020/V49/I3/324

图 1  SARS-CoV-2、SARS-CoV和MERS-CoV的结构(在Biorender网站绘制)
图 2  人类高致病性冠状病毒的自我复制模式图
图 3  S蛋白介导下的膜融合
1 CHAN P K , CHAN M C . Tracing the SARS-coronavirus[J]. J Thorac Dis, 2013, 5 (Suppl 2): S118- S121
doi: 10.3978/j.issn.2072-1439.2013.06.19
2 PERLMAN S , NETLAND J . Coronaviruses post-SARS:update on replication and pathogenesis[J]. Nat Rev Microbiol, 2009, 7 (6): 439- 450
doi: 10.1038/nrmicro2147
3 JIN L , CEBRA C K , BAKER R J et al. Analysis of the genome sequence of an alpaca coronavirus[J]. Virology, 2007, 365 (1): 198- 203
doi: 10.1016/j.virol.2007.03.035
4 DROSTEN C , GVNTHER S , PREISER W et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome[J]. N Engl J Med, 2003, 348 (20): 1967- 1976
doi: 10.1056/NEJMoa030747
5 ZAKI A M , VAN BOHEEMEN S , BESTEBROER T M et al. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia[J]. N Engl J Med, 2012, 367 (19): 1814- 1820
doi: 10.1056/NEJMoa1211721
6 DING Y , WANG H , SHEN H et al. The clinical pathology of severe acute respiratory syndrome (SARS):a report from China[J]. J Pathol, 2003, 200 (3): 282- 289
doi: 10.1002/path.1440
7 ZHONG N S , ZHENG B J , LI Y M et al. Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003[J]. Lancet, 2003, 362 (9393): 1353- 1358
doi: 10.1016/S0140-6736(03)14630-2
8 PEIRIS J S , LAI S T , POON L L et al. Coronavirus as a possible cause of severe acute respiratory syndrome[J]. Lancet, 2003, 361 (9366): 1319- 1325
doi: 10.1016/s0140-6736(03)13077-2
9 TU C , CRAMERI G , KONG X et al. Antibodies to SARS coronavirus in civets[J]. Emerg Infect Dis, 2004, 10 (12): 2244- 2248
doi: 10.3201/eid1012.040520
10 WONG S S , YUEN K Y . The management of coronavirus infections with particular reference to SARS[J]. J Antimicrob Chemother, 2008, 62 (3): 437- 441
doi: 10.1093/jac/dkn243
11 陈庆瑜, 甘小玲, 伍卫 et al. 医务人员SARS医院感染爆发的传播链分析[J]. 中国全科医学, 2004, 7 (5): 312- 314
CHEN Qingyu , GAN Xiaoling , WU Wei et al. Study on transmission chain of severe acute respiratory syndrome in medical staff from a hospital outbreak[J]. Chinese General Practice, 2004, 7 (5): 312- 314
doi: 10.3969/j.issn.1007-9572.2004.05.014
12 CHAN J F , YAO Y , YEUNG M L et al. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset[J]. J Infect Dis, 2015, 212 (12): 1904- 1913
doi: 10.1093/infdis/jiv392
13 World Health Organization. Middle East respiratory syndrome coronavirus (MERS-CoV)[EB/OL].[2020-04-10]. https://www.who.int/emergencies/mers-cov/en/.
14 ARABI Y M , BALKHY H H , HAYDEN F G et al. Middle East respiratory syndrome[J]. N Engl J Med, 2017, 376 (6): 584- 594
doi: 10.1056/NEJMsr1408795
15 ZUMLA A , HUI D S , PERLMAN S . Middle East respiratory syndrome[J]. Lancet, 2014, 40 (7): 995- 1007
doi: 10.1007/s00134-014-3303-y
16 DROSTEN C , SEILMAIER M , CORMAN V M et al. Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection[J]. Lancet Infect Dis, 2013, 13 (9): 745- 751
doi: 10.1016/S1473-3099(13)70154-3
17 CHOI J Y . An outbreak of Middle East respiratory syndrome coronavirus infection in South Korea, 2015[J]. Yonsei Med J, 2015, 56 (5): 1174- 1176
doi: 10.3349/ymj.2015.56.5.1174
18 World Health Organization. Coronavirus disease (COVID-2019) situation reports[EB/OL]. (2020-04-09)[2020-04-09]. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports.
