Please wait a minute...
浙江大学学报(医学版)  2020, Vol. 49 Issue (1): 58-70    DOI: 10.3785/j.issn.1008-9292.2020.02.25
专题报道     
铁稳态代谢表观遗传调控机制的研究进展
段玲艳1(),尹香菊2,孟红恩1,方学贤1,闵军霞1,王福俤1,*()
1. 浙江大学医学院, 浙江 杭州 310058
2. 河南理工大学资源环境学院, 河南 焦作 454000
Progress on epigenetic regulation of iron homeostasis
DUAN Lingyan1(),YIN Xiangju2,MENG Hong'en1,FANG Xuexian1,MIN Junxia1,WANG Fudi1,*()
1. School of Medicine, Zhejiang University, Hangzhou 310058, China
2. School of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, Henan Province, China
 全文: PDF(3310 KB)   HTML( 33 )
摘要:

铁稳态在机体生长发育和健康维持中发挥重要作用,而机体铁稳态代谢受二价金属离子转运蛋白(DMT1)、转铁蛋白受体1(TFR1)、转铁蛋白受体2(TFR2)、铁外排蛋白(FPN)、铁调素(HAMP)、铁调素调节蛋白(HJV)、铁蛋白重链(Ferritin H)等关键基因精密调控。近年研究报道,DNA甲基化、组蛋白乙酰化和微RNA(miRNA)等表观遗传机制可发挥调控铁稳态的作用。其中,DNA甲基化可通过调控FPNTFR2HAMPHJV和骨形态生成蛋白BMP家族成员6(BMP6)等铁代谢基因启动子区甲基化水平而影响这些基因的表达。此外,组蛋白脱乙酰酶(HDAC)能够通过抑制HAMP基因表达而调控铁代谢;而HDAC抑制剂可促进HAMP基因表达。多个miRNA可靶向DMT1FPNTFR1TFR2Ferritin H等基因,通过抑制这些铁代谢关键基因的表达而影响机体铁的吸收、转运、储存和利用过程。值得关注的是,表观遗传调控的一些关键酶,如DNA去甲基化酶TET2和组蛋白赖氨酸去甲基酶JmjC KDM需要铁离子才能发挥酶促活性。本文综述了DNA甲基化、组蛋白乙酰化和miRNA等表观遗传机制调控铁稳态代谢的国内外最新研究进展,并针对未来研究方向进行了讨论。

关键词: 铁/代谢DNA甲基化组蛋白类/蛋白质修饰微RNA表观遗传综述    
Abstract:

Iron homeostasis plays an important role for the maintenance of human health. It is known that iron metabolism is tightly regulated by several key genes, including divalent metal transport-1(DMT1), transferrin receptor 1(TFR1), transferrin receptor 2(TFR2), ferroportin(FPN), hepcidin(HAMP), hemojuvelin(HJV) and Ferritin H. Recently, it is reported that DNA methylation, histone acetylation, and microRNA (miRNA) epigenetically regulated iron homeostasis. Among these epigenetic regulators, DNA hypermethylation of the promoter region of FPN, TFR2, HAMP, HJV and bone morphogenetic protein 6 (BMP6) genes result in inhibitory effect on the expression of these iron-related gene. In addition, histone deacetylase (HADC) suppresses HAMP gene expression. On the contrary, HADC inhibitor upregulates HAMP gene expression. Additional reports showed that miRNA can also modulate iron absorption, transport, storage and utilization via downregulation of DMT1, FPN, TFR1, TFR2, Ferritin H and other genes. It is noteworthy that some key epigenetic regulatory enzymes, such as DNA demethylase TET2 and histone lysine demethylase JmjC KDMs, require iron for the enzymatic activities. In this review, we summarize the recent progress of DNA methylation, histone acetylation and miRNA in regulating iron metabolism and also discuss the future research directions.

Key words: Iron/metabolism    DNA methylation    Histones/protein modification    MicroRNAs    Epigenetics    Review
收稿日期: 2019-11-19 出版日期: 2020-06-08
CLC:  R333.6  
基金资助: 国家重点研发计划(2018YFA0507800);国家自然科学基金(31930057, 31530034, 31570791)
通讯作者: 王福俤     E-mail: duanlingyan@zju.edu.cn;fwang@zju.edu.cn
作者简介: 段玲艳(1993-), 女, 硕士研究生, 主要从事铁代谢表观遗传学研究; E-mail:duanlingyan@zju.edu.cn; https://orcid.org/0000-0002-5016-7023
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
段玲艳
尹香菊
孟红恩
方学贤
闵军霞
王福俤

引用本文:

段玲艳,尹香菊,孟红恩,方学贤,闵军霞,王福俤. 铁稳态代谢表观遗传调控机制的研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 58-70.

