Please wait a minute...
浙江大学学报(医学版)  2020, Vol. 49 Issue (2): 253-259    DOI: 10.3785/j.issn.1008-9292.2020.03.07
原著     
基于监测数据的药物不良反应快速识别及R语言实现
洪东升1,2(),倪剑2,3,单文雅1,2,李璐1,2,胡希1,2,羊红玉1,2,赵青威2,*(),张幸国1,*()
1. 浙江大学医学院附属第一医院药学部, 浙江 杭州 310003
2. 浙江省药物临床研究与评价技术重点实验室, 浙江 杭州 310003
3. 浙江大学医学院附属第一医院信息中心, 浙江 杭州 310003
Establishment of a rapid identification of adverse drug reaction program in R language implementation based on monitoring data
HONG Dongsheng1,2(),NI Jian2,3,SHAN Wenya1,2,LI Lu1,2,HU Xi1,2,YANG Hongyu1,2,ZHAO Qingwei2,*(),ZHANG Xingguo1,*()
1. Department of Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
2. Key Laboratory for Drug Evaluation and Clinical Research of Zhejiang Province, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
3. Information Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
 全文: PDF(1085 KB)   HTML( 31 )
摘要:

目的: 构建药物不良反应信号快速识别(RiADP)模型,为临床用药的风险管理和科学决策提供帮助。方法: 在不相称性测定分析理论的基础上,结合频数法和贝叶斯法建立一种R语言环境下临床可用的RiADP模型,并通过国际医学用语词典(MedDRA)编码,实现模型参数的临床解读。以美国食品药品监督管理局实际监测数据为依据,利用建立的RiADP模型对拟用于2019冠状病毒病治疗的抗病毒药物洛匹那韦/利托那韦的肝毒性进行识别,从而对模型进行验证。结果: 本研究提出的RiADP模型包括4个模型参数:药物不良反应信号信息标准值、经验贝叶斯几何均值、报告比值比和不良反应报告例数。通过R语言参数包“PhViD”可以实现模型参数的快速输出,MedDRA编码后可转化为临床术语,形成药物不良反应的临床解释报告。模型对洛匹那韦/利托那韦肝毒性的评估结果与最新研究报道匹配,证明模型结果可靠。结论: 本研究在R语言环境下提出了一种基于上市后药物监测数据的不良反应信号快速识别方法,可以在突发公共卫生事件下实现目标药物不良反应的快速预警,为临床用药的风险管理和决策提供循证依据。

关键词: 2019冠状病毒病严重急性呼吸综合征冠状病毒2新型冠状病毒肺炎不良反应监测药物评价R语言    
Abstract:

Objective: To establish a clinically applicable model of rapid identification of adverse drug reaction program (RiADP) for risk management and decision-making of clinical drug use. Methods: Based on the theory of disproportion analysis, frequency method and Bayes method, a clinically applicable RiADP model in R language background was established, and the parameters of the model were interpreted by MedDRA coding. Based on the actual monitoring data of FDA, the model was validated by the assessing hepatotoxicity of lopinavir/ritonavir (LPV/r). Results: The established RiADP model included four parameters: standard value of adverse drug reaction signal information, empirical Bayesian geometric mean value, ratio of reporting ratio and number of adverse drug reaction cases. Through the application of R language parameter package "phViD", the model parameters could be output quickly. After being encoded by MedDRA, it was converted into clinical terms to form a clinical interpretation report of adverse drug reactions. In addition, the evaluation results of LPV/r hepatotoxicity by the model were matched with the results reported in latest literature, which also proved the reliability of the model results. Conclusion: In this study, a rapid identification method of adverse reactions based on post marketing drug monitoring data was established in R language environment, which is capable of sending rapid warning of adverse reactions of target drugs in public health emergencies, and providing intuitive evidence for risk management and decision-making of clinical drugs.

