专题报道 |
|
|
|
|
铁稳态代谢表观遗传调控机制的研究进展 |
段玲艳1( ),尹香菊2,孟红恩1,方学贤1,闵军霞1,王福俤1,*( ) |
1. 浙江大学医学院, 浙江 杭州 310058 2. 河南理工大学资源环境学院, 河南 焦作 454000 |
|
Progress on epigenetic regulation of iron homeostasis |
DUAN Lingyan1( ),YIN Xiangju2,MENG Hong'en1,FANG Xuexian1,MIN Junxia1,WANG Fudi1,*( ) |
1. School of Medicine, Zhejiang University, Hangzhou 310058, China 2. School of Resources and Environment, Henan Polytechnic University, Jiaozuo 454000, Henan Province, China |
引用本文:
段玲艳,尹香菊,孟红恩,方学贤,闵军霞,王福俤. 铁稳态代谢表观遗传调控机制的研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 58-70.
DUAN Lingyan,YIN Xiangju,MENG Hong'en,FANG Xuexian,MIN Junxia,WANG Fudi. Progress on epigenetic regulation of iron homeostasis. J Zhejiang Univ (Med Sci), 2020, 49(1): 58-70.
链接本文:
http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2020.02.25
或
http://www.zjujournals.com/med/CN/Y2020/V49/I1/58
|
1 |
HENTZE M W , MUCKENTHALER M U , ANDREWS N C . Balancing acts:molecular control of mammalian iron metabolism[J]. Cell, 2004, 117 (3): 285- 297
doi: 10.1016/s0092-8674(04)00343-5
|
2 |
MCLEAN E , COGSWELL M , EGLI I et al. Worldwide prevalence of anaemia, WHO vitamin and mineral nutrition information system, 1993-2005[J]. Public Health Nutr, 2009, 12 (4): 444- 454
doi: 10.1017/S1368980008002401
|
3 |
PIETRANGELO A . Hereditary hemochromatosis-a new look at an old disease[J]. N Engl J Med, 2004, 350 (23): 2383- 2397
doi: 10.1056/NEJMra031573
|
4 |
FERNáNDEZ-REAL J M , LóPEZ-BERMEJO A , RICART W . Cross-talk between iron metabolism and diabetes[J]. Diabetes, 2002, 51 (8): 2348- 2354
doi: 10.2337/diabetes.51.8.2348
|
5 |
GUYADER D , JACQUELINET C , MOIRAND R et al. Noninvasive prediction of fibrosis in C282Y homozygous hemochromatosis[J]. Gastroenterology, 1998, 115 (4): 929- 936
doi: 10.1016/s0016-5085(98)70265-3
|
6 |
FEDER J N , GNIRKE A , THOMAS W et al. A novel MHC class I-like gene is mutated in patients with hereditary haemochromatosis[J]. Nat Genet, 1996, 13 (4): 399- 408
doi: 10.1038/ng0896-399
|
7 |
ROETTO A , PAPANIKOLAOU G , POLITOU M et al. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis[J]. Nat Genet, 2003, 33 (1): 21- 22
doi: 10.1038/ng1053
|
8 |
PAPANIKOLAOU G , SAMUELS M E , LUDWIG E H et al. Mutations in HFE2 cause iron overload in chromosome 1q-linked juvenile hemochromatosis[J]. Nat Genet, 2004, 36 (1): 77- 82
doi: 10.1038/ng1274
|
9 |
MONTOSI G , DONOVAN A , TOTARO A et al. Autosomal-dominant hemochromatosis is associated with a mutation in the ferroportin (SLC11A3) gene[J]. J Clin Invest, 2001, 108 (4): 619- 623
doi: 10.1172/JCI13468
|
10 |
CAMASCHELLA C , ROETTO A , CALI A et al. The gene TFR2 is mutated in a new type of haemochromatosis mapping to 7q22[J]. Nat Genet, 2000, 25 (1): 14- 15
doi: 10.1038/75534
|
11 |
GUO S , JIANG S , EPPERLA N et al. A gene-based recessive diplotype exome scan discovers FGF6, a novel hepcidin-regulating iron-metabolism gene[J]. Blood, 2019, 133 (17): 1888- 1898
doi: 10.1182/blood-2018-10-879585
|
12 |