DUAN Lingyan,YIN Xiangju,MENG Hong'en,FANG Xuexian,MIN Junxia,WANG Fudi. Progress on epigenetic regulation of iron homeostasis. J Zhejiang Univ (Med Sci), 2020, 49(1): 58-70.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2020.02.25        http://www.zjujournals.com/med/CN/Y2020/V49/I1/58

图 1  铁稳态代谢和表观遗传调控铁代谢
图 2  铁调素的表观遗传调控
靶点 微RNA 文献
二价金属离子转运蛋白 miR-let-7d、miR-16家族 [81-82]
铁外排蛋白 miR-20a、miR-20b、miR-485-3p [83-85]
转铁蛋白受体1 miR-210、miR-320、miR-152、miR-148a、miR-7-5p、miR-141-3p [86-90]
铁硫簇组装蛋白 miR-210 [91]
转铁蛋白受体2 miR-221 [92]
核转录因子E2相关因子2 miR-144 [93]
铁蛋白重链 miR-200b [94]
铁反应元件结合蛋白2 miR-29家族 [95]
骨形态生成蛋白Ⅰ型受体 miR-130a [96]
铁调素调节蛋白 miR-122 [97]
血色素沉着病蛋白 miR-122 [97]
5-氨基酮戊酸合成酶 miR-218 [98]
γ-珠蛋白 miR-96 [99]
Bach 1(一种编码血红素调节转录抑制因子的基因) miR-let-7、miR-196、miR-27a-5p [100-102]
乳铁蛋白 miR-214 [103]
乳铁蛋白受体 miR-584 [104]
表 1  微RNA调控铁代谢的关键靶点
1 HENTZE M W , MUCKENTHALER M U , ANDREWS N C . Balancing acts:molecular control of mammalian iron metabolism[J]. Cell, 2004, 117 (3): 285- 297
doi: 10.1016/s0092-8674(04)00343-5
2 MCLEAN E , COGSWELL M , EGLI I et al. Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993-2005[J]. Public Health Nutr, 2009, 12 (4): 444- 454
doi: 10.1017/S1368980008002401
3 PIETRANGELO A . Hereditary hemochromatosis-a new look at an old disease[J]. N Engl J Med, 2004, 350 (23): 2383- 2397
doi: 10.1056/NEJMra031573
4 FERNáNDEZ-REAL J M , LóPEZ-BERMEJO A , RICART W . Cross-talk between iron metabolism and diabetes[J]. Diabetes, 2002, 51 (8): 2348- 2354
doi: 10.2337/diabetes.51.8.2348
5 GUYADER D , JACQUELINET C , MOIRAND R et al. Noninvasive prediction of fibrosis in C282Y homozygous hemochromatosis[J]. Gastroenterology, 1998, 115 (4): 929- 936
doi: 10.1016/s0016-5085(98)70265-3
6 FEDER J N , GNIRKE A , THOMAS W et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis[J]. Nat Genet, 1996, 13 (4): 399- 408
doi: 10.1038/ng0896-399
7 ROETTO A , PAPANIKOLAOU G , POLITOU M et al. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis[J]. Nat Genet, 2003, 33 (1): 21- 22
doi: 10.1038/ng1053
8 PAPANIKOLAOU G , SAMUELS M E , LUDWIG E H et al. Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis[J]. Nat Genet, 2004, 36 (1): 77- 82
doi: 10.1038/ng1274
9 MONTOSI G , DONOVAN A , TOTARO A et al. Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene[J]. J Clin Invest, 2001, 108 (4): 619- 623
doi: 10.1172/JCI13468
10 CAMASCHELLA C , ROETTO A , CALI A et al. The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22[J]. Nat Genet, 2000, 25 (1): 14- 15
doi: 10.1038/75534
11 GUO S , JIANG S , EPPERLA N et al. A gene-based recessive diplotype exome scan discovers FGF6, a novel hepcidin-regulating iron-metabolism gene[J]. Blood, 2019, 133 (17): 1888- 1898
doi: 10.1182/blood-2018-10-879585
12 DEV S , BABITT J L . Overview of iron metabolism in health and disease[J]. Hemodial Int, 2017, 21:S6- 6S20
doi: 10.1111/hdi.12542
13 DIXON S J , LEMBERG K M , LAMPRECHT M R et al. Ferroptosis:an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149 (5): 1060- 1072
doi: 10.1016/j.cell.2012.03.042
14 WANG H , AN P , XIE E et al. Characterization of ferroptosis in murine models of hemochromatosis[J]. Hepatology, 2017, 66 (2): 449- 465
doi: 10.1002/hep.29117
15 FANG X , WANG H , HAN D et al. Ferroptosis as a target for protection against cardiomyopathy[J]. Proc Natl Acad Sci U S A, 2019, 116 (7): 2672- 2680
doi: 10.1073/pnas.1821022116
16 PANTOPOULOS K . Iron metabolism and the IRE/IRP regulatory system:an update[J]. Ann N Y Acad Sci, 2004, 1012:1- 13