19 王凌航.新型冠状病毒感染的特征及应对[J/CD].中华实验和临床感染病杂志(电子版), 2020, 14(1): 1-5. DOI: 10.3877/cma.j.issn.1674-1358.2020.01.001.
WANG Linghang. Characteristics and countermeasures of 2019-nCoV infection[J/CD]. Chinese Journal of Experimental and Clinical Infectious Diseases (Electronic Edition), 2020, 14(1): 1-5. DOI: 10.3877/cma.j.issn.1674-1358.2020.01.001.WANG(inChinese)
20 中华人民共和国国家卫生健康委员会办公厅, 国家中医药管理局办公室.新型冠状病毒感染的肺炎诊疗方案(试行第七版)[A/OL].国卫办医函[2020] 184号. (2020-03-04)[2020-03-28].http://www.nhc.gov.cn/xcs/zhengcwj/202003/46c9294a7dfe4cef80dc7f5912eb1989.shtml.
General Office of National Health Commission of the People's Republic of China, Office of National Administration of Traditional Chinese Medicine. Diagnosis and treatment of novel coronavirus pneumonia (trial version 7)[A/OL]. No.184[2020] of the General Office of the National Health Commission. (2020-03-04)[2020-03-28]. http://www.nhc.gov.cn/xcs/zhengcwj/202003/46c9294a7dfe4cef80dc7f5912eb1989.shtml. (in Chinese)
21 YANG Y, LU Q, LIU M, et al. Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China[J/OL]. MedRxiv, 2020. DOI: 10.1101/2020.02.10.20021675.
22 TANG B , WANG X , LI Q et al. Estimation of the transmission risk of the 2019-nCoV and its implication for public health interventions[J]. J Clin Med, 2020, 9 (2):
doi: 10.3390/jcm9020462
23 HUI D S , I AZHAR E , MADANI T A et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health-The latest 2019 novel coronavirus outbreak in Wuhan, China[J]. Int J Infect Dis, 2020, 91 264- 266
doi: 10.1016/j.ijid.2020.01.009
24 LU R , ZHAO X , LI J et al. Genomic characterisation and epidemiology of 2019 novel coronavirus:implications for virus origins and receptor binding[J]. Lancet, 2020, 395 (10224): 565- 574
doi: 10.1016/S0140-6736(20)30251-8
25 REN L L , WANG Y M , WU Z Q et al. Identification of a novel coronavirus causing severe pneumonia in human:a descriptive study[J]. Chin Med J (Engl), 2020,
doi: 10.1097/CM9.0000000000000722
26 LU R , ZHAO X , LI J et al. Genomic characterisation and epidemiology of 2019 novel coronavirus:implications for virus origins and receptor binding[J]. Lancet, 2020, 395 (10224): 565- 574
doi: 10.1016/S0140-6736(20)30251-8
27 ZHU N , ZHANG D , WANG W et al. A novel coronavirus from patients with pneumonia in China, 2019[J]. N Engl J Med, 2020, 382 (8): 727- 733
doi: 10.1056/NEJMoa2001017
28 LAI M M , CAVANAGH D . The molecular biology of coronaviruses[J]. Adv Virus Res, 1997, 48 1- 100
doi: 10.1007/978-1-4684-5350-8_10
29 边葶苈, 周继勇, 廖敏 . 冠状病毒非结构蛋白的研究进展[J]. 中国动物传染病学报, 2013, 21 (4): 67- 74
BIAN Tingli , ZHOU Jiyong , LIAO Min . Research advance on nonstructral proteins of coronavirus[J]. Chinese Journal of Animal Infectious Diseases, 2013, 21 (4): 67- 74
doi: 10.3969/j.issn.1674-6422.2013.04.013
30 沈媚, 陈冰清, 于瑞嵩 et al. 冠状病毒S蛋白及其受体的结构和功能[J]. 微生物学通报, 2017, 44 (10): 2452- 2462
SHEN Mei , CHEN Bingqing , YU Ruisong et al. Structure and function of coronaviral S proteins and their receptors[J]. Microbiology China, 2017, 44 (10): 2452- 2462
doi: 10.13344/j.microbiol.china.170256
31 VENKATAGOPALAN P , DASKALOVA S M , LOPEZ L A et al. Coronavirus envelope (E) protein remains at the site of assembly[J]. Virology, 2015, 478 75- 85
doi: 10.1016/j.virol.2015.02.005