DEV S , BABITT J L . Overview of iron metabolism in health and disease[J]. Hemodial Int, 2017, 21:S6- 6S20
doi: 10.1111/hdi.12542
|
13 |
DIXON S J , LEMBERG K M , LAMPRECHT M R et al. Ferroptosis:an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149 (5): 1060- 1072
doi: 10.1016/j.cell.2012.03.042
|
14 |
WANG H , AN P , XIE E et al. Characterization of ferroptosis in murine models of hemochromatosis[J]. Hepatology, 2017, 66 (2): 449- 465
doi: 10.1002/hep.29117
|
15 |
FANG X , WANG H , HAN D et al. Ferroptosis as a target for protection against cardiomyopathy[J]. Proc Natl Acad Sci U S A, 2019, 116 (7): 2672- 2680
doi: 10.1073/pnas.1821022116
|
16 |
PANTOPOULOS K . Iron metabolism and the IRE/IRP regulatory system:an update[J]. Ann N Y Acad Sci, 2004, 1012:1- 13
doi: 10.1196/annals.1306.001
|
17 |
GANZ T , NEMETH E . The hepcidin-ferroportin system as a therapeutic target in anemias and iron overload disorders[J]. Hematology Am Soc Hematol Educ Program, 2011, 2011:538- 542
doi: 10.1182/asheducation-2011.1.538
|
18 |
NEMETH E , TUTTLE M S , POWELSON J et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization[J]. Science, 2004, 306 (5704): 2090- 2093
doi: 10.1126/science.1104742
|
19 |
BABITT J L , HUANG F W , WRIGHTING D M et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression[J]. Nat Genet, 2006, 38 (5): 531- 539
doi: 10.1038/ng1777
|
20 |
CORRADINI E , MEYNARD D , WU Q et al. Serum and liver iron differently regulate the bone morphogenetic protein 6(BMP6)-SMAD signaling pathway in mice[J]. Hepatology, 2011, 54 (1): 273- 284
doi: 10.1002/hep.24359
|
21 |
BABITT J L , HUANG F W , XIA Y et al. Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance[J]. J Clin Invest, 2007, 117 (7): 1933- 1939
doi: 10.1172/JCI31342
|
22 |
GOSWAMI T , ANDREWS N C . Hereditary hemochromatosis protein, HFE, interaction with transferrin receptor 2 suggests a molecular mechanism for mammalian iron sensing[J]. J Biol Chem, 2006, 281 (39): 28494- 28498
doi: 10.1074/jbc.C600197200
|
23 |
RAMOS E , KAUTZ L , RODRIGUEZ R et al. Evidence for distinct pathways of hepcidin regulation by acute and chronic iron loading in mice[J]. Hepatology, 2011, 53 (4): 1333- 1341
doi: 10.1002/hep.24178
|
24 |
SILVESTRI L , PAGANI A , NAI A et al. The serine protease matriptase-2(TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin[J]. Cell Metab, 2008, 8 (6): 502- 511
doi: 10.1016/j.cmet.2008.09.012
|
25 |
BIRD A . DNA methylation patterns and epigenetic memory[J]. Genes Dev, 2002, 16 (1): 6- 21
doi: 10.1101/gad.947102
|
26 |
YAMAMOTO M , TANAKA H , TOKI Y et al. Iron-induced epigenetic abnormalities of mouse bone marrow through aberrant activation of aconitase and isocitrate dehydrogenase[J]. Int J Hematol, 2016, 104 (4): 491- 501
doi: 10.1007/s12185-016-2054-7
|
27 |
YE Q , TRIVEDI M , ZHANG Y et al. Brain iron loading impairs DNA methylation and alters GABAergic function in mice[J]. FASEB J, 2019, 33 (2): 2460- 2471
doi: 10.1096/fj.201801116RR
|
28 |