doi: 10.1196/annals.1306.001
17 GANZ T , NEMETH E . The hepcidin-ferroportin system as a therapeutic target in anemias and iron overload disorders[J]. Hematology Am Soc Hematol Educ Program, 2011, 2011:538- 542
doi: 10.1182/asheducation-2011.1.538
18 NEMETH E , TUTTLE M S , POWELSON J et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization[J]. Science, 2004, 306 (5704): 2090- 2093
doi: 10.1126/science.1104742
19 BABITT J L , HUANG F W , WRIGHTING D M et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression[J]. Nat Genet, 2006, 38 (5): 531- 539
doi: 10.1038/ng1777
20 CORRADINI E , MEYNARD D , WU Q et al. Serum and liver iron differently regulate the bone morphogenetic protein 6(BMP6)-SMAD signaling pathway in mice[J]. Hepatology, 2011, 54 (1): 273- 284
doi: 10.1002/hep.24359
21 BABITT J L , HUANG F W , XIA Y et al. Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance[J]. J Clin Invest, 2007, 117 (7): 1933- 1939
doi: 10.1172/JCI31342
22 GOSWAMI T , ANDREWS N C . Hereditary hemochromatosis protein, HFE, interaction with transferrin receptor 2 suggests a molecular mechanism for mammalian iron sensing[J]. J Biol Chem, 2006, 281 (39): 28494- 28498
doi: 10.1074/jbc.C600197200
23 RAMOS E , KAUTZ L , RODRIGUEZ R et al. Evidence for distinct pathways of hepcidin regulation by acute and chronic iron loading in mice[J]. Hepatology, 2011, 53 (4): 1333- 1341
doi: 10.1002/hep.24178
24 SILVESTRI L , PAGANI A , NAI A et al. The serine protease matriptase-2(TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin[J]. Cell Metab, 2008, 8 (6): 502- 511
doi: 10.1016/j.cmet.2008.09.012
25 BIRD A . DNA methylation patterns and epigenetic memory[J]. Genes Dev, 2002, 16 (1): 6- 21
doi: 10.1101/gad.947102
26 YAMAMOTO M , TANAKA H , TOKI Y et al. Iron-induced epigenetic abnormalities of mouse bone marrow through aberrant activation of aconitase and isocitrate dehydrogenase[J]. Int J Hematol, 2016, 104 (4): 491- 501
doi: 10.1007/s12185-016-2054-7
27 YE Q , TRIVEDI M , ZHANG Y et al. Brain iron loading impairs DNA methylation and alters GABAergic function in mice[J]. FASEB J, 2019, 33 (2): 2460- 2471
doi: 10.1096/fj.201801116RR
28 POGRIBNY I P , TRYNDYAK V P , POGRIBNA M et al. Modulation of intracellular iron metabolism by iron chelation affects chromatin remodeling proteins and corresponding epigenetic modifications in breast cancer cells and increases their sensitivity to chemotherapeutic agents[J]. Int J Oncol, 2013, 42 (5): 1822- 1832
doi: 10.3892/ijo.2013.1855
29 DEVIREDDY L R , HART D O , GOETZ D H et al. A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production[J]. Cell, 2010, 141 (6): 1006- 1017
doi: 10.1016/j.cell.2010.04.040
30 LIU Z , CIOCEA A , DEVIREDDY L . Endogenous siderophore 2, 5-dihydroxybenzoic acid deficiency promotes anemia and splenic iron overload in mice[J]. Mol Cell Biol, 2014, 34 (13): 2533- 2546
doi: 10.1128/MCB.00231-14
31 ZHAO M , LI M Y , GAO X F et al. Downregulation of BDH2 modulates iron homeostasis and promotes DNA demethylation in CD4+ T cells of systemic lupus erythematosus[J]. Clin Immunol, 2018, 187:113- 121
doi: 10.1016/j.clim.2017.11.002
32 LU Q , KAPLAN M , RAY D et al. Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus[J]. Arthritis Rheum, 2002, 46 (5): 1282- 1291
doi: 10.1002/art.10234
33 KAPLAN M J , LU Q , WU A et al. Demethylation of promoter regulatory elements contributes to perforin overexpression in CD4+ lupus T cells[J]. J Immunol, 2004, 172 (6): 3652- 3661