32 NIETO-TORRES J L , DEDIEGO M L , ALVAREZ E et al. Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein[J]. Virology, 2011, 415 (2): 69- 82
doi: 10.1016/j.virol.2011.03.029
33 SCHOEMAN D , FIELDING B C . Coronavirus envelope protein:current knowledge[J]. Virol J, 2019, 16 (1): 69
doi: 10.1186/s12985-019-1182-0
34 MASTERS P S . The molecular biology of coronaviruses[J]. Adv Virus Res, 2006, 66 193- 292
doi: 10.1016/S0065-3527(06)66005-3
35 NEUMAN B W , KISS G , KUNDING A H et al. A structural analysis of M protein in coronavirus assembly and morphology[J]. J Struct Biol, 2011, 174 (1): 11- 22
doi: 10.1016/j.jsb.2010.11.021
36 HURST K R , KOETZNER C A , MASTERS P S . Identification of in vivo-interacting domains of the murine coronavirus nucleocapsid protein[J]. J Virol, 2009, 83 (14): 7221- 7234
doi: 10.1128/JVI.00440-09
37 RAJ V S , MOU H , SMITS S L et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC[J]. Nature, 2013, 495 (7440): 251- 254
doi: 10.1038/nature12005
38 YANG X L , HU B , WANG B et al. Isolation and characterization of a novel bat coronavirus closely related to the direct progenitor of severe acute respiratory syndrome coronavirus[J]. J Virol, 2015, 90 (6): 3253- 3256
doi: 10.1128/JVI.02582-15
39 WALLS A C , PARK Y J , TORTORICI M A et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein[J]. Cell, 2020,
doi: 10.1016/j.cell.2020.02.058
40 LI F , LI W , FARZAN M et al. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor[J]. Science, 2005, 309 (5742): 1864- 1868
doi: 10.1126/science.1116480
41 LU G , HU Y , WANG Q et al. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26[J]. Nature, 2013, 500 (7461): 227- 231
doi: 10.1038/nature12328
42 WANG Q H , ZHANG Y F , WU L L et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2[J]. Cell, 2020,
doi: 10.1016/j.cell.2020.03.045
43 JAIMES J A , MILLET J K , STOUT A E et al. A tale of two viruses:the distinct spike glycoproteins of feline coronaviruses[J]. Viruses, 2020, 12 (1):
doi: 10.3390/v12010083
44 YAN R , ZHANG Y , LI Y et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2[J]. Science, 2020, 367 (6485): 1444- 1448
doi: 10.1126/science.abb2762
45 LI W , ZHANG C , SUI J et al. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2[J]. EMBO J, 2005, 24 (8): 1634- 1643
doi: 10.1038/sj.emboj.7600640
46 WRAPP D , WANG N , CORBETT K S et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation[J]. Science, 2020, 367 (6483): 1260- 1263
doi: 10.1126/science.abb2507
47 IZAGUIRRE G . The proteolytic regulation of virus cell entry by furin and other proprotein convertases[J]. Viruses, 2019, 11 (9): 837
doi: 10.3390/v11090837
48 BELOUZARD S , MADU I , WHITTAKER G R . Elastase-mediated activation of the severe acute respiratory syndrome coronavirus spike protein at discrete sites within the S2 domain[J]. J Biol Chem, 2010, 285 (30): 22758- 22763
doi: 10.1074/jbc.M110.103275
49 MILLET J K , WHITTAKER G R . Host cell proteases:Critical determinants of coronavirus tropism and pathogenesis[J]. Virus Res, 2015, 202 120- 134
doi: 10.1016/j.virusres.2014.11.021
50 HOFFMANN M , KLEINE-WEBER H , SCHROEDER S et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020,
doi: 10.1016/j.cell.2020.02.052