POGRIBNY I P , TRYNDYAK V P , POGRIBNA M et al. Modulation of intracellular iron metabolism by iron chelation affects chromatin remodeling proteins and corresponding epigenetic modifications in breast cancer cells and increases their sensitivity to chemotherapeutic agents[J]. Int J Oncol, 2013, 42 (5): 1822- 1832
doi: 10.3892/ijo.2013.1855
|
29 |
DEVIREDDY L R , HART D O , GOETZ D H et al. A mammalian siderophore synthesized by an enzyme with a bacterial homolog involved in enterobactin production[J]. Cell, 2010, 141 (6): 1006- 1017
doi: 10.1016/j.cell.2010.04.040
|
30 |
LIU Z , CIOCEA A , DEVIREDDY L . Endogenous siderophore 2, 5-dihydroxybenzoic acid deficiency promotes anemia and splenic iron overload in mice[J]. Mol Cell Biol, 2014, 34 (13): 2533- 2546
doi: 10.1128/MCB.00231-14
|
31 |
ZHAO M , LI M Y , GAO X F et al. Downregulation of BDH2 modulates iron homeostasis and promotes DNA demethylation in CD4+ T cells of systemic lupus erythematosus[J]. Clin Immunol, 2018, 187:113- 121
doi: 10.1016/j.clim.2017.11.002
|
32 |
LU Q , KAPLAN M , RAY D et al. Demethylation of ITGAL (CD11a) regulatory sequences in systemic lupus erythematosus[J]. Arthritis Rheum, 2002, 46 (5): 1282- 1291
doi: 10.1002/art.10234
|
33 |
KAPLAN M J , LU Q , WU A et al. Demethylation of promoter regulatory elements contributes to perforin overexpression in CD4+ lupus T cells[J]. J Immunol, 2004, 172 (6): 3652- 3661
doi: 10.4049/jimmunol.172.6.3652
|
34 |
LU Q , WU A , RICHARDSON B C . Demethylation of the same promoter sequence increases CD70 expression in lupus T cells and T cells treated with lupus-inducing drugs[J]. J Immunol, 2005, 174 (10): 6212- 6219
doi: 10.4049/jimmunol.174.10.6212
|
35 |
LU Q , WU A , TESMER L et al. Demethylation of CD40LG on the inactive X in T cells from women with lupus[J]. J Immunol, 2007, 179 (9): 6352- 6358
doi: 10.4049/jimmunol.179.9.6352
|
36 |
WU H , ZHAO M , TAN L et al. The key culprit in the pathogenesis of systemic lupus erythematosus:Aberrant DNA methylation[J]. Autoimmun Rev, 2016, 15 (7): 684- 689
doi: 10.1016/j.autrev.2016.03.002
|
37 |
CORTELLINO S , XU J , SANNAI M et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair[J]. Cell, 2011, 146 (1): 67- 79
doi: 10.1016/j.cell.2011.06.020
|
38 |
ZHAO X , DAI J , MA Y et al. Dynamics of ten-eleven translocation hydroxylase family proteins and 5-hydroxymethylcytosine in oligodendrocyte differentiation[J]. Glia, 2014, 62 (6): 914- 926
doi: 10.1002/glia.22649
|
39 |
ZHAO M H , LIANG S , GUO J et al. Analysis of ferrous on ten-eleven translocation activity and epigenetic modifications of early mouse embryos by fluorescence microscopy[J]. Microsc Microanal, 2016, 22 (2): 342- 348
doi: 10.1017/S1431927616000040
|
40 |
YAN H , WANG Y , QU X et al. Distinct roles for TET family proteins in regulating human erythropoiesis[J]. Blood, 2017, 129 (14): 2002- 2012
doi: 10.1182/blood-2016-08-736587
|
41 |
INOKURA K , FUJIWARA T , SAITO K et al. Impact of TET2 deficiency on iron metabolism in erythroblasts[J]. Exp Hematol, 2017, 49:56- 67