doi: 10.4049/jimmunol.172.6.3652
34 LU Q , WU A , RICHARDSON B C . Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs[J]. J Immunol, 2005, 174 (10): 6212- 6219
doi: 10.4049/jimmunol.174.10.6212
35 LU Q , WU A , TESMER L et al. Demethylation of CD40LG on the inactive X in T cells from women with lupus[J]. J Immunol, 2007, 179 (9): 6352- 6358
doi: 10.4049/jimmunol.179.9.6352
36 WU H , ZHAO M , TAN L et al. The key culprit in the pathogenesis of systemic lupus erythematosus:Aberrant DNA methylation[J]. Autoimmun Rev, 2016, 15 (7): 684- 689
doi: 10.1016/j.autrev.2016.03.002
37 CORTELLINO S , XU J , SANNAI M et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair[J]. Cell, 2011, 146 (1): 67- 79
doi: 10.1016/j.cell.2011.06.020
38 ZHAO X , DAI J , MA Y et al. Dynamics of ten-eleven translocation hydroxylase family proteins and 5-hydroxymethylcytosine in oligodendrocyte differentiation[J]. Glia, 2014, 62 (6): 914- 926
doi: 10.1002/glia.22649
39 ZHAO M H , LIANG S , GUO J et al. Analysis of ferrous on ten-eleven translocation activity and epigenetic modifications of early mouse embryos by fluorescence microscopy[J]. Microsc Microanal, 2016, 22 (2): 342- 348
doi: 10.1017/S1431927616000040
40 YAN H , WANG Y , QU X et al. Distinct roles for TET family proteins in regulating human erythropoiesis[J]. Blood, 2017, 129 (14): 2002- 2012
doi: 10.1182/blood-2016-08-736587
41 INOKURA K , FUJIWARA T , SAITO K et al. Impact of TET2 deficiency on iron metabolism in erythroblasts[J]. Exp Hematol, 2017, 49:56- 67
doi: 10.1016/j.exphem.2017.01.002
42 GUO S , JIANG X , WANG Y et al. The protective role of TET2 in erythroid iron homeostasis against oxidative stress and erythropoiesis[J]. Cell Signal, 2017, 38:106- 115
doi: 10.1016/j.cellsig.2017.07.002
43 PINNIX Z K , MILLER L D , WANG W et al. Ferroportin and iron regulation in breast cancer progression and prognosis[J]. Sci Transl Med, 2010, 2 (43): 43ra56
doi: 10.1126/scisignal.3001127
44 CHEN Y , ZHANG S , WANG X et al. Disordered signaling governing ferroportin transcription favors breast cancer growth[J]. Cell Signal, 2015, 27 (1): 168- 176
doi: 10.1016/j.cellsig.2014.11.002
45 ZHANG S , CHANG W , WU H et al. Pan-cancer analysis of iron metabolic landscape across the Cancer Genome Atlas[J]. J Cell Physiol, 2020, 235 (2): 1013- 1024
doi: 10.1002/jcp.29017
46 UDALI S , CASTAGNA A , CORBELLA M et al. Hepcidin and DNA promoter methylation in hepatocellular carcinoma[J]. Eur J Clin Invest, 2018, 48 (2): e12870
doi: 10.1111/eci.12870
47 SHARP P A , CLARKSON R , HUSSAIN A et al. DNA methylation of hepatic iron sensing genes and the regulation of hepcidin expression[J]. PLoS One, 2018, 13 (5): e0197863
doi: 10.1371/journal.pone.0197863
48 HUANG Y , ZHANG H , WANG C et al. DNA methylation suppresses liver Hamp expression in response to iron deficiency after bariatric surgery[J]. Surg Obes Relat Dis, 2020, 16 (1): 109- 118
doi: 10.1016/j.soard.2019.10.005
49 SHUCHENG G , CHUNKANG C , YOUSHAN Z et al. Decitabine treatment could ameliorate primary iron-overload in myelodysplastic syndrome patients[J]. Cancer Invest, 2015, 33 (4): 98- 106
doi: 10.3109/07357907.2014.1001895
50 HE Y , CUI Y , XU B et al. Hypermethylation leads to bone morphogenetic protein 6 downregulation in hepatocellular carcinoma[J]. PLoS One, 2014, 9 (1): e87994
doi: 10.1371/journal.pone.0087994
51 KORNBERG R D . Structure of chromatin[J]. Annu Rev Biochem, 1977, 46:931- 954
doi: 10.1146/annurev.bi.46.070177.004435