51 MILLET J K , WHITTAKER G R . Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein[J]. Proc Natl Acad Sci U S A, 2014, 111 (42): 15214- 15219
doi: 10.1073/pnas.1407087111
52 KLEINE-WEBER H , ELZAYAT M T , HOFFMANN M et al. Functional analysis of potential cleavage sites in the MERS-coronavirus spike protein[J]. Sci Rep, 2018, 8 (1): 16597
doi: 10.1038/s41598-018-34859-w
53 FOLLIS K E , YORK J , NUNBERG J H . Furin cleavage of the SARS coronavirus spike glycoprotein enhances cell-cell fusion but does not affect virion entry[J]. Virology, 2006, 350 (2): 358- 369
doi: 10.1016/j.virol.2006.02.003
54 BOSCH B J , BARTELINK W , ROTTIER P J . Cathepsin L functionally cleaves the severe acute respiratory syndrome coronavirus class I fusion protein upstream of rather than adjacent to the fusion peptide[J]. J Virol, 2008, 82 (17): 8887- 8890
doi: 10.1128/JVI.00415-08
55 BELOUZARD S , CHU V C , WHITTAKER G R . Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites[J]. Proc Natl Acad Sci U S A, 2009, 106 (14): 5871- 5876
doi: 10.1073/pnas.0809524106
56 COUTARD B , VALLE C , DE LAMBALLERIE X et al. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade[J]. Antiviral Res, 2020, 176 104742
doi: 10.1016/j.antiviral.2020.104742
57 FEHR A R , PERLMAN S . Coronaviruses:an overview of their replication and pathogenesis[J]. Methods Mol Biol, 2015, 1282 1- 23
doi: 10.1007/978-1-4939-2438-7_1
58 BLANCHARD E , ROINGEARD P . Virus-induced double-membrane vesicles[J]. Cell Microbiol, 2015, 17 (1): 45- 50
doi: 10.1111/cmi.12372
59 郝一鸣.人冠状病毒HCoV-229E非结构蛋白nsp10的结构研究和SARS抗病毒药物开发[D].天津: 南开大学, 2011.
HAO Yiming. Structural study of human coronavirus 229E non-structural protein 10 and development of antiviral drugs for SARS[D]. Tianjin: Nankai University, 2011. (in Chinese)
60 赵琪.冠状病毒复制酶系结构与功能研究[D].北京: 清华大学, 2010.
ZHAO Qi. Structural and functional studies of coronavirus replicases[D]. Beijing: Tsinghua University, 2010. (in Chinese)
61 PERLMAN S , NETLAND J . Coronaviruses post-SARS:update on replication and pathogenesis[J]. Nat Rev Microbiol, 2009, 7 (6): 439- 450
doi: 10.1038/nrmicro2147
62 ASHOUR H M , ELKHATIB W F , RAHMAN M M et al. Insights into the recent 2019 novel coronavirus (SARS-CoV-2) in light of past human coronavirus outbreaks[J]. Pathogens, 2020, 9 (3):
doi: 10.3390/pathogens9030186
63 SHEN L W , MAO H J , WU Y L et al. TMPRSS2:A potential target for treatment of influenza virus and coronavirus infections[J]. Biochimie, 2017, 142 1- 10
doi: 10.1016/j.biochi.2017.07.016
64 FUNG T S , HUANG M , LIU D X . Coronavirus-induced ER stress response and its involvement in regulation of coronavirus-host interactions[J]. Virus Res, 2014, 194 110- 123
doi: 10.1016/j.virusres.2014.09.016
65 CHAN C P , SIU K L , CHIN K T et al. Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein[J]. J Virol, 2006, 80 (18): 9279- 9287
doi: 10.1128/JVI.00659-06
66 MAIER H J, HAWES P C, COTTAM E M, et al. Infectious bronchitis virus generates spherules from zippered endoplasmic reticulum membranes[J/OL]. mBio, 2013, 4(5): e00801-13. DOI: 10.1128/mBio.00801-13.
67 ANGELINI M M, AKHLAGHPOUR M, NEUMAN B W, et al. Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles[J/OL]. mBio, 2013, 4(4): e00524-13. DOI: 10.1128/mBio.00524-13.