doi: 10.1016/j.exphem.2017.01.002
|
42 |
GUO S , JIANG X , WANG Y et al. The protective role of TET2 in erythroid iron homeostasis against oxidative stress and erythropoiesis[J]. Cell Signal, 2017, 38:106- 115
doi: 10.1016/j.cellsig.2017.07.002
|
43 |
PINNIX Z K , MILLER L D , WANG W et al. Ferroportin and iron regulation in breast cancer progression and prognosis[J]. Sci Transl Med, 2010, 2 (43): 43ra56
doi: 10.1126/scisignal.3001127
|
44 |
CHEN Y , ZHANG S , WANG X et al. Disordered signaling governing ferroportin transcription favors breast cancer growth[J]. Cell Signal, 2015, 27 (1): 168- 176
doi: 10.1016/j.cellsig.2014.11.002
|
45 |
ZHANG S , CHANG W , WU H et al. Pan-cancer analysis of iron metabolic landscape across the Cancer Genome Atlas[J]. J Cell Physiol, 2020, 235 (2): 1013- 1024
doi: 10.1002/jcp.29017
|
46 |
UDALI S , CASTAGNA A , CORBELLA M et al. Hepcidin and DNA promoter methylation in hepatocellular carcinoma[J]. Eur J Clin Invest, 2018, 48 (2): e12870
doi: 10.1111/eci.12870
|
47 |
SHARP P A , CLARKSON R , HUSSAIN A et al. DNA methylation of hepatic iron sensing genes and the regulation of hepcidin expression[J]. PLoS One, 2018, 13 (5): e0197863
doi: 10.1371/journal.pone.0197863
|
48 |
HUANG Y , ZHANG H , WANG C et al. DNA methylation suppresses liver Hamp expression in response to iron deficiency after bariatric surgery[J]. Surg Obes Relat Dis, 2020, 16 (1): 109- 118
doi: 10.1016/j.soard.2019.10.005
|
49 |
SHUCHENG G , CHUNKANG C , YOUSHAN Z et al. Decitabine treatment could ameliorate primary iron-overload in myelodysplastic syndrome patients[J]. Cancer Invest, 2015, 33 (4): 98- 106
doi: 10.3109/07357907.2014.1001895
|
50 |
HE Y , CUI Y , XU B et al. Hypermethylation leads to bone morphogenetic protein 6 downregulation in hepatocellular carcinoma[J]. PLoS One, 2014, 9 (1): e87994
doi: 10.1371/journal.pone.0087994
|
51 |
KORNBERG R D . Structure of chromatin[J]. Annu Rev Biochem, 1977, 46:931- 954
doi: 10.1146/annurev.bi.46.070177.004435
|
52 |
KORNBERG R D . Chromatin structure:a repeating unit of histones and DNA[J]. Science, 1974, 184 (4139): 868- 871
doi: 10.1126/science.184.4139.868
|
53 |
KOUZARIDES T . Chromatin modifications and their function[J]. Cell, 2007, 128 (4): 693- 705
doi: 10.1016/j.cell.2007.02.005
|
54 |
SMITH B C , DENU J M . Chemical mechanisms of histone lysine and arginine modifications[J]. Biochim Biophys Acta, 2009, 1789 (1): 45- 57
doi: 10.1016/j.bbagrm.2008.06.005
|
55 |
BERNSTEIN B E , MEISSNER A , LANDER E S . The mammalian epigenome[J]. Cell, 2007, 128 (4): 669- 681
doi: 10.1016/j.cell.2007.01.033
|
56 |
SILVA P F , GARCIA V A , DORNELLES ADA S et al. Memory impairment induced by brain iron overload is accompanied by reduced H3K9 acetylation and ameliorated by sodium butyrate[J]. Neuroscience, 2012, 200:42- 49
doi: 10.1016/j.neuroscience.2011.10.038
|
57 |
GNANA-PRAKASAM J P , VEERANAN-KARMEGAM R , COOTHANKANDASWAMY V et al. Loss of Hfe leads to progression of tumor phenotype in primary retinal pigment epithelial cells[J]. Invest Ophthalmol Vis Sci, 2013, 54 (1): 63- 71