52 KORNBERG R D . Chromatin structure:a repeating unit of histones and DNA[J]. Science, 1974, 184 (4139): 868- 871
doi: 10.1126/science.184.4139.868
53 KOUZARIDES T . Chromatin modifications and their function[J]. Cell, 2007, 128 (4): 693- 705
doi: 10.1016/j.cell.2007.02.005
54 SMITH B C , DENU J M . Chemical mechanisms of histone lysine and arginine modifications[J]. Biochim Biophys Acta, 2009, 1789 (1): 45- 57
doi: 10.1016/j.bbagrm.2008.06.005
55 BERNSTEIN B E , MEISSNER A , LANDER E S . The mammalian epigenome[J]. Cell, 2007, 128 (4): 669- 681
doi: 10.1016/j.cell.2007.01.033
56 SILVA P F , GARCIA V A , DORNELLES ADA S et al. Memory impairment induced by brain iron overload is accompanied by reduced H3K9 acetylation and ameliorated by sodium butyrate[J]. Neuroscience, 2012, 200:42- 49
doi: 10.1016/j.neuroscience.2011.10.038
57 GNANA-PRAKASAM J P , VEERANAN-KARMEGAM R , COOTHANKANDASWAMY V et al. Loss of Hfe leads to progression of tumor phenotype in primary retinal pigment epithelial cells[J]. Invest Ophthalmol Vis Sci, 2013, 54 (1): 63- 71
doi: 10.1167/iovs.12-10312
58 INGRASSIA R , LANZILLOTTA A , SARNICO I et al. 1B/(-)IRE DMT1 expression during brain ischemia contributes to cell death mediated by NF-kappaB/RelA acetylation at Lys310[J]. PLoS One, 2012, 7 (5): e38019
doi: 10.1371/journal.pone.0038019
59 WANG W , DI X , TORTI S V et al. Ferritin H induction by histone deacetylase inhibitors[J]. Biochem Pharmacol, 2010, 80 (3): 316- 324
doi: 10.1016/j.bcp.2010.04.008
60 TAO Y , WU Q , GUO X et al. MBD5 regulates iron metabolism via methylation-independent genomic targeting of Fth1 through KAT2A in mice[J]. Br J Haematol, 2014, 166 (2): 279- 291
doi: 10.1111/bjh.12863
61 YANG X , PARK S H , CHANG H C et al. Sirtuin 2 regulates cellular iron homeostasis via deacetylation of transcription factor NRF2[J]. J Clin Invest, 2017, 127 (4): 1505- 1516
doi: 10.1172/JCI88574
62 WANG R H , LI C , XU X et al. A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression[J]. Cell Metab, 2005, 2 (6): 399- 409
doi: 10.1016/j.cmet.2005.10.010
63 LIU H , TRINH T L , DONG H et al. Iron regulator hepcidin exhibits antiviral activity against hepatitis C virus[J]. PLoS One, 2012, 7 (10): e46631
doi: 10.1371/journal.pone.0046631
64 MIURA K , TAURA K , KODAMA Y et al. Hepatitis C virus-induced oxidative stress suppresses hepcidin expression through increased histone deacetylase activity[J]. Hepatology, 2008, 48 (5): 1420- 1429
doi: 10.1002/hep.22486
65 PASRICHA S R , LIM P J , DUARTE T L et al. Hepcidin is regulated by promoter-associated histone acetylation and HDAC3[J]. Nat Commun, 2017, 8 (1): 403
doi: 10.1038/s41467-017-00500-z
66 KANAMORI Y , MURAKAMI M , MATSUI T et al. Hepcidin expression in liver cells:evaluation of mRNA levels and transcriptional regulation[J]. Gene, 2014, 546 (1): 50- 55
doi: 10.1016/j.gene.2014.05.040
67 GAUN V , PATCHEN B , VOLOVETZ J et al. A chemical screen identifies small molecules that regulate hepcidin expression[J]. Blood Cells Mol Dis, 2014, 53 (4): 231- 240
doi: 10.1016/j.bcmd.2014.06.002
68 YIN X , WU Q , MONGA J et al. HDAC1 governs iron homeostasis independent of histone deacetylation in iron-overload murine models[J]. Antioxid Redox Signal, 2018, 28 (13): 1224- 1237
doi: 10.1089/ars.2017.7161
69 SHI Y , LAN F , MATSON C et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1[J]. Cell, 2004, 119 (7): 941- 953
doi: 10.1016/j.cell.2004.12.012
70 MOSAMMAPARAST N , SHI Y . Reversal of histone methylation:biochemical and molecular mechanisms of histone demethylases[J]. Annu Rev Biochem, 2010, 79:155- 179
