Please wait a minute...
浙江大学学报(医学版)  2020, Vol. 49 Issue (1): 44-57    DOI: 10.3785/j.issn.1008-9292.2020.02.24
专题报道     
铁死亡与重大慢性疾病
陈峻逸(),杨翔,方学贤,王福俤,闵军霞*()
浙江大学医学院, 浙江 杭州 310058
The role of ferroptosis in chronic diseases
CHEN Junyi(),YANG Xiang,FANG Xuexian,WANG Fudi,MIN Junxia*()
School of Medicine, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2588 KB)   HTML( 39 )
摘要:

铁死亡是近年发现的一种铁依赖的新型细胞死亡方式,其特征是脂质过氧化物和活性氧簇的过量蓄积。大量研究表明,铁死亡不仅在重大慢性疾病的发生发展过程中发挥重要作用,而且在不同的疾病背景下扮演不同角色。目前认为,铁死亡可抑制肿瘤生长并增加多种肿瘤对化疗药物和免疫治疗的敏感性,因此诱导铁死亡的发生拓展了肿瘤治疗思路。然而,在心脑血管疾病和神经退行性疾病中,铁死亡的发生通过引发正常组织器官损伤和功能丧失直接参与疾病的发生、发展及转归,因此针对心脑血管疾病和神经退行性疾病,抑制铁死亡的发生能够有效预防并延缓这些疾病的发生和发展。本文综述了铁死亡在恶性肿瘤、神经退行性疾病和心脑血管疾病三类不同重大慢性疾病中的最新研究进展及其潜在的作用机制,系统讨论了靶向铁死亡在防治重大慢性疾病中的临床应用前景,为重大慢性疾病的防治提供新的依据。

关键词: 铁代谢障碍铁死亡肿瘤神经退行性疾病血管疾病综述    
Abstract:

Recently, ferroptosis, an iron-dependent novel type of cell death, has been characterized as an excessive accumulation of lipid peroxides and reactive oxygen species. Emerging studies demonstrate that ferroptosis not only plays an important role in the pathogenesis and progression of chronic diseases, but also functions differently in the different disease context. Notably, it is shown that activation of ferroptosis could potently inhibit tumor growth and increase sensitivity to chemotherapy and immunotherapy in various cancer settings. As a result, the development of more efficacious ferroptosis agonists remains the mainstay of ferroptosis-targeting strategy for cancer therapeutics. By contrast, in non-cancerous chronic diseases, including cardiovascular & cerebrovascular diseases and neurodegenerative diseases, ferroptosis functions as a risk factor to promote these diseases progression through triggering or accelerating tissue injury. As a matter of fact, blocking ferroptosis has been demonstrated to effectively prevent ischemia-reperfusion heart disease in preclinical animal models. Therefore, it is a promising field to develope potent ferroptosis inhibitors for preventing and treating cardiovascular & cerebrovascular diseases and neurodegenerative diseases. In this article, we summarize the most recent progress on ferroptosis in chronic diseases, and draw attention to the possible clinical impact of this recently emerged ferroptosis modalities.

Key words: Iron metabolism disorder    Ferroptosis    Neoplasms    Neurodegeneration    Vascular diseases    Review
收稿日期: 2019-11-18 出版日期: 2020-06-08
CLC:  R364  
基金资助: 国家重点研发计划(2018YFC2000400)
通讯作者: 闵军霞     E-mail: junyichen@zju.edu.cn;junxiamin@zju.edu.cn
作者简介: 陈峻逸(1998-), 男, 硕士研究生, 主要从事靶向铁死亡的小分子筛选及作用机制研究; E-mail:junyichen@zju.edu.cn; https://orcid.org/0000-0002-8130-9426
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈峻逸
杨翔
方学贤
王福俤
闵军霞

引用本文:

陈峻逸,杨翔,方学贤,王福俤,闵军霞. 铁死亡与重大慢性疾病[J]. 浙江大学学报(医学版), 2020, 49(1): 44-57.

CHEN Junyi,YANG Xiang,FANG Xuexian,WANG Fudi,MIN Junxia. The role of ferroptosis in chronic diseases. J Zhejiang Univ (Med Sci), 2020, 49(1): 44-57.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2020.02.24        http://www.zjujournals.com/med/CN/Y2020/V49/I1/44

图 1  铁死亡分子机制
肿瘤类型 相关研究 参考文献
SLC7A11:溶质载体家族7成员11;Rb:成视网膜细胞瘤;MT1:金属硫蛋白1.