doi: 10.1167/iovs.12-10312
|
58 |
INGRASSIA R , LANZILLOTTA A , SARNICO I et al. 1B/(-)IRE DMT1 expression during brain ischemia contributes to cell death mediated by NF-kappaB/RelA acetylation at Lys310[J]. PLoS One, 2012, 7 (5): e38019
doi: 10.1371/journal.pone.0038019
|
59 |
WANG W , DI X , TORTI S V et al. Ferritin H induction by histone deacetylase inhibitors[J]. Biochem Pharmacol, 2010, 80 (3): 316- 324
doi: 10.1016/j.bcp.2010.04.008
|
60 |
TAO Y , WU Q , GUO X et al. MBD5 regulates iron metabolism via methylation-independent genomic targeting of Fth1 through KAT2A in mice[J]. Br J Haematol, 2014, 166 (2): 279- 291
doi: 10.1111/bjh.12863
|
61 |
YANG X , PARK S H , CHANG H C et al. Sirtuin 2 regulates cellular iron homeostasis via deacetylation of transcription factor NRF2[J]. J Clin Invest, 2017, 127 (4): 1505- 1516
doi: 10.1172/JCI88574
|
62 |
WANG R H , LI C , XU X et al. A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression[J]. Cell Metab, 2005, 2 (6): 399- 409
doi: 10.1016/j.cmet.2005.10.010
|
63 |
LIU H , TRINH T L , DONG H et al. Iron regulator hepcidin exhibits antiviral activity against hepatitis C virus[J]. PLoS One, 2012, 7 (10): e46631
doi: 10.1371/journal.pone.0046631
|
64 |
MIURA K , TAURA K , KODAMA Y et al. Hepatitis C virus-induced oxidative stress suppresses hepcidin expression through increased histone deacetylase activity[J]. Hepatology, 2008, 48 (5): 1420- 1429
doi: 10.1002/hep.22486
|
65 |
PASRICHA S R , LIM P J , DUARTE T L et al. Hepcidin is regulated by promoter-associated histone acetylation and HDAC3[J]. Nat Commun, 2017, 8 (1): 403
doi: 10.1038/s41467-017-00500-z
|
66 |
KANAMORI Y , MURAKAMI M , MATSUI T et al. Hepcidin expression in liver cells:evaluation of mRNA levels and transcriptional regulation[J]. Gene, 2014, 546 (1): 50- 55
doi: 10.1016/j.gene.2014.05.040
|
67 |
GAUN V , PATCHEN B , VOLOVETZ J et al. A chemical screen identifies small molecules that regulate hepcidin expression[J]. Blood Cells Mol Dis, 2014, 53 (4): 231- 240
doi: 10.1016/j.bcmd.2014.06.002
|
68 |
YIN X , WU Q , MONGA J et al. HDAC1 governs iron homeostasis independent of histone deacetylation in iron-overload murine models[J]. Antioxid Redox Signal, 2018, 28 (13): 1224- 1237
doi: 10.1089/ars.2017.7161
|
69 |
SHI Y , LAN F , MATSON C et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1[J]. Cell, 2004, 119 (7): 941- 953
doi: 10.1016/j.cell.2004.12.012
|
70 |
MOSAMMAPARAST N , SHI Y . Reversal of histone methylation:biochemical and molecular mechanisms of histone demethylases[J]. Annu Rev Biochem, 2010, 79:155- 179
doi: 10.1146/annurev.biochem.78.070907.103946
|
71 |
HAYWARD D , COLE P A . LSD1 histone demethylase assays and inhibition[J]. Methods Enzymol, 2016, 573:261- 278
doi: 10.1016/bs.mie.2016.01.020
|
72 |
MAIQUES-DIAZ A , SOMERVAILLE T C . LSD1:biologic roles and therapeutic targeting[J]. Epigenomics, 2016, 8 (8): 1103- 1116
doi: 10.2217/epi-2016-0009