Key words: Coronavirus disease 2019    Severe acute respiratory syndrome coronavirus 2    Novel coronavirus pneumonia    Adverse reaction monitoring    Drug evaluation    R language
收稿日期: 2020-03-06 出版日期: 2020-03-14
:  R969.3  
基金资助: 浙江省自然科学基金(LQ20G030025);浙江省重点研发计划(2019C04006);浙江省医药卫生科技计划(2012-KY1-001-005)
通讯作者: 赵青威,张幸国     E-mail: hdswell@zju.edu.cn;qwzhao@zju.edu.cn;1182008@zju.edu.cn
作者简介: 洪东升(1985-), 男, 博士研究生, 主管药师, 主要从事合理用药及药学信息化研究; E-mail:hdswell@zju.edu.cn; https://orcid.org/0000-0003-2695-6353
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
洪东升
倪剑
单文雅
李璐
胡希
羊红玉
赵青威
张幸国

引用本文:

洪东升,倪剑,单文雅,李璐,胡希,羊红玉,赵青威,张幸国. 基于监测数据的药物不良反应快速识别及R语言实现[J]. 浙江大学学报(医学版), 2020, 49(2): 253-259.

HONG Dongsheng,NI Jian,SHAN Wenya,LI Lu,HU Xi,YANG Hongyu,ZHAO Qingwei,ZHANG Xingguo. Establishment of a rapid identification of adverse drug reaction program in R language implementation based on monitoring data. J Zhejiang Univ (Med Sci), 2020, 49(2): 253-259.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2020.03.07        http://www.zjujournals.com/med/CN/Y2020/V49/I2/253