肝细胞癌 索拉非尼能够诱导肝细胞癌细胞发生铁死亡 [21]
成视网膜细胞瘤蛋白缺失肝细胞癌细胞对索拉非尼诱导的铁死亡更敏感 [22]
p62-Keap1-NRF2激活导致肝细胞癌细胞对铁死亡耐受 [23-26]
SLC7A11RbMT1表达水平与肝细胞癌患者预后相关 [22, 27-28]
胰腺癌 青蒿琥酯能够诱导胰腺导管腺癌细胞发生铁死亡 [29-30]
荜苃酰胺能诱导胰腺导管腺癌细胞发生铁死亡 [31]
荜苃酰胺、Cotylenin A和柳氮磺胺吡啶联用通过铁死亡有效抑制胰腺癌 [31]
肾细胞癌 相比其他肿瘤细胞,肾透明细胞癌细胞对谷胱甘肽过氧化物酶4抑制诱导的铁死亡更加敏感 [32]
HIF-2α-HILPDA通路调控肾透明细胞癌细胞对铁死亡的敏感性 [33]
TAZ-EMP1-NOX4通路调控肾透明细胞癌细胞对铁死亡的敏感性 [34-35]
乳腺癌 西拉美新和阿帕替尼联用上调铁水平并诱导乳腺癌细胞发生铁死亡 [36]
黏蛋白1C亚基、SLC7A11和CD44v形成复合物上调还原型谷胱甘肽表达,使三阴性乳腺癌细胞对铁死亡耐受 [37]
柳氮磺胺吡啶能抑制谷氨酰胺营养缺陷型三阴性乳腺癌细胞生长 [38]
SLC7A11与三阴性乳腺癌细胞的耐药和转移有密切联系 [39]
转铁蛋白受体表达水平与乳腺癌预后相关 [40-41]
表 1  铁死亡与肿瘤相关研究进展
神经退行性疾病类型 相关研究 参考文献
Gpx4 :谷胱甘肽过氧化物酶4;GSTM2:谷胱甘肽S-转移酶Mu2.
阿尔茨海默病 脑脊液中铁蛋白水平能预测阿尔茨海默病发展进程 [56]
Gpx4诱导性敲除小鼠海马神经元死亡和认知能力下降 [57]
过表达或增加磷酸化τ蛋白能诱导神经元铁死亡,α硫辛酸可抑制τ蛋白诱导的铁死亡 [58]
帕金森病 蛋白激酶C激活可引发铁死亡 [59]
丝氨酸/苏氨酸蛋白激酶参与Erastin诱导的铁死亡 [60]
星形胶质细胞为神经元提供GSTM2,保护神经元免受氧化损伤 [61-63]
肌萎缩侧索硬化 神经元Gpx4诱导性敲除小鼠出现肌萎缩侧索硬化症状 [57]
表 2  铁死亡与神经退行性疾病相关研究进展
心脑血管疾病类型 相关研究 参考文献
缺血再灌注 离体小鼠心脏缺血再灌注模型中,抑制谷氨酰胺代谢可减轻铁死亡引发的心脏损伤 [95]
铁死亡抑制剂和铁螯合剂可有效缓解小鼠心脏缺血再灌注引发的心肌损伤 [96]
阿霉素诱导心肌损伤 阿霉素通过血红素加氧酶诱导心肌细胞发生铁死亡;铁蓄积和脂质过氧化主要发生于线粒体 [96]
血红素加氧酶抑制剂、铁死亡抑制剂、线粒体抗氧化抑制剂、铁螯合剂等可有效逆转阿霉素引发的心肌损伤 [96]
心脏移植后心肌损伤 铁死亡调控小鼠心脏移植后中性粒细胞的募集 [97]
缺血性脑卒中 缺氧诱导因子脯氨酰羟化酶可能是铁螯合剂抑制神经元铁死亡的潜在靶点 [98]
抑制铁死亡能够保护大脑中动脉阻塞小鼠神经元,铁与τ蛋白的相互作用存在多效调控 [99]
出血性脑卒中 (-)-表儿茶素通过减少大脑铁蓄积和铁死亡相关蛋白表达缓解出血性脑卒中早期脑损伤 [100]
铁死亡抑制剂可减轻脑切片中神经元死亡及出血性脑卒中小鼠模型中神经元死亡 [101-102]
增加谷胱甘肽过氧化物酶4表达能避免神经元发生铁死亡而改善预后 [103]
表 3  铁死亡与心脑血管疾病相关研究进展
1 World Health Organization. World health statistics 2018: monitoring health for the SDGs[R]. Geneva: World Health Organization, 2018.
2 中华人民共和国国家卫生健康委员会 . 2018中国卫生统计年鉴[M]. 北京: 中国协和医科大学出版社, 2018.
National Health Commission of the People's Republic of China . 2018 China health statistics yearbook[M]. Beijing: China Union Medical University Press, 2018.