doi: 10.1146/annurev.biochem.78.070907.103946
71 HAYWARD D , COLE P A . LSD1 histone demethylase assays and inhibition[J]. Methods Enzymol, 2016, 573:261- 278
doi: 10.1016/bs.mie.2016.01.020
72 MAIQUES-DIAZ A , SOMERVAILLE T C . LSD1:biologic roles and therapeutic targeting[J]. Epigenomics, 2016, 8 (8): 1103- 1116
doi: 10.2217/epi-2016-0009
73 SORNA V , THEISEN E R , STEPHENS B et al. High-throughput virtual screening identifies novel N'-(1-phenylethylidene)-benzohydrazides as potent, specific, and reversible LSD1 inhibitors[J]. J Med Chem, 2013, 56 (23): 9496- 9508
doi: 10.1021/jm400870h
74 SARNO F , PAPULINO C , FRANCI G et al. 3-chloro-n'-(2-hydroxybenzylidene) benzohydrazide:an LSD1-selective inhibitor and iron-chelating agent for anticancer therapy[J]. Front Pharmacol, 2018, 9:1006
doi: 10.3389/fphar.2018.01006
75 ROATSCH M , HOFFMANN I , ABBOUD M I et al. The clinically used iron chelator deferasirox is an inhibitor of epigenetic JumonjiC domain-containing histone demethylases[J]. ACS Chem Biol, 2019, 14 (8): 1737- 1750
doi: 10.1021/acschembio.9b00289
76 CAO L L , LIU H , YUE Z et al. Iron chelation inhibits cancer cell growth and modulates global histone methylation status in colorectal cancer[J]. Biometals, 2018, 31 (5): 797- 805
doi: 10.1007/s10534-018-0123-5
77 JIANG Y , LI C , WU Q et al. Iron-dependent histone 3 lysine 9 demethylation controls B cell proliferation and humoral immune responses[J]. Nat Commun, 2019, 10 (1): 2935
doi: 10.1038/s41467-019-11002-5
78 HEO I , KIM V N . Regulating the regulators:posttranslational modifications of RNA silencing factors[J]. Cell, 2009, 139 (1): 28- 31
doi: 10.1016/j.cell.2009.09.013
79 BARTEL D P . MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116 (2): 281- 297
doi: 10.1016/s0092-8674(04)00045-5
80 CARTHEW R W , SONTHEIMER E J . Origins and mechanisms of miRNAs and siRNAs[J]. Cell, 2009, 136 (4): 642- 655
doi: 10.1016/j.cell.2009.01.035
81 ANDOLFO I , DE FALCO L , ASCI R et al. Regulation of divalent metal transporter 1(DMT1) non-IRE isoform by the microRNA Let-7d in erythroid cells[J]. Haematologica, 2010, 95 (8): 1244- 1252
doi: 10.3324/haematol.2009.020685
82 JIANG S , GUO S , LI H et al. Identification and functional verification of microRNA-16 family targeting intestinal divalent metal transporter 1(DMT1) in vitro and in vivo[J]. Front Physiol, 2019, 10:819
doi: 10.3389/fphys.2019.00819
83 BABU K R , MUCKENTHALER M U . miR-20a regulates expression of the iron exporter ferroportin in lung cancer[J]. J Mol Med (Berl), 2016, 94 (3): 347- 359
doi: 10.1007/s00109-015-1362-3
84 JIANG S , FANG X , LIU M et al. MiR-20b down-regulates intestinal ferroportin expression in vitro and in vivo[J]. Cells, 2019, 8 (10):
doi: 10.3390/cells8101135
85 SANGOKOYA C , DOSS J F , CHI J T . Iron-responsive miR-485-3p regulates cellular iron homeostasis by targeting ferroportin[J]. PLoS Genet, 2013, 9 (4): e1003408
doi: 10.1371/journal.pgen.1003408
86 YOSHIOKA Y , KOSAKA N , OCHIYA T et al. Micromanaging iron homeostasis:hypoxia-inducible micro-RNA-210 suppresses iron homeostasis-related proteins[J]. J Biol Chem, 2012, 287 (41): 34110- 34119
doi: 10.1074/jbc.M112.356717
87 SCHAAR D G , MEDINA D J , MOORE D F et al. miR-320 targets transferrin receptor 1(CD71) and inhibits cell proliferation[J]. Exp Hematol, 2009, 37 (2): 245- 255
doi: 10.1016/j.exphem.2008.10.002