68 KLUMPERMAN J , LOCKER J K , MEIJER A et al. Coronavirus M proteins accumulate in the Golgi complex beyond the site of virion budding[J]. J Virol, 1994, 68 (10): 6523- 6534
doi: 10.1128/JVI.68.10.6523-6534.1994
69 STERTZ S , REICHELT M , SPIEGEL M et al. The intracellular sites of early replication and budding of SARS-coronavirus[J]. Virology, 2007, 361 (2): 304- 315
doi: 10.1016/j.virol.2006.11.027
70 LIM Y X , NG Y L , TAM J P et al. Human coronaviruses:a review of virus-host interactions[J]. Diseases, 2016, 4 (3):
doi: 10.3390/diseases4030026
71 CLARK I A , VISSEL B . The meteorology of cytokine storms, and the clinical usefulness of this knowledge[J]. Semin Immunopathol, 2017, 39 (5): 505- 516
doi: 10.1007/s00281-017-0628-y
72 KINDLER E , THIEL V , WEBER F . Interaction of SARS and MERS coronaviruses with the antiviral interferon response[J]. Adv Virus Res, 2016, 96 219- 243
doi: 10.1016/bs.aivir.2016.08.006
73 CHANNAPPANAVAR R , FEHR A R , VIJAY R et al. Dysregulatedtype I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice[J]. Cell Host Microbe, 2016, 19 (2): 181- 193
doi: 10.1016/j.chom.2016.01.007
74 CHANNAPPANAVAR R , PERLMAN S . Pathogenic human coronavirus infections:causes and consequences of cytokine storm and immunopathology[J]. Semin Immunopathol, 2017, 39 (5): 529- 539
doi: 10.1007/s00281-017-0629-x
75 LAU S , LAU C , CHAN K H et al. Delayed induction of proinflammatory cytokines and suppression of innate antiviral response by the novel Middle East respiratory syndrome coronavirus:implications for pathogenesis and treatment[J]. J Gen Virol, 2013, 94 (Pt 12): 2679- 2690
doi: 10.1099/vir.0.055533-0
76 HUANG C , WANG Y , LI X et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395 (10223): 497- 506
doi: 10.1016/S0140-6736(20)30183-5
77 TISONCIK J R , KORTH M J , SIMMONS C P et al. Into the eye of the cytokine storm[J]. Microbiol Mol Biol Rev, 2012, 76 (1): 16- 32
doi: 10.1128/MMBR.05015-11
78 SNIJDER E J , VAN DER MEER Y , ZEVENHOVEN-DOBBEJ et al. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex[J]. J Virol, 2006, 80 (12): 5927- 5940
doi: 10.1128/JVI.02501-05
79 BOUVET M, DEBARNOT C, IMBERT I, et al.In vitro reconstitution of SARS-coronavirus mRNA cap methylation[J/OL]. PLoS Pathog, 2010, 6(4): e1000863. DOI: 10.1371/journal.ppat.1000863.
80 MENACHERY V D , DEBBINK K , BARIC R S . Coronavirus non-structural protein 16:evasion, attenuation, and possible treatments[J]. Virus Res, 2014, 194 191- 199
doi: 10.1016/j.virusres.2014.09.009
81 TOHYA Y , NARAYANAN K , KAMITANI W et al. Suppression of host gene expression by nsp1 proteins of group 2 bat coronaviruses[J]. J Virol, 2009, 83 (10): 5282- 5288
doi: 10.1128/JVI.02485-08
82 LOKUGAMAGE K G , NARAYANAN K , NAKAGAWA K et al. Middle East respiratory syndrome coronavirus nsp1 inhibits host gene expression by selectively targeting mRNAs transcribed in the nucleus while sparing mrnas of cytoplasmic origin[J]. J Virol, 2015, 89 (21): 10970- 10981
doi: 10.1128/JVI.01352-15
83 鲁小璐.SARS冠状病毒N蛋白抑制beta干扰素产生的分子机制研究[D].武汉: 武汉大学, 2010.