3 DIXON S J , LEMBERG K M , LAMPRECHT M R et al. Ferroptosis:an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149 (5): 1060- 1072
doi: 10.1016/j.cell.2012.03.042
4 CAO J Y , DIXON S J . Mechanisms of ferroptosis[J]. Cell Mol Life Sci, 2016, 73 (11-12): 2195- 2209
doi: 10.1007/s00018-016-2194-1
5 DIXON S J , STOCKWELL B R . The role of iron and reactive oxygen species in cell death[J]. Nat Chem Biol, 2014, 10 (1): 9- 17
doi: 10.1038/nchembio.1416
6 MANCIAS J D , WANG X , GYGI S P et al. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy[J]. Nature, 2014, 509 (7498): 105- 109
doi: 10.1038/nature13148
7 HOU W , XIE Y , SONG X et al. Autophagy promotes ferroptosis by degradation of ferritin[J]. Autophagy, 2016, 12 (8): 1425- 1428
doi: 10.1080/15548627.2016.1187366
8 YANG W S , STOCKWELL B R . Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells[J]. Chem Biol, 2008, 15 (3): 234- 245
doi: 10.1016/j.chembiol.2008.02.010
9 WENZEL S E , TYURINA Y Y , ZHAO J et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals[J]. Cell, 2017, 171 (3): 628- 641
doi: 10.1016/j.cell.2017.09.044
10 DOLL S , PRONETH B , TYURINA Y Y et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13 (1): 91- 98
doi: 10.1038/nchembio.2239
11 HANGAUER M J , VISWANATHAN V S , RYAN M J et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition[J]. Nature, 2017, 551 (7679): 247- 250
doi: 10.1038/nature24297
12 DIXON S J , WINTER G E , MUSAVI L S et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death[J]. ACS Chem Biol, 2015, 10 (7): 1604- 1609
doi: 10.1021/acschembio.5b00245
13 XIE Y , HOU W , SONG X et al. Ferroptosis:process and function[J]. Cell Death Differ, 2016, 23 (3): 369- 379
doi: 10.1038/cdd.2015.158
14 FRIEDMANN ANGELI J P , CONRAD M . Selenium and GPX4, a vital symbiosis[J]. Free Radic Biol Med, 2018, 127:153- 159
doi: 10.1016/j.freeradbiomed.2018.03.001
15 MAIORINO M , CONRAD M , URSINI F . GPx4, lipid peroxidation, and cell death:discoveries, rediscoveries, and open issues[J]. Antioxid Redox Signal, 2018, 29 (1): 61- 74
doi: 10.1089/ars.2017.7115
16 LU L , HOPE B T , SHAHAM Y . The cystine-glutamate transporter in the accumbens:a novel role in cocaine relapse[J]. Trends Neurosci, 2004, 27 (2): 74- 76
doi: 10.1016/j.tins.2003.11.007
17 WANG H , AN P , XIE E et al. Characterization of ferroptosis in murine models of hemochromatosis[J]. Hepatology, 2017, 66 (2): 449- 465
doi: 10.1002/hep.29117
18 BERSUKER K , HENDRICKS J M , LI Z et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575 (7784): 688- 692
doi: 10.1038/s41586-019-1705-2
19 DOLL S , FREITAS F P , SHAH R et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575 (7784): 693- 698
doi: 10.1038/s41586-019-1707-0
20 STOCKWELL B R , FRIEDMANN ANGELI J P , BAYIR H et al. Ferroptosis:a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171 (2): 273- 285
doi: 10.1016/j.cell.2017.09.021
21 LOUANDRE C , EZZOUKHRY Z , GODIN C et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib[J]. Int J Cancer, 2013, 133 (7): 1732- 1742
doi: 10.1002/ijc.28159
22 LOUANDRE C , MARCQ I , BOUHLAL H et al. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells[J]. Cancer Lett, 2015, 356 (2 Pt B): 971- 977
doi: 10.1016/j.canlet.2014.11.014
23 SUN X , OU Z , CHEN R et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells[J]. Hepatology, 2016, 63 (1): 173- 184
doi: 10.1002/hep.28251
24 SUZUKI T , MOTOHASHI H , YAMAMOTO M . Toward clinical application of the Keap1-Nrf2 pathway[J]. Trends Pharmacol Sci, 2013, 34 (6): 340- 346
doi: 10.1016/j.tips.2013.04.005
25 HARRISON P M , AROSIO P . The ferritins:molecular properties, iron storage function and cellular regulation[J]. Biochim Biophys Acta, 1996, 1275 (3): 161- 203
doi: 10.1016/0005-2728(96)00022-9
26 ARLT A , SEBENS S , KREBS S et al. Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity[J]. Oncogene, 2013, 32 (40): 4825- 4835
doi: 10.1038/onc.2012.493
27 KINOSHITA H , OKABE H , BEPPU T et al. Cystine/glutamic acid transporter is a novel marker for predicting poor survival in patients with hepatocellular carcinoma[J]. Oncol Rep, 2013, 29 (2): 685- 689
doi: 10.3892/or.2012.2162