|
73 |
SORNA V , THEISEN E R , STEPHENS B et al. High-throughput virtual screening identifies novel N'-(1-phenylethylidene)-benzohydrazides as potent, specific, and reversible LSD1 inhibitors[J]. J Med Chem, 2013, 56 (23): 9496- 9508
doi: 10.1021/jm400870h
|
74 |
SARNO F , PAPULINO C , FRANCI G et al. 3-chloro-n'-(2-hydroxybenzylidene) benzohydrazide:an LSD1-selective inhibitor and iron-chelating agent for anticancer therapy[J]. Front Pharmacol, 2018, 9:1006
doi: 10.3389/fphar.2018.01006
|
75 |
ROATSCH M , HOFFMANN I , ABBOUD M I et al. The clinically used iron chelator deferasirox is an inhibitor of epigenetic JumonjiC domain-containing histone demethylases[J]. ACS Chem Biol, 2019, 14 (8): 1737- 1750
doi: 10.1021/acschembio.9b00289
|
76 |
CAO L L , LIU H , YUE Z et al. Iron chelation inhibits cancer cell growth and modulates global histone methylation status in colorectal cancer[J]. Biometals, 2018, 31 (5): 797- 805
doi: 10.1007/s10534-018-0123-5
|
77 |
JIANG Y , LI C , WU Q et al. Iron-dependent histone 3 lysine 9 demethylation controls B cell proliferation and humoral immune responses[J]. Nat Commun, 2019, 10 (1): 2935
doi: 10.1038/s41467-019-11002-5
|
78 |
HEO I , KIM V N . Regulating the regulators:posttranslational modifications of RNA silencing factors[J]. Cell, 2009, 139 (1): 28- 31
doi: 10.1016/j.cell.2009.09.013
|
79 |
BARTEL D P . MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116 (2): 281- 297
doi: 10.1016/s0092-8674(04)00045-5
|
80 |
CARTHEW R W , SONTHEIMER E J . Origins and mechanisms of miRNAs and siRNAs[J]. Cell, 2009, 136 (4): 642- 655
doi: 10.1016/j.cell.2009.01.035
|
81 |
ANDOLFO I , DE FALCO L , ASCI R et al. Regulation of divalent metal transporter 1(DMT1) non-IRE isoform by the microRNA Let-7d in erythroid cells[J]. Haematologica, 2010, 95 (8): 1244- 1252
doi: 10.3324/haematol.2009.020685
|
82 |
JIANG S , GUO S , LI H et al. Identification and functional verification of microRNA-16 family targeting intestinal divalent metal transporter 1(DMT1) in vitro and in vivo[J]. Front Physiol, 2019, 10:819
doi: 10.3389/fphys.2019.00819
|
83 |
BABU K R , MUCKENTHALER M U . miR-20a regulates expression of the iron exporter ferroportin in lung cancer[J]. J Mol Med (Berl), 2016, 94 (3): 347- 359
doi: 10.1007/s00109-015-1362-3
|
84 |
JIANG S , FANG X , LIU M et al. MiR-20b down-regulates intestinal ferroportin expression in vitro and in vivo[J]. Cells, 2019, 8 (10):
doi: 10.3390/cells8101135
|
85 |
SANGOKOYA C , DOSS J F , CHI J T . Iron-responsive miR-485-3p regulates cellular iron homeostasis by targeting ferroportin[J]. PLoS Genet, 2013, 9 (4): e1003408
doi: 10.1371/journal.pgen.1003408
|
86 |
YOSHIOKA Y , KOSAKA N , OCHIYA T et al. Micromanaging iron homeostasis:hypoxia-inducible micro-RNA-210 suppresses iron homeostasis-related proteins[J]. J Biol Chem, 2012, 287 (41): 34110- 34119
doi: 10.1074/jbc.M112.356717
|
87 |
SCHAAR D G , MEDINA D J , MOORE D F et al. miR-320 targets transferrin receptor 1(CD71) and inhibits cell proliferation[J]. Exp Hematol, 2009, 37 (2): 245- 255