LU Xiaolu. Molecular mechanisms of the inhibition of interferon-beta induction by the nucleocapsid protein of severe acute respiratory syndrome coronavirus[D]. Wuhan: Wuhan University, 2010. (in Chinese)
84 YANG Y , ZHANG L , GENG H et al. The structural and accessory proteins M, ORF 4a, ORF 4b, and ORF 5 of Middle East respiratory syndrome coronavirus (MERS-CoV) are potent interferon antagonists[J]. Protein Cell, 2013, 4 (12): 951- 961
doi: 10.1007/s13238-013-3096-8
85 MENACHERY V D, SCHÄFER A, BURNUM-JOHNSON K E, et al. MERS-CoV and H5N1 influenza virus antagonize antigen presentation by altering the epigenetic landscape[J/OL]. Proc Natl Acad Sci U S A, 2018, 115(5): E1012-E1021. DOI: 10.1073/pnas.1706928115.
86 HU B, ZENG L P, YANG X L, et al. Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus[J/OL]. PLoS Pathog, 2017, 13(11): e1006698. DOI: 10.1371/journal.ppat.1006698.
87 WANG M , YAN M , XU H et al. SARS-CoV infection in a restaurant from palm civet[J]. Emerg Infect Dis, 2005, 11 (12): 1860- 1865
doi: 10.3201/eid1112.041293
88 HAAGMANS B L , AL DHAHIRY S H , REUSKEN C B et al. Middle East respiratory syndrome coronavirus in dromedary camels:an outbreak investigation[J]. Lancet Infect Dis, 2014, 14 (2): 140- 145
doi: 10.1016/S1473-3099(13)70690-X
89 ZHOU P , YANG X L , WANG X G et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin[J]. Nature, 2020, 579 (7798): 270- 273
doi: 10.1038/s41586-020-2012-7
90 GUO Q, LI M, WANG C, et al. Host and infectivity prediction of Wuhan 2019 novel coronavirus using deep learning algorithm[J/OL]. medRxiv, 2020. DOI: 10.1101/2020.01.21.914044.
91 ZHANG T, WU Q, ZHANG Z. Probable pangolin origin of SARS-CoV-2associated withthe COVID-19 outbreak[J/OL]. Cur Biol, 2020, 30(7): 1346-1351.e2. DOI: 10.1016/j.cub.2020.03.022.
92 BENVENUTO D , GIOVANETTI M , CICCOZZI A et al. The 2019-new coronavirus epidemic:Evidence for virus evolution[J]. J Med Virol, 2020, 92 (4): 455- 459
doi: 10.1002/jmv.25688
93 ZHANG H, KANG Z, GONG H, et al. The digestive system is a potential route of 2019-nCov infection: a bioinformatics analysis based on single-cell transcriptomes[J/OL]. bioRxiv, 2020. DOI: 10.1101/2020.01.30.927806.
94 李敬云, 鲍作义, 刘思扬 et al. SARS病毒在外界环境物品中生存和抵抗能力的研究[J]. 中国消毒学杂志, 2003, 20 (2): 33- 35
LI Jingyun , BAO Zuoyi , LIU Siyang et al. Survival study of sars virus in vitro[J]. Chinese Journal of Disinfection, 2003, 20 (2): 33- 35
doi: 10.3969/j.issn.1001-7658.2003.02.009
95 吴冰珊, 俞婷婷, 黄枝妙 et al. 新型冠状病毒肺炎确诊病例粪便标本的病毒核酸检测[J]. 中国人兽共患病学报, 2020,
WU Bingshan , YU Tingting , HUANG Zhimiao et al. Nucleic acid detection of fecal samples from confirmed cases of COVID-19[J]. Chinese Journal of Zoonoses, 2020,
doi: 10.3969/j.issn.1002-2694.2020.00.027.WU
96 World Health Organization. Update 27-One month into the global SARS outbreak: status of the outbreak and lessons for the immediate future[EB/OL]. (2003-04-11)[2020-04-03]. https://www.sogou.com/link?url=hedJjaC291MBsopmKjvwb7EWvqaSIzWaLJZ78NPm3eySRluHO33c8K5uUQSYqxvqJxT_UGcAmOI.