28 SUN X , NIU X , CHEN R et al. Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis[J]. Hepatology, 2016, 64 (2): 488- 500
doi: 10.1002/hep.28574
29 EFFERTH T , DUNSTAN H , SAUERBREY A et al. The anti-malarial artesunate is also active against cancer[J]. Int J Oncol, 2001, 18 (4): 767- 773
doi: 10.3892/ijo.18.4.767
30 ELING N , REUTER L , HAZIN J et al. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells[J]. Oncoscience, 2015, 2 (5): 517- 532
doi: 10.18632/oncoscience.160
31 YAMAGUCHI Y , KASUKABE T , KUMAKURA S . Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis[J]. Int J Oncol, 2018, 52 (3): 1011- 1022
doi: 10.3892/ijo.2018.4259
32 YANG W S , SRIRAMARATNAM R , WELSCH M E et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156 (1-2): 317- 331
doi: 10.1016/j.cell.2013.12.010
33 ZOU Y , PALTE M J , DEIK A A et al. HIF-2α drives an intrinsic vulnerability to ferroptosis in clear cell renal cell carcinoma[J]. BioRxiv, 2018,
doi: 10.1101/388041
34 WU J , MINIKES A M , GAO M et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling[J]. Nature, 2019, 572 (7769): 402- 406
doi: 10.1038/s41586-019-1426-6
35 YANG W H , DING C C , SUN T et al. The hippo pathway effector TAZ regulates ferroptosis in renal cell carcinoma[J]. Cell Rep, 2019, 28 (10): 2501- 2508
doi: 10.1016/j.celrep.2019.07.107
36 MA S , HENSON E S , CHEN Y et al. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells[J]. Cell Death Dis, 2016, 7:e2307
doi: 10.1038/cddis.2016.208
37 HASEGAWA M , TAKAHASHI H , RAJABI H et al. Functional interactions of the cystine/glutamate antiporter, CD44v and MUC1-C oncoprotein in triple-negative breast cancer cells[J]. Oncotarget, 2016, 7 (11): 11756- 11769
doi: 10.18632/oncotarget.7598
38 TIMMERMAN L A , HOLTON T , YUNEVA M et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target[J]. Cancer Cell, 2013, 24 (4): 450- 465
doi: 10.1016/j.ccr.2013.08.020
39 LANZARDO S , CONTI L , ROOKE R et al. Immunotargeting of antigen xCT attenuates stem-like cell behavior and metastatic progression in breast cancer[J]. Cancer Res, 2016, 76 (1): 62- 72
doi: 10.1158/0008-5472.CAN-15-1208
40 HABASHY H O , POWE D G , STAKA C M et al. Transferrin receptor (CD71) is a marker of poor prognosis in breast cancer and can predict response to tamoxifen[J]. Breast Cancer Res Treat, 2010, 119 (2): 283- 293
doi: 10.1007/s10549-009-0345-x
41 TONIK S E , SHINDELMAN J E , SUSSMAN H H . Transferrin receptor is inversely correlated with estrogen receptor in breast cancer[J]. Breast Cancer Res Treat, 1986, 7 (2): 71- 76
doi: 10.1007/bf01806791
42 YUAN H , LI X , ZHANG X et al. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation[J]. Biochem Biophys Res Commun, 2016, 478 (2): 838- 844
doi: 10.1016/j.bbrc.2016.08.034
43 CHEN W C , WANG C Y , HUNG Y H et al. Systematic analysis of gene expression alterations and clinical outcomes for long-chain acyl-coenzyme a synthetase family in cancer[J]. PLoS One, 2016, 11 (5): e0155660
doi: 10.1371/journal.pone.0155660
44 HABIB E , LINHER-MELVILLE K , LIN H X et al. Expression of xCT and activity of system xc(-) are regulated by NRF2 in human breast cancer cells in response to oxidative stress[J]. Redox Biol, 2015, 5:33- 42
doi: 10.1016/j.redox.2015.03.003
45 LI T , KON N , JIANG L et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence[J]. Cell, 2012, 149 (6): 1269- 1283
doi: 10.1016/j.cell.2012.04.026
46 JIANG L , KON N , LI T et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520 (7545): 57- 62
doi: 10.1038/nature14344
47 WANG S J , LI D , OU Y et al. Acetylation is crucial for p53-mediated ferroptosis and tumor suppression[J]. Cell Rep, 2016, 17 (2): 366- 373
doi: 10.1016/j.celrep.2016.09.022
48 JENNIS M , KUNG C P , BASU S et al. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model[J]. Genes Dev, 2016, 30 (8): 918- 930
doi: 10.1101/gad.275891.115
49 XIE Y , ZHU S , SONG X et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity[J]. Cell Rep, 2017, 20 (7): 1692- 1704
doi: 10.1016/j.celrep.2017.07.055
50 MA Q . Role of nrf2 in oxidative stress and toxicity[J]. Annu Rev Pharmacol Toxicol, 2013, 53:401- 426
doi: 10.1146/annurev-pharmtox-011112-140320