doi: 10.1016/j.exphem.2008.10.002
|
88 |
KINDRAT I , TRYNDYAK V , DE CONTI A et al. MicroRNA-152-mediated dysregulation of hepatic transferrin receptor 1 in liver carcinogenesis[J]. Oncotarget, 2016, 7 (2): 1276- 1287
doi: 10.18632/oncotarget.6004
|
89 |
BABU K R , MUCKENTHALER M U . miR-148a regulates expression of the transferrin receptor 1 in hepatocellular carcinoma[J]. Sci Rep, 2019, 9 (1): 1518
doi: 10.1038/s41598-018-35947-7
|
90 |
MIYAZAWA M , BOGDAN A R , HASHIMOTO K et al. Regulation of transferrin receptor-1 mRNA by the interplay between IRE-binding proteins and miR-7/miR-141 in the 3'-IRE stem-loops[J]. RNA, 2018, 24 (4): 468- 479
doi: 10.1261/rna.063941.117
|
91 |
CHAN S Y , ZHANG Y Y , HEMANN C et al. MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2[J]. Cell Metab, 2009, 10 (4): 273- 284
doi: 10.1016/j.cmet.2009.08.015
|
92 |
ASCI R , VALLEFUOCO F , ANDOLFO I et al. Trasferrin receptor 2 gene regulation by microRNA 221 in SH-SY5Y cells treated with MPP(+) as Parkinson's disease cellular model[J]. Neurosci Res, 2013, 77 (3): 121- 127
doi: 10.1016/j.neures.2013.09.003
|
93 |
SRINOUN K , SATHIRAPONGSASUTI N , PAIBOONSUKWONG K et al. miR-144 regulates oxidative stress tolerance of thalassemic erythroid cell via targeting NRF2[J]. Ann Hematol, 2019, 98 (9): 2045- 2052
doi: 10.1007/s00277-019-03737-4
|
94 |
SHPYLEVA S I , TRYNDYAK V P , KOVALCHUK O et al. Role of ferritin alterations in human breast cancer cells[J]. Breast Cancer Res Treat, 2011, 126 (1): 63- 71
doi: 10.1007/s10549-010-0849-4
|
95 |
RIPA R , DOLFI L , TERRIGNO M et al. MicroRNA miR-29 controls a compensatory response to limit neuronal iron accumulation during adult life and aging[J]. BMC Biol, 2017, 15 (1): 9
doi: 10.1186/s12915-017-0354-x
|
96 |
ZUMBRENNEN-BULLOUGH K B , WU Q , CORE A B et al. MicroRNA-130a is up-regulated in mouse liver by iron deficiency and targets the bone morphogenetic protein (BMP) receptor ALK2 to attenuate BMP signaling and hepcidin transcription[J]. J Biol Chem, 2014, 289 (34): 23796- 23808
doi: 10.1074/jbc.M114.577387
|
97 |
CASTOLDI M , VUJIC SPASIC M , ALTAMURA S et al. The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice[J]. J Clin Invest, 2011, 121 (4): 1386- 1396
doi: 10.1172/JCI44883
|
98 |
LI Y , LIU S , SUN H et al. MiR-218 inhibits erythroid differentiation and alters iron metabolism by targeting ALAS2 in K562 cells[J]. Int J Mol Sci, 2015, 16 (12): 28156- 28168
doi: 10.3390/ijms161226088
|
99 |
AZZOUZI I , MOEST H , WINKLER J et al. MicroRNA-96 directly inhibits gamma-globin expression in human erythropoiesis[J]. PLoS One, 2011, 6 (7): e22838
doi: 10.1371/journal.pone.0022838
|
100 |
HOU W , TIAN Q , STEUERWALD N M et al. The let-7 microRNA enhances heme oxygenase-1 by suppressing Bach1 and attenuates oxidant injury in human hepatocytes[J]. Biochim Biophys Acta, 2012, 1819 (11-12): 1113- 1122
doi: 10.1016/j.bbagrm.2012.06.001
|
101 |