97 LU C W, LIU X F, JIA Z F. 2019-nCoV transmission through the ocular surface must not be ignored[J/OL]. Lancet, 2020, 395(10224): e39. DOI: 10.1016/S0140-6736(20)30313-5.
98 XIA J , TONG J , LIU M et al. Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS-CoV-2 infection[J]. J Med Virol, 2020,
doi: 10.1002/jmv.25725
99 FAN C, LI K, DING Y H, et al. ACE2 expression in kidney and testis may cause kidney and testis damage after 2019-nCoV infection[J/OL]. medRxiv, 2020. DOI: 10.1101/2020.02.12.20022418.
100 吕鹏, 李登峰, 刘刚 . 冠状病毒的致炎机制研究进展及疫苗研发特点[J]. 厦门大学学报(自然科学版), 2020, 59 (3): 347- 353
LYU Peng , LI Dengfeng , LIU Gang . Research progresses of inflammatory mechanism and vaccine development of coronavirus[J]. Journal of Xiamen University (Natural Science), 2020, 59 (3): 347- 353
doi: 10.6043/j.issn.0438-0479.202003020
101 WU C Y , JAN J T , MA S H et al. Small molecules targeting severe acute respiratory syndrome human coronavirus[J]. Proc Natl Acad Sci U S A, 2004, 101 (27): 10012- 10017
doi: 10.1073/pnas.0403596101
102 KIM U J , WON E J , KEE S J et al. Combination therapy with lopinavir/ritonavir, ribavirin and interferon-alpha for Middle East respiratory syndrome[J]. Antivir Ther, 2016, 21 (5): 455- 459
doi: 10.3851/IMP3002
103 ZUMLA A , CHAN J F W , AZHAR E I et al. Coronaviruses-drug discovery and therapeutic options[J]. Nat Revs Drug Disc, 2016, 15 (5): 327- 347
doi: 10.1038/nrd.2015.37
104 AGOSTINI M L, ANDRES E L, SIMS A C, et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease[J/OL]. mBio, 2018, 9(2): e00221-18. DOI: 10.1128/mBio.00221-18.
105 HEMNES A R , RATHINASABAPATHY A , AUSTIN E A et al. A potential therapeutic role for angiotensin-converting enzyme 2 in human pulmonary arterial hypertension[J]. Eur Respir J, 2018, 51 (6): 1702638
doi: 10.1183/13993003.02638-2017
106 KEYAERTS E , VIJGEN L , MAES P et al. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine[J]. Biochem Biophys Res Commun, 2004, 323 (1): 264- 268
doi: 10.1016/j.bbrc.2004.08.085
107 GAO J , TIAN Z , YANG X . Breakthrough:Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies[J]. Biosci Trends, 2020, 14 (1): 72- 73
doi: 10.5582/bst.2020.01047
108 SHIRATO K , KAWASE M , MATSUYAMA S . Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2[J]. J Virol, 2013, 87 (23): 12552- 12561
doi: 10.1128/JVI.01890-13
109 HUANG C , WANG Y , WANG X et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395 (10223): 497- 506
doi: 10.1016/S0140-6736(20)30183-5
110 张竞文, 胡欣, 金鹏飞 . 新型冠状病毒引起的细胞因子风暴及其药物治疗[J]. 中国药学杂志, 2020, 55 (5): 333- 336
ZHANG Jingwen , HU Xin , JIN Pengfei . Cytokine storm induced by SARS-CoV-2 and the drug therapy[J]. Chinese Pharmaceutical Journal, 2020, 55 (5): 333- 336
doi: 10.11669/cpj.2020.05.001
111 CONLEY L , TAO Y , HENRY A et al. Evaluation of eco-friendly zwitterionic detergents for enveloped virus inactivation[J]. Biotechnol Bioeng, 2017, 114 (4): 813- 820
doi: 10.1002/bit.26209
[1] 伦永志,刘奔,董雯,孙杰,潘凌鸿. 两种严重急性呼吸综合征冠状病毒S蛋白结构特征及抗原表位比较[J]. 浙江大学学报(医学版), 2020, 49(3): 315-323.
[2] 徐亦鸣, 吕丹丹, 应可净. 2019冠状病毒病(COVID-19)患者出凝血功能障碍的研究进展[J]. 浙江大学学报(医学版), 2020, 49(3): 340-346.