51 WANG X J , SUN Z , VILLENEUVE N F et al. Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2[J]. Carcinogenesis, 2008, 29 (6): 1235- 1243
doi: 10.1093/carcin/bgn095
52 YUAN H , LI X , ZHANG X et al. Identification of ACSL4 as a biomarker and contributor of ferroptosis[J]. Biochem Biophys Res Commun, 2016, 478 (3): 1338- 1343
doi: 10.1016/j.bbrc.2016.08.124
53 RADLOWSKI E C , JOHNSON R W . Perinatal iron deficiency and neurocognitive development[J]. Front Hum Neurosci, 2013, 7:585
doi: 10.3389/fnhum.2013.00585
54 BELAIDI A A , BUSH A I . Iron neurochemistry in Alzheimer's disease and Parkinson's disease:targets for therapeutics[J]. J Neurochem, 2016, 139 (Suppl 1): 179- 197
doi: 10.1111/jnc.13425
55 WEILAND A , WANG Y , WU W et al. Ferroptosis and its role in diverse brain diseases[J]. Mol Neurobiol, 2019, 56 (7): 4880- 4893
doi: 10.1007/s12035-018-1403-3
56 AYTON S , FAUX N G , BUSH A I et al. Ferritin levels in the cerebrospinal fluid predict Alzheimer's disease outcomes and are regulated by APOE[J]. Nat Commun, 2015, 6:6760
doi: 10.1038/ncomms7760
57 HAMBRIGHT W S , FONSECA R S , CHEN L et al. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration[J]. Redox Biol, 2017, 12:8- 17
doi: 10.1016/j.redox.2017.01.021
58 ZHANG Y H , WANG D W , XU S F et al. α-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice[J]. Redox Biol, 2018, 14:535- 548
doi: 10.1016/j.redox.2017.11.001
59 DO VAN B , GOUEL F , JONNEAUX A et al. Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC[J]. Neurobiol Dis, 2016, 94:169- 178
doi: 10.1016/j.nbd.2016.05.011
60 GOUEL F , DO VAN B , CHOU M L et al. The protective effect of human platelet lysate in models of neurodegenerative disease:involvement of the Akt and MEK pathways[J]. J Tissue Eng Regen Med, 2017, 11 (11): 3236- 3240
doi: 10.1002/term.2222
61 CUI Z , ZHONG Z , YANG Y et al. Ferrous iron induces Nrf2 expression in mouse brain astrocytes to prevent neurotoxicity[J]. J Biochem Mol Toxicol, 2016, 30 (8): 396- 403
doi: 10.1002/jbt.21803
62 ISHII T , WARABI E , MANN G E . Circadian control of BDNF-mediated Nrf2 activation in astrocytes protects dopaminergic neurons from ferroptosis[J]. Free Radic Biol Med, 2019, 133:169- 178
doi: 10.1016/j.freeradbiomed.2018.09.002
63 CODAZZI F , PELIZZONI I , ZACCHETTI D et al. Iron entry in neurons and astrocytes:a link with synaptic activity[J]. Front Mol Neurosci, 2015, 8:18
doi: 10.3389/fnmol.2015.00018
64 BUSH A I , CURTAIN C C . Twenty years of metallo-neurobiology:where to now?[J]. Eur Biophys J, 2008, 37 (3): 241- 245
doi: 10.1007/s00249-007-0228-1
65 CONNOR J R , SNYDER B S , BEARD J L et al. Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer's disease[J]. J Neurosci Res, 1992, 31 (2): 327- 335
doi: 10.1002/jnr.490310214
66 LOVELL M A , ROBERTSON J D , TEESDALE W J et al. Copper, iron and zinc in Alzheimer's disease senile plaques[J]. J Neurol Sci, 1998, 158 (1): 47- 52
doi: 10.1016/s0022-510x(98)00092-6
67 BILGIC B , PFEFFERBAUM A , ROHLFING T et al. MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping[J]. Neuroimage, 2012, 59 (3): 2625- 2635
doi: 10.1016/j.neuroimage.2011.08.077
68 HAMBRIGHT W S , FONSECA R S , CHEN L et al. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration[J]. Redox Biol, 2017, 12:8- 17
doi: 10.1016/j.redox.2017.01.021
69 KHANDELWAL P J , HERMAN A M , MOUSSA C E . Inflammation in the early stages of neurodegenerative pathology[J]. J Neuroimmunol, 2011, 238 (1-2): 1- 11
doi: 10.1016/j.jneuroim.2011.07.002
70 RAINA A K , HOCHMAN A , ZHU X et al. Abortive apoptosis in Alzheimer's disease[J]. Acta Neuropathol, 2001, 101 (4): 305- 310
doi: 10.1007/s004010100378
71 RAEFSKY S M , FURMAN R , MILNE G et al. Deuterated polyunsaturated fatty acids reduce brain lipid peroxidation and hippocampal amyloid beta-peptide levels, without discernable behavioral effects in an APP/PS1 mutant transgenic mouse model of Alzheimer's disease[J]. Neurobiol Aging, 2018, 66:165- 176
doi: 10.1016/j.neurobiolaging.2018.02.024
72 YANG W S , KIM K J , GASCHLER M M et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J]. Proc Natl Acad Sci U S A, 2016, 113 (34): E4966- E4975