88 KINDRAT I , TRYNDYAK V , DE CONTI A et al. MicroRNA-152-mediated dysregulation of hepatic transferrin receptor 1 in liver carcinogenesis[J]. Oncotarget, 2016, 7 (2): 1276- 1287
doi: 10.18632/oncotarget.6004
89 BABU K R , MUCKENTHALER M U . miR-148a regulates expression of the transferrin receptor 1 in hepatocellular carcinoma[J]. Sci Rep, 2019, 9 (1): 1518
doi: 10.1038/s41598-018-35947-7
90 MIYAZAWA M , BOGDAN A R , HASHIMOTO K et al. Regulation of transferrin receptor-1 mRNA by the interplay between IRE-binding proteins and miR-7/miR-141 in the 3'-IRE stem-loops[J]. RNA, 2018, 24 (4): 468- 479
doi: 10.1261/rna.063941.117
91 CHAN S Y , ZHANG Y Y , HEMANN C et al. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2[J]. Cell Metab, 2009, 10 (4): 273- 284
doi: 10.1016/j.cmet.2009.08.015
92 ASCI R , VALLEFUOCO F , ANDOLFO I et al. Trasferrin receptor 2 gene regulation by microRNA 221 in SH-SY5Y cells treated with MPP(+) as Parkinson's disease cellular model[J]. Neurosci Res, 2013, 77 (3): 121- 127
doi: 10.1016/j.neures.2013.09.003
93 SRINOUN K , SATHIRAPONGSASUTI N , PAIBOONSUKWONG K et al. miR-144 regulates oxidative stress tolerance of thalassemic erythroid cell via targeting NRF2[J]. Ann Hematol, 2019, 98 (9): 2045- 2052
doi: 10.1007/s00277-019-03737-4
94 SHPYLEVA S I , TRYNDYAK V P , KOVALCHUK O et al. Role of ferritin alterations in human breast cancer cells[J]. Breast Cancer Res Treat, 2011, 126 (1): 63- 71
doi: 10.1007/s10549-010-0849-4
95 RIPA R , DOLFI L , TERRIGNO M et al. MicroRNA miR-29 controls a compensatory response to limit neuronal iron accumulation during adult life and aging[J]. BMC Biol, 2017, 15 (1): 9
doi: 10.1186/s12915-017-0354-x
96 ZUMBRENNEN-BULLOUGH K B , WU Q , CORE A B et al. MicroRNA-130a is up-regulated in mouse liver by iron deficiency and targets the bone morphogenetic protein (BMP) receptor ALK2 to attenuate BMP signaling and hepcidin transcription[J]. J Biol Chem, 2014, 289 (34): 23796- 23808
doi: 10.1074/jbc.M114.577387
97 CASTOLDI M , VUJIC SPASIC M , ALTAMURA S et al. The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice[J]. J Clin Invest, 2011, 121 (4): 1386- 1396
doi: 10.1172/JCI44883
98 LI Y , LIU S , SUN H et al. MiR-218 inhibits erythroid differentiation and alters iron metabolism by targeting ALAS2 in K562 cells[J]. Int J Mol Sci, 2015, 16 (12): 28156- 28168
doi: 10.3390/ijms161226088
99 AZZOUZI I , MOEST H , WINKLER J et al. MicroRNA-96 directly inhibits gamma-globin expression in human erythropoiesis[J]. PLoS One, 2011, 6 (7): e22838
doi: 10.1371/journal.pone.0022838
100 HOU W , TIAN Q , STEUERWALD N M et al. The let-7 microRNA enhances heme oxygenase-1 by suppressing Bach1 and attenuates oxidant injury in human hepatocytes[J]. Biochim Biophys Acta, 2012, 1819 (11-12): 1113- 1122
doi: 10.1016/j.bbagrm.2012.06.001
101 HOU W , TIAN Q , ZHENG J et al. MicroRNA-196 represses Bach1 protein and hepatitis C virus gene expression in human hepatoma cells expressing hepatitis C viral proteins[J]. Hepatology, 2010, 51 (5): 1494- 1504
doi: 10.1002/hep.23401
102 XING Y , LI J , LI S P et al. MiR-27a-5p regulates apoptosis of liver ischemia-reperfusion injury in mice by targeting Bach1[J]. J Cell Biochem, 2018, 119 (12): 10376- 10383
doi: 10.1002/jcb.27383
103 LIAO Y , DU X , L?NNERDAL B . miR-214 regulates lactoferrin expression and pro-apoptotic function in mammary epithelial cells[J]. J Nutr, 2010, 140 (9): 1552- 1556
doi: 10.3945/jn.110.124289