图 1  RiADP模型数据分析流程
项目 目标ADE报告数# 其他ADE报告数 合计
  数据来自美国FDA公共数据开放项目,采用ResearchAE(https://www.researchae.com/)分析获得.ADE:药物不良事件;*目标药物为洛匹那韦/利托那韦;#目标ADE为肝酶升高.
目标药物* 72 9530 9602
其他药物 34 473 11 126 884 11 161 357
合计 34 545 11 136 414 11 170 959
表 1  美国FDA关于洛匹那韦/利托那韦引起肝功能异常信号的监测数据
1 GUAN W J , NI ZY , HU Y et al. Clinical characteristics of coronavirus disease 2019 in China[J]. N Engl J Med, 2020,
doi: 10.1056/NEJMoa2002032
2 PARASRAMPURIA D A , BENET L Z , SHARMA A . Why drugs fail in late stages of development: case study analyses from the last decade and recommendations[J]. AAPS J, 2018, 20 (3): 46
doi: 10.1208/s12248-018-0204-y
3 LONERGAN M , SENN S J , MCNAMEE C et al. Defining drug response for stratified medicine[J]. Drug Discov Today, 2017, 22 (1): 173- 179
doi: 10.1016/j.drudis.2016.10.016
4 PERINO J , MOTTAL N , BOHBOT Y et al. Cardiac failure in patients treated with azacitidine, a pyrimidine analogue: Case reports and disproportionality analyses in Vigibase[J]. Br J Clin Pharmacol, 2020,
doi: 10.1111/bcp.14211
5 MARWITZ K , JONES S C , KORTEPETER C M et al. An evaluation of postmarketing reports with an outcome of death in the US FDA adverse event reporting system[J]. Drug Saf, 2020,
doi: 10.1007/s40264-020-00908-5
6 GENTILI M , POZZI M , PEETERS G et al. Review of the methods to obtain paediatric drug safety information: spontaneous reporting and healthcare databases, active surveillance programmes, systematic reviews and meta-analyses[J]. Curr Clin Pharmacol, 2018, 13 (1): 28- 39
doi: 10.2174/1574884713666180206164634
7 BEHERA S K , DAS S , XAVIER A S et al. Comparison of different methods for causality assessment of adverse drug reactions[J]. Int J Clin Pharm, 2018, 40 (4): 903- 910
doi: 10.1007/s11096-018-0694-9
8 BATE A . Bayesian confidence propagation neural network[J]. Drug Saf, 2007, 30 (7): 623- 625
doi: 10.2165/00002018-200730070-00011
9 KUMAR A , AHUJA J , SHRIVASTAVA TP et al. Statistical signal process in R language in the pharmacovigilance programme of India[J]. Ther Innov Regul Sci, 2018, 52 (3): 329- 333
doi: 10.1177/2168479017728988
10 TUBERT-BITTER P , BéGAUD B , AHMED I . Comparison of two drug safety signals in a pharmacovigilance data mining framework[J]. Stat Methods Med Res, 2016, 25 (2): 615- 629
doi: 10.1177/0962280212462295
11 TRIPPE Z A , BRENDANI B , MEIER C et al. Identification of substandard medicines via disproportionality analysis of individual case safety reports[J]. Drug Saf, 2017, 40 (4): 293- 303
doi: 10.1007/s40264-016-0499-5
12 AHMED I , THIESSARD F , MIREMONT-SALAMé G et al. Early detection of pharmacovigilance signals with automated methods based on false discovery rates: a comparative study[J]. Drug Saf, 2012, 35 (6): 495- 506
doi: 10.2165/11597180-000000000-00000
13 TIMBROOK T T , MCKAY L , SUTTON J D et al. Disproportionality analysis of safety with nafcillin and oxacillin with the FDA Adverse Event Reporting System (FAERS)[J]. Antimicrob Agents Chemother, 2020, 64 (3):
doi: 10.1128/AAC.01818-19
14 SAKAEDA T , TAMON A , KADOYAMA K et al. Data mining of the public version of the FDA Adverse Event Reporting System[J]. Int J Med Sci, 2013, 10 (7): 796- 803