doi: 10.1073/pnas.1603244113
73 DEXTER D T , WELLS F R , AGID F et al. Increased nigral iron content in postmortem parkinsonian brain[J]. Lancet, 1987, 2 (8569): 1219- 1220
doi: 10.1016/s0140-6736(87)91361-4
74 DEXTER D T , WELLS F R , LEES A J et al. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease[J]. J Neurochem, 1989, 52 (6): 1830- 1836
doi: 10.1111/j.1471-4159.1989.tb07264.x
75 AYTON S , LEI P , DUCE J A et al. Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease[J]. Ann Neurol, 2013, 73 (4): 554- 559
doi: 10.1002/ana.23817
76 BOLL M C , SOTELO J , OTERO E et al. Reduced ferroxidase activity in the cerebrospinal fluid from patients with Parkinson's disease[J]. Neurosci Lett, 1999, 265 (3): 155- 158
doi: 10.1016/s0304-3940(99)00221-9
77 OLIVIERI S , CONTI A , IANNACCONE S et al. Ceruloplasmin oxidation, a feature of Parkinson's disease CSF, inhibits ferroxidase activity and promotes cellular iron retention[J]. J Neurosci, 2011, 31 (50): 18568- 18577
doi: 10.1523/JNEUROSCI.3768-11.2011
78 SALAZAR J , MENA N , HUNOT S et al. Divalent metal transporter 1(DMT1) contributes to neurodegeneration in animal models of Parkinson's disease[J]. Proc Natl Acad Sci U S A, 2008, 105 (47): 18578- 18583
doi: 10.1073/pnas.0804373105
79 FAUCHEUX B A , MARTIN M E , BEAUMONT C et al. Lack of up-regulation of ferritin is associated with sustained iron regulatory protein-1 binding activity in the substantia nigra of patients with Parkinson's disease[J]. J Neurochem, 2002, 83 (2): 320- 330
doi: 10.1046/j.1471-4159.2002.01118.x
80 LEI P , AYTON S , APPUKUTTAN A T et al. Clioquinol rescues Parkinsonism and dementia phenotypes of the tau knockout mouse[J]. Neurobiol Dis, 2015, 81:168- 175
doi: 10.1016/j.nbd.2015.03.015
81 LEI P , AYTON S , FINKELSTEIN D I et al. Tau protein:relevance to Parkinson's disease[J]. Int J Biochem Cell Biol, 2010, 42 (11): 1775- 1778
doi: 10.1016/j.biocel.2010.07.016
82 LEI P , AYTON S , MOON S et al. Motor and cognitive deficits in aged tau knockout mice in two background strains[J]. Mol Neurodegener, 2014, 9:29
doi: 10.1186/1750-1326-9-29
83 SIAN J , DEXTER D T , LEES A J et al. Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia[J]. Ann Neurol, 1994, 36 (3): 348- 355
doi: 10.1002/ana.410360305
84 LEI P , AYTON S , FINKELSTEIN D I et al. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export[J]. Nat Med, 2012, 18 (2): 291- 295
doi: 10.1038/nm.2613
85 DEVOS D , MOREAU C , DEVEDJIAN J C et al. Targeting chelatable iron as a therapeutic modality in parkinson's disease[J]. Antioxid Redox Signal, 2014, 21 (2): 195- 210
doi: 10.1089/ars.2013.5593
86 COLES L D , TUITE P J , ?Z G et al. Repeated-dose oral n-acetylcysteine in Parkinson's disease:pharmacokinetics and effect on brain glutathione and oxidative stress[J]. J Clin Pharmacol, 2018, 58 (2): 158- 167
doi: 10.1002/jcph.1008
87 PARK S W , KIM S H , PARK K H et al. Preventive effect of antioxidants in MPTP-induced mouse model of Parkinson's disease[J]. Neurosci Lett, 2004, 363 (3): 243- 246
doi: 10.1016/j.neulet.2004.03.072
88 PERRY T L , YONG V W , CLAVIER R M et al. Partial protection from the dopaminergic neurotoxin N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine by four different antioxidants in the mouse[J]. Neurosci Lett, 1985, 60 (2): 109- 114
doi: 10.1016/0304-3940(85)90229-0
89 MONTI D A , ZABRECKY G , KREMENS D et al. N-acetyl cysteine may support dopamine neurons in Parkinson's disease:preliminary clinical and cell line data[J]. PLoS One, 2016, 11 (6): e0157602
doi: 10.1371/journal.pone.0157602
90 GAJOWIAK A , STYS' A , STARZYN'SKI R R et al. Misregulation of iron homeostasis in amyotrophic lateral sclerosis[J]. Postepy Hig Med Dosw (Online), 2016, 70 (0): 709- 721
doi: 10.5604/17322693.1208036
91 MOREAU C , DANEL V , DEVEDJIAN J C et al. Could conservative iron chelation lead to neuroprotection in amyotrophic lateral sclerosis?[J]. Antioxid Redox Signal, 2018, 29 (8): 742- 748
doi: 10.1089/ars.2017.7493
92 VEYRAT-DUREBEX C , CORCIA P , MUCHA A et al. Iron metabolism disturbance in a French cohort of ALS patients[J]. Biomed Res Int, 2014, 2014:485723
doi: 10.1155/2014/485723