HOU W , TIAN Q , ZHENG J et al. MicroRNA-196 represses Bach1 protein and hepatitis C virus gene expression in human hepatoma cells expressing hepatitis C viral proteins[J]. Hepatology, 2010, 51 (5): 1494- 1504
doi: 10.1002/hep.23401
|
102 |
XING Y , LI J , LI S P et al. MiR-27a-5p regulates apoptosis of liver ischemia-reperfusion injury in mice by targeting Bach1[J]. J Cell Biochem, 2018, 119 (12): 10376- 10383
doi: 10.1002/jcb.27383
|
103 |
LIAO Y , DU X , L?NNERDAL B . miR-214 regulates lactoferrin expression and pro-apoptotic function in mammary epithelial cells[J]. J Nutr, 2010, 140 (9): 1552- 1556
doi: 10.3945/jn.110.124289
|
104 |
LIAO Y , L?NNERDAL B . miR-584 mediates post-transcriptional expression of lactoferrin receptor in Caco-2 cells and in mouse small intestine during the perinatal period[J]. Int J Biochem Cell Biol, 2010, 42 (8): 1363- 1369
doi: 10.1016/j.biocel.2009.07.019
|
105 |
GATTER K C , BROWN G , TROWBRIDGE I S et al. Transferrin receptors in human tissues:their distribution and possible clinical relevance[J]. J Clin Pathol, 1983, 36 (5): 539- 545
doi: 10.1136/jcp.36.5.539
|
106 |
WU K J , POLACK A , DALLA-FAVERA R . Coordinated regulation of iron-controlling genes, H-ferritin and IRP2, by c-MYC[J]. Science, 1999, 283 (5402): 676- 679
doi: 10.1126/science.283.5402.676
|
107 |
ZHANG F , WANG W , TSUJI Y et al. Post-transcriptional modulation of iron homeostasis during p53-dependent growth arrest[J]. J Biol Chem, 2008, 283 (49): 33911- 33918
doi: 10.1074/jbc.M806432200
|
108 |
BAUMGART M , GROTH M , PRIEBE S et al. Age-dependent regulation of tumor-related microRNAs in the brain of the annual fish Nothobranchius furzeri[J]. Mech Ageing Dev, 2012, 133 (5): 226- 233
doi: 10.1016/j.mad.2012.03.015
|
109 |
UGALDE A P , RAMSAY A J , DE LA ROSA J et al. Aging and chronic DNA damage response activate a regulatory pathway involving miR-29 and p53[J]. EMBO J, 2011, 30 (11): 2219- 2232
doi: 10.1038/emboj.2011.124
|
110 |
SOMEL M , GUO S , FU N et al. MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain[J]. Genome Res, 2010, 20 (9): 1207- 1218
doi: 10.1101/gr.106849.110
|
111 |
LAGOS-QUINTANA M , RAUHUT R , YALCIN A et al. Identification of tissue-specific microRNAs from mouse[J]. Curr Biol, 2002, 12 (9): 735- 739
doi: 10.1016/s0960-9822(02)00809-6
|
112 |
LANDGRAF P , RUSU M , SHERIDAN R et al. A mammalian microRNA expression atlas based on small RNA library sequencing[J]. Cell, 2007, 129 (7): 1401- 1414
doi: 10.1016/j.cell.2007.04.040
|
113 |
HENTZE M W , MUCKENTHALER M U , GALY B et al. Two to tango:regulation of Mammalian iron metabolism[J]. Cell, 2010, 142 (1): 24- 38
doi: 10.1016/j.cell.2010.06.028
|
114 |
LISTOWSKI M A , HEGER E , BOGUS?AWSKA D M et al. microRNAs:fine tuning of erythropoiesis[J]. Cell Mol Biol Lett, 2013, 18 (1): 34- 46
doi: 10.2478/s11658-012-0038-z
|
115 |
JONES P A , BAYLIN S B . The epigenomics of cancer[J]. Cell, 2007, 128 (4): 683- 692
doi: 10.1016/j.cell.2007.01.029
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|