doi: 10.7150/ijms.6048
15 VERDEN A , DIMBIL M , KYLE R et al. Analysis of spontaneous postmarket case reports submitted to the FDA regarding thromboembolic adverse events and JAK inhibitors[J]. Drug Saf, 2018, 41 (4): 357- 361
doi: 10.1007/s40264-017-0622-2
16 BROWN E G . Methods and pitfalls in searching drug safety databases utilising the Medical Dictionary for Regulatory Activities (MedDRA)[J]. Drug Saf, 2003, 26 (3): 145- 158
doi: 10.2165/00002018-200326030-00002
17 WHO. Global Health Observatory (GHO) data[DB/OL].[2020-03-10]. https://www.who.int/gho/database/en/.
18 MANSUR J M . Medication safety systems and the important role of pharmacists[J]. Drugs Aging, 2016, 33 (3): 213- 221
doi: 10.1007/s40266-016-0358-1
19 LINDQUIST M . Use of triage strategies in the WHO signal-detection process[J]. Drug Saf, 2007, 30 (7): 635- 637
doi: 10.2165/00002018-200730070-00014
20 SZARFMAN A , TONNING J M , DORAISWAMY P M . Pharmacovigilance in the 21st century: new systematic tools for an old problem[J]. Pharmacotherapy, 2004, 24 (9): 1099- 1104
doi: 10.1592/phco.24.13.1099.38090
21 SCHOLL J H , VAN PUIJENBROEK E P . The value of time-to-onset in statistical signal detection of adverse drug reactions: a comparison with disproportionality analysis in spontaneous reports from the Netherlands[J]. Pharmacoepidemiol Drug Saf, 2016, 25 (12): 1361- 1367
doi: 10.1002/pds.4115
[1] 王锦程,刘锦鹏,王园园,刘伟,陈小群,孙超,沈晓勇,汪启东,吴亚平,梁文杰,阮凌翔. 2019冠状病毒病(COVID-19)患者胸部CT影像学动态变化[J]. 浙江大学学报(医学版), 2020, 49(2): 191-197.
[2] 张小燕, 孙伟, 尚世强, 毛建华, 傅君芬, 舒强, 江克文. 2019冠状病毒病(COVID-19)疫情期生物样本保藏生物安全防护原则及建议[J]. 浙江大学学报(医学版), 2020, 49(2): 170-177.
[3] 曹盛力,冯沛华,时朋朋. 修正SEIR传染病动力学模型应用于湖北省2019冠状病毒病(COVID-19)疫情预测和评估[J]. 浙江大学学报(医学版), 2020, 49(2): 178-184.
[4] 陈军,刘丹萍,刘莉,刘萍,徐庆年,夏露,凌云,黄丹,宋树丽,张丹丹,钱志平,李涛,沈银忠,卢洪洲. 硫酸羟氯喹治疗2019冠状病毒病(COVID-19)普通型患者的初步研究[J]. 浙江大学学报(医学版), 2020, 49(2): 215-219.
[5] 陈志敏,傅君芬,舒强,汪伟,陈英虎,华春珍,李甫棒,林茹,唐兰芳,汪天林,王颖硕,徐玮泽,杨子浩,叶盛,袁天明,张晨美,张园园. 儿童2019冠状病毒病(COVID-19)诊疗指南(第二版)[J]. 浙江大学学报(医学版), 2020, 49(2): 139-146.
[6] 徐凯进,蔡洪流,沈毅弘,倪勤,陈瑜,胡少华,李剑平,王华芬,俞亮,黄河,裘云庆,魏国庆,方强,周建英,盛吉芳,梁廷波,李兰娟. 2019冠状病毒病(COVID-19)诊疗浙江经验[J]. 浙江大学学报(医学版), 2020, 49(2): 147-157.
[7] 姜赛平,李璐,茹仁萍,张春红,饶跃峰,林彬,王融溶,陈娜,王小娟,蔡洪流,盛吉芳,周建英,卢晓阳,裘云庆. 2019冠状病毒病(COVID-19)重型、危重型患者用药管理经验[J]. 浙江大学学报(医学版), 2020, 49(2): 158-169.
[8] 李鑫,代甜,王虹,石军年,袁薇,栗静,陈利军,张天明,张珊珊,孔焱,岳宁,时慧,何玉苹,胡惠芳,柳芙蓉,杨彩霞. 2019冠状病毒病(COVID-19)疑似患者合并焦虑和抑郁的临床分析[J]. 浙江大学学报(医学版), 2020, 49(2): 203-208.
[9] 骆嵩,杨丽娟,王春,刘传苗,李殿明. 血浆置换和托珠单抗治疗六例2019冠状病毒病(COVID-19)重型患者临床分析[J]. 浙江大学学报(医学版), 2020, 49(2): 227-231.
[10] 钟琦,李志,沈晓勇,徐凯进,沈毅弘,方强,陈峰,梁廷波. 2019冠状病毒病(COVID-19)不同临床分型患者胸部CT影像学特征[J]. 浙江大学学报(医学版), 2020, 49(2): 198-202.
[11] 康仙慧,张荣,何慧梁,姚永兴,郑跃英,温小红,祝胜美. 一例妊娠合并2019冠状病毒病(COVID-19)患者的剖宫产麻醉管理[J]. 浙江大学学报(医学版), 2020, 49(2): 249-252.
[12] 陈旭,李央,王金希,蔡洪流,曹红翠,盛吉芳. 三例妊娠合并2019冠状病毒病(COVID-19)患者诊治分析[J]. 浙江大学学报(医学版), 2020, 49(2): 240-244.
[13] 沈利华,黄菲,陈祥,熊钻,杨晓玉,李慧,程丰,郭健,龚国富. 严重急性呼吸综合征冠状病毒2(SARS-CoV-2)核酸检测试剂盒临床诊断效能评估[J]. 浙江大学学报(医学版), 2020, 49(2): 185-190.
[14] 张胜,李丹萍,陈华忠,郑丹,周益萍,陈葆国,石卫武,林荣海. 糖皮质激素治疗一例2019冠状病毒病(COVID-19)危重型患者炎症反应动态观察[J]. 浙江大学学报(医学版), 2020, 49(2): 220-226.
[15] 李游江,胡瑛瑛,张晓东,喻员员,李斌,吴建国,吴英萍,夏肖萍,徐键. 七例2019冠状病毒病(COVID-19)普通型患者出院后病毒核酸随访结果[J]. 浙江大学学报(医学版), 2020, 49(2): 270-274.