93 CHOI I Y , LEE P , STATLAND J et al. Reduction in cerebral antioxidant, glutathione (GSH), in patients with ALS:A preliminary study (P6.105)[J]. Neurology, 2015, 84 (14 Supplement):
94 SIMPSON E P , HENRY Y K , HENKEL J S et al. Increased lipid peroxidation in sera of ALS patients:a potential biomarker of disease burden[J]. Neurology, 2004, 62 (10): 1758- 1765
doi: 10.1212/wnl.62.10.1758
95 GAO M , MONIAN P , QUADRI N et al. Glutaminolysis and transferrin regulate ferroptosis[J]. Mol Cell, 2015, 59 (2): 298- 308
doi: 10.1016/j.molcel.2015.06.011
96 FANG X , WANG H , HAN D et al. Ferroptosis as a target for protection against cardiomyopathy[J]. Proc Natl Acad Sci U S A, 2019, 116 (7): 2672- 2680
doi: 10.1073/pnas.1821022116
97 LI W , FENG G , GAUTHIER J M et al. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation[J]. J Clin Invest, 2019, 129 (6): 2293- 2304
doi: 10.1172/JCI126428
98 SPEER R E , KARUPPAGOUNDER S S , BASSO M et al. Hypoxia-inducible factor prolyl hydroxylases as targets for neuroprotection by "antioxidant" metal chelators:From ferroptosis to stroke[J]. Free Radic Biol Med, 2013, 62:26- 36
doi: 10.1016/j.freeradbiomed.2013.01.026
99 TUO Q Z , LEI P , JACKMAN K A et al. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke[J]. Mol Psychiatry, 2017, 22 (11): 1520- 1530
doi: 10.1038/mp.2017.171
100 CHANG C F , CHO S , WANG J . (-)-Epicatechin protects hemorrhagic brain via synergistic Nrf2 pathways[J]. Ann Clin Transl Neurol, 2014, 1 (4): 258- 271
doi: 10.1002/acn3.54
101 LI Q , HAN X , LAN X et al. Inhibition of neuronal ferroptosis protects hemorrhagic brain[J]. JCI Insight, 2017, 2 (7): e90777
doi: 10.1172/jci.insight.90777
102 ZILLE M , KARUPPAGOUNDER S S , CHEN Y et al. Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis[J]. Stroke, 2017, 48 (4): 1033- 1043
doi: 10.1161/STROKEAHA.116.015609
103 ZHANG Z , WU Y , YUAN S et al. Glutathione peroxidase 4 participates in secondary brain injury through mediating ferroptosis in a rat model of intracerebral hemorrhage[J]. Brain Res, 2018, 1701:112- 125
doi: 10.1016/j.brainres.2018.09.012
104 CADENAS S . ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection[J]. Free Radic Biol Med, 2018, 117:76- 89
doi: 10.1016/j.freeradbiomed.2018.01.024
105 DAS D K , ENGELMAN R M , LIU X et al. Oxygen-derived free radicals and hemolysis during open heart surgery[J]. Mol Cell Biochem, 1992, 111 (1-2): 77- 86
doi: 10.1007/bf00229577
106 MEERSON F Z , KAGAN V E , YUP K et al. The role of lipid peroxidation in pathogenesis of ischemic damage and the antioxidant protection of the heart[J]. Basic Res Cardiol, 1982, 77 (5): 465- 485
doi: 10.1007/bf01907940
107 LINKERMANN A , SKOUTA R , HIMMERKUS N et al. Synchronized renal tubular cell death involves ferroptosis[J]. Proc Natl Acad Sci U S A, 2014, 111 (47): 16836- 16841
doi: 10.1073/pnas.1415518111
108 FRIEDMANN ANGELI J P , SCHNEIDER M , PRONETH B et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice[J]. Nat Cell Biol, 2014, 16 (12): 1180- 1191
doi: 10.1038/ncb3064
109 LU L , WU W , YAN J et al. Adriamycin-induced autophagic cardiomyocyte death plays a pathogenic role in a rat model of heart failure[J]. Int J Cardiol, 2009, 134 (1): 82- 90
doi: 10.1016/j.ijcard.2008.01.043
110 TAKEMURA G , KANOH M , MINATOGUCHI S et al. Cardiomyocyte apoptosis in the failing heart——a critical review from definition and classification of cell death[J]. Int J Cardiol, 2013, 167 (6): 2373- 2386
doi: 10.1016/j.ijcard.2013.01.163
111 ZHANG T , ZHANG Y , CUI M et al. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis[J]. Nat Med, 2016, 22 (2): 175- 182
doi: 10.1038/nm.4017
112 DIETRICH R B , BRADLEY WG J R . Iron accumulation in the basal ganglia following severe ischemic-anoxic insults in children[J]. Radiology, 1988, 168 (1): 203- 206
doi: 10.1148/radiology.168.1.3380958
113 LIPSCOMB D C , GORMAN L G , TRAYSTMAN R J et al. Low molecular weight iron in cerebral ischemic acidosis in vivo[J]. Stroke, 1998, 29 (2): 487- 492
doi: 10.1161/01.str.29.2.487
114 DING H , YAN C Z , SHI H et al. Hepcidin is involved in iron regulation in the ischemic brain[J]. PLoS One, 2011, 6 (9): e25324