[3] 胡燕, 李晓峰, 龚卫月. 2019冠状病毒病(COVID-19)危重型患者的营养支持治疗[J]. 浙江大学学报(医学版), 2020, 49(3): 347-355.
[4] 王锦程,刘锦鹏,王园园,刘伟,陈小群,孙超,沈晓勇,汪启东,吴亚平,梁文杰,阮凌翔. 2019冠状病毒病(COVID-19)患者胸部CT影像学动态变化[J]. 浙江大学学报(医学版), 2020, 49(2): 191-197.
[5] 张小燕, 孙伟, 尚世强, 毛建华, 傅君芬, 舒强, 江克文. 2019冠状病毒病(COVID-19)疫情期生物样本保藏生物安全防护原则及建议[J]. 浙江大学学报(医学版), 2020, 49(2): 170-177.
[6] 曹盛力,冯沛华,时朋朋. 修正SEIR传染病动力学模型应用于湖北省2019冠状病毒病(COVID-19)疫情预测和评估[J]. 浙江大学学报(医学版), 2020, 49(2): 178-184.
[7] 陈军,刘丹萍,刘莉,刘萍,徐庆年,夏露,凌云,黄丹,宋树丽,张丹丹,钱志平,李涛,沈银忠,卢洪洲. 硫酸羟氯喹治疗2019冠状病毒病(COVID-19)普通型患者的初步研究[J]. 浙江大学学报(医学版), 2020, 49(2): 215-219.
[8] 陈志敏,傅君芬,舒强,汪伟,陈英虎,华春珍,李甫棒,林茹,唐兰芳,汪天林,王颖硕,徐玮泽,杨子浩,叶盛,袁天明,张晨美,张园园. 儿童2019冠状病毒病(COVID-19)诊疗指南(第二版)[J]. 浙江大学学报(医学版), 2020, 49(2): 139-146.
[9] 徐凯进,蔡洪流,沈毅弘,倪勤,陈瑜,胡少华,李剑平,王华芬,俞亮,黄河,裘云庆,魏国庆,方强,周建英,盛吉芳,梁廷波,李兰娟. 2019冠状病毒病(COVID-19)诊疗浙江经验[J]. 浙江大学学报(医学版), 2020, 49(2): 147-157.
[10] 姜赛平,李璐,茹仁萍,张春红,饶跃峰,林彬,王融溶,陈娜,王小娟,蔡洪流,盛吉芳,周建英,卢晓阳,裘云庆. 2019冠状病毒病(COVID-19)重型、危重型患者用药管理经验[J]. 浙江大学学报(医学版), 2020, 49(2): 158-169.
[11] 李鑫,代甜,王虹,石军年,袁薇,栗静,陈利军,张天明,张珊珊,孔焱,岳宁,时慧,何玉苹,胡惠芳,柳芙蓉,杨彩霞. 2019冠状病毒病(COVID-19)疑似患者合并焦虑和抑郁的临床分析[J]. 浙江大学学报(医学版), 2020, 49(2): 203-208.
[12] 骆嵩,杨丽娟,王春,刘传苗,李殿明. 血浆置换和托珠单抗治疗六例2019冠状病毒病(COVID-19)重型患者临床分析[J]. 浙江大学学报(医学版), 2020, 49(2): 227-231.
[13] 洪东升,倪剑,单文雅,李璐,胡希,羊红玉,赵青威,张幸国. 基于监测数据的药物不良反应快速识别及R语言实现[J]. 浙江大学学报(医学版), 2020, 49(2): 253-259.
[14] 钟琦,李志,沈晓勇,徐凯进,沈毅弘,方强,陈峰,梁廷波. 2019冠状病毒病(COVID-19)不同临床分型患者胸部CT影像学特征[J]. 浙江大学学报(医学版), 2020, 49(2): 198-202.
[15] 康仙慧,张荣,何慧梁,姚永兴,郑跃英,温小红,祝胜美. 一例妊娠合并2019冠状病毒病(COVID-19)患者的剖宫产麻醉管理[J]. 浙江大学学报(医学版), 2020, 49(2): 249-252.