104 LIAO Y , L?NNERDAL B . miR-584 mediates post-transcriptional expression of lactoferrin receptor in Caco-2 cells and in mouse small intestine during the perinatal period[J]. Int J Biochem Cell Biol, 2010, 42 (8): 1363- 1369
doi: 10.1016/j.biocel.2009.07.019
105 GATTER K C , BROWN G , TROWBRIDGE I S et al. Transferrin receptors in human tissues:their distribution and possible clinical relevance[J]. J Clin Pathol, 1983, 36 (5): 539- 545
doi: 10.1136/jcp.36.5.539
106 WU K J , POLACK A , DALLA-FAVERA R . Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC[J]. Science, 1999, 283 (5402): 676- 679
doi: 10.1126/science.283.5402.676
107 ZHANG F , WANG W , TSUJI Y et al. Post-transcriptional modulation of iron homeostasis during p53-dependent growth arrest[J]. J Biol Chem, 2008, 283 (49): 33911- 33918
doi: 10.1074/jbc.M806432200
108 BAUMGART M , GROTH M , PRIEBE S et al. Age-dependent regulation of tumor-related microRNAs in the brain of the annual fish Nothobranchius furzeri[J]. Mech Ageing Dev, 2012, 133 (5): 226- 233
doi: 10.1016/j.mad.2012.03.015
109 UGALDE A P , RAMSAY A J , DE LA ROSA J et al. Aging and chronic DNA damage response activate a regulatory pathway involving miR-29 and p53[J]. EMBO J, 2011, 30 (11): 2219- 2232
doi: 10.1038/emboj.2011.124
110 SOMEL M , GUO S , FU N et al. MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain[J]. Genome Res, 2010, 20 (9): 1207- 1218
doi: 10.1101/gr.106849.110
111 LAGOS-QUINTANA M , RAUHUT R , YALCIN A et al. Identification of tissue-specific microRNAs from mouse[J]. Curr Biol, 2002, 12 (9): 735- 739
doi: 10.1016/s0960-9822(02)00809-6
112 LANDGRAF P , RUSU M , SHERIDAN R et al. A mammalian microRNA expression atlas based on small RNA library sequencing[J]. Cell, 2007, 129 (7): 1401- 1414
doi: 10.1016/j.cell.2007.04.040
113 HENTZE M W , MUCKENTHALER M U , GALY B et al. Two to tango:regulation of Mammalian iron metabolism[J]. Cell, 2010, 142 (1): 24- 38
doi: 10.1016/j.cell.2010.06.028
114 LISTOWSKI M A , HEGER E , BOGUS?AWSKA D M et al. microRNAs:fine tuning of erythropoiesis[J]. Cell Mol Biol Lett, 2013, 18 (1): 34- 46
doi: 10.2478/s11658-012-0038-z
115 JONES P A , BAYLIN S B . The epigenomics of cancer[J]. Cell, 2007, 128 (4): 683- 692
doi: 10.1016/j.cell.2007.01.029
[1] 诸葛陆杰,方燕,金华倩,李琳,杨琰,胡小伟,储利胜. 补阳还五汤上调miR-199a-5p表达促进脑缺血大鼠神经发生和血管生成[J]. 浙江大学学报(医学版), 2020, 49(6): 687-696.
[2] 朱慧琦,应可净. 组织因子与肿瘤患者静脉血栓栓塞[J]. 浙江大学学报(医学版), 2020, 49(6): 772-778.
[3] 林翠翠,陈正云,王春艳,席咏梅. 基于脂质组学的子宫内膜异位症生物标志物研究进展[J]. 浙江大学学报(医学版), 2020, 49(6): 779-784.
[4] 李梦瑶,刘盼,柯越海,张雪. 放射性肺损伤中巨噬细胞作用机制的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 623-628.
[5] 韩雪,蒋国军,石巧娟. 降血糖药对内皮祖细胞作用的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 629-636.
[6] 段润平,许叶圣,郑利斌,姚玉峰. 病毒感染性眼病病原学诊断的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 644-650.
[7] 吴唯,徐键. 正五聚蛋白3在多囊卵巢综合征中的作用研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 637-643.
[8] 徐清霖,楼国东,王甜甜,张力三. 发作性睡病的药物治疗进展[J]. 浙江大学学报(医学版), 2020, 49(4): 419-424.
[9] 蒋沛然,王志萍. 模式生物神经轴突再生的研究进展[J]. 浙江大学学报(医学版), 2020, 49(4): 500-507.
[10] 陈峻逸,杨翔,方学贤,王福俤,闵军霞. 铁死亡与重大慢性疾病[J]. 浙江大学学报(医学版), 2020, 49(1): 44-57.
[11] 俞卿, 熊秀芳, 孙毅. 靶向Cullin-RING E3泛素连接酶的抗肿瘤策略及相关药物研发进展[J]. 浙江大学学报(医学版), 2020, 49(1): 1-19.
[12] 李艾,张添源,高建青. 间充质干细胞的肿瘤归巢特性及其肿瘤靶向治疗应用研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 20-34.
[13] 黄耀凭,杨凤,周天华,谢珊珊. Hippo信号通路及其在消化系统肿瘤中的作用研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 35-43.
[14] 钟文,楼燕,邱宸阳,李栋林,张鸿坤. 髂静脉支架植入术后药物治疗策略研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 131-136.
[15] 徐亦鸣,应可净. 中性粒细胞胞外诱捕网与肿瘤相关研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 107-112.