doi: 10.1371/journal.pone.0025324
115 PARK U J , LEE Y A , WON S M et al. Blood-derived iron mediates free radical production and neuronal death in the hippocampal CA1 area following transient forebrain ischemia in rat[J]. Acta Neuropathol, 2011, 121 (4): 459- 473
doi: 10.1007/s00401-010-0785-8
116 PATT A , HORESH I R , BERGER E M et al. Iron depletion or chelation reduces ischemia/reperfusion-induced edema in gerbil brains[J]. J Pediatr Surg, 1990, 25 (2): 224- 227
doi: 10.1016/0022-3468(90)90407-z
117 DAVIS S , HELFAER M A , TRAYSTMAN R J et al. Parallel antioxidant and antiexcitotoxic therapy improves outcome after incomplete global cerebral ischemia in dogs[J]. Stroke, 1997, 28 (1): 198- 204
doi: 10.1161/01.str.28.1.198
118 PRASS K , RUSCHER K , KARSCH M et al. Desferrioxamine induces delayed tolerance against cerebral ischemia in vivo and in vitro[J]. J Cereb Blood Flow Metab, 2002, 22 (5): 520- 525
doi: 10.1097/00004647-200205000-00003
119 HANSON L R , ROEYTENBERG A , MARTINEZ P M et al. Intranasal deferoxamine provides increased brain exposure and significant protection in rat ischemic stroke[J]. J Pharmacol Exp Ther, 2009, 330 (3): 679- 686
doi: 10.1124/jpet.108.149807
120 HANDA P , THOMAS S , MORGAN-STEVENSON V et al. Iron alters macrophage polarization status and leads to steatohepatitis and fibrogenesis[J]. J Leukoc Biol, 2019, 105 (5): 1015- 1026
doi: 10.1002/JLB.3A0318-108R
121 WOODHOO A , IRUARRIZAGA-LEJARRETA M , BERAZA N et al. Human antigen R contributes to hepatic stellate cell activation and liver fibrosis[J]. Hepatology, 2012, 56 (5): 1870- 1882
doi: 10.1002/hep.25828
122 ZHANG Z , YAO Z , WANG L et al. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells[J]. Autophagy, 2018, 14 (12): 2083- 2103
doi: 10.1080/15548627.2018.1503146
123 ATARASHI M , IZAWA T , KUWAMURA M et al. The role of iron overload in the progression of nonalcoholic steatohepatitis (NASH)[J]. Nihon Yakurigaku Zasshi, 2019, 154 (2): 61- 65
doi: 10.1254/fpj.154.61
124 TSURUSAKI S , TSUCHIYA Y , KOUMURA T et al. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis[J]. Cell Death Dis, 2019, 10 (6): 449
doi: 10.1038/s41419-019-1678-y
125 WANG W , GREEN M , CHOI J E et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy[J]. Nature, 2019, 569 (7755): 270- 274
doi: 10.1038/s41586-019-1170-y
126 方学贤, 蔡昭贤, 王浩 et al. 铁过载及铁死亡在心脏疾病中的研究进展[J]. 科学通报, 2019, 64 (28-29): 2974- 2987
FANG Xuexian , CAI Zhaoxian , WANG Hao et al. Role of iron overload and ferroptosis in heart disease[J]. Chinese Science Bulletin, 2019, 64 (28-29): 2974- 2987
doi: 10.1360/TB-2019-0242
127 ZHENG D W , LEI Q , ZHU J Y et al. Switching apoptosis to ferroptosis:metal-organic network for high-efficiency anticancer therapy[J]. Nano Lett, 2017, 17 (1): 284- 291
doi: 10.1021/acs.nanolett.6b04060
[1] 杨泽然,张欣,马杰,金丽,何徐军. 大肠癌患者肿瘤相关血管中胰岛素受体表达及其与肿瘤组织病理学特征的关系[J]. 浙江大学学报(医学版), 2020, 49(6): 725-731.
[2] 朱慧琦,应可净. 组织因子与肿瘤患者静脉血栓栓塞[J]. 浙江大学学报(医学版), 2020, 49(6): 772-778.
[3] 林翠翠,陈正云,王春艳,席咏梅. 基于脂质组学的子宫内膜异位症生物标志物研究进展[J]. 浙江大学学报(医学版), 2020, 49(6): 779-784.
[4] 李梦瑶,刘盼,柯越海,张雪. 放射性肺损伤中巨噬细胞作用机制的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 623-628.
[5] 韩雪,蒋国军,石巧娟. 降血糖药对内皮祖细胞作用的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 629-636.
[6] 段润平,许叶圣,郑利斌,姚玉峰. 病毒感染性眼病病原学诊断的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 644-650.
[7] 吴唯,徐键. 正五聚蛋白3在多囊卵巢综合征中的作用研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 637-643.
[8] 徐清霖,楼国东,王甜甜,张力三. 发作性睡病的药物治疗进展[J]. 浙江大学学报(医学版), 2020, 49(4): 419-424.
[9] 蒋沛然,王志萍. 模式生物神经轴突再生的研究进展[J]. 浙江大学学报(医学版), 2020, 49(4): 500-507.
[10] 刘露,黄国俊,白宏震,汤谷平. 叶酸修饰壳聚糖纳米载药胶束的制备及其体外抗肿瘤效果研究[J]. 浙江大学学报(医学版), 2020, 49(3): 364-374.
[11] 俞卿, 熊秀芳, 孙毅. 靶向Cullin-RING E3泛素连接酶的抗肿瘤策略及相关药物研发进展[J]. 浙江大学学报(医学版), 2020, 49(1): 1-19.
[12] 段玲艳,尹香菊,孟红恩,方学贤,闵军霞,王福俤. 铁稳态代谢表观遗传调控机制的研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 58-70.
[13] 李艾,张添源,高建青. 间充质干细胞的肿瘤归巢特性及其肿瘤靶向治疗应用研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 20-34.
[14] 黄耀凭,杨凤,周天华,谢珊珊. Hippo信号通路及其在消化系统肿瘤中的作用研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 35-43.
[15] 钟文,楼燕,邱宸阳,李栋林,张鸿坤. 髂静脉支架植入术后药物治疗策略研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 131-136.