专题报道 |
|
|
|
|
铁死亡与重大慢性疾病 |
陈峻逸( ),杨翔,方学贤,王福俤,闵军霞*( ) |
浙江大学医学院, 浙江 杭州 310058 |
|
The role of ferroptosis in chronic diseases |
CHEN Junyi( ),YANG Xiang,FANG Xuexian,WANG Fudi,MIN Junxia*( ) |
School of Medicine, Zhejiang University, Hangzhou 310058, China |
引用本文:
陈峻逸,杨翔,方学贤,王福俤,闵军霞. 铁死亡与重大慢性疾病[J]. 浙江大学学报(医学版), 2020, 49(1): 44-57.
CHEN Junyi,YANG Xiang,FANG Xuexian,WANG Fudi,MIN Junxia. The role of ferroptosis in chronic diseases. J Zhejiang Univ (Med Sci), 2020, 49(1): 44-57.
链接本文:
http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2020.02.24
或
http://www.zjujournals.com/med/CN/Y2020/V49/I1/44
|
1 |
World Health Organization. World health statistics 2018: monitoring health for the SDGs[R]. Geneva: World Health Organization, 2018.
|
2 |
中华人民共和国国家卫生健康委员会 . 2018中国卫生统计年鉴[M]. 北京: 中国协和医科大学出版社, 2018. National Health Commission of the People's Republic of China . 2018 China health statistics yearbook[M]. Beijing: China Union Medical University Press, 2018.
|
3 |
DIXON S J , LEMBERG K M , LAMPRECHT M R et al. Ferroptosis:an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149 (5): 1060- 1072
doi: 10.1016/j.cell.2012.03.042
|
4 |
CAO J Y , DIXON S J . Mechanisms of ferroptosis[J]. Cell Mol Life Sci, 2016, 73 (11-12): 2195- 2209
doi: 10.1007/s00018-016-2194-1
|
5 |
DIXON S J , STOCKWELL B R . The role of iron and reactive oxygen species in cell death[J]. Nat Chem Biol, 2014, 10 (1): 9- 17
doi: 10.1038/nchembio.1416
|
6 |
MANCIAS J D , WANG X , GYGI S P et al. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy[J]. Nature, 2014, 509 (7498): 105- 109
doi: 10.1038/nature13148
|
7 |
HOU W , XIE Y , SONG X et al. Autophagy promotes ferroptosis by degradation of ferritin[J]. Autophagy, 2016, 12 (8): 1425- 1428
doi: 10.1080/15548627.2016.1187366
|
8 |
YANG W S , STOCKWELL B R . Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells[J]. Chem Biol, 2008, 15 (3): 234- 245
doi: 10.1016/j.chembiol.2008.02.010
|
9 |
WENZEL S E , TYURINA Y Y , ZHAO J et al. PEBP1 wardens ferroptosis by enabling lipoxygenase generation of lipid death signals[J]. Cell, 2017, 171 (3): 628- 641
doi: 10.1016/j.cell.2017.09.044
|
10 |
DOLL S , PRONETH B , TYURINA Y Y et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017, 13 (1): 91- 98
doi: 10.1038/nchembio.2239
|
11 |
HANGAUER M J , VISWANATHAN V S , RYAN M J et al. Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition[J]. Nature, 2017, 551 (7679): 247- 250
doi: 10.1038/nature24297
|
12 |
DIXON S J , WINTER G E , MUSAVI L S et al. Human haploid cell genetics reveals roles for lipid metabolism genes in nonapoptotic cell death[J]. ACS Chem Biol, 2015, 10 (7): 1604- 1609
doi: 10.1021/acschembio.5b00245
|
13 |
XIE Y , HOU W , SONG X et al. Ferroptosis:process and function[J]. Cell Death Differ, 2016, 23 (3): 369- 379
doi: 10.1038/cdd.2015.158
|
14 |
FRIEDMANN ANGELI J P , CONRAD M . Selenium and GPX4, a vital symbiosis[J]. Free Radic Biol Med, 2018, 127:153- 159
doi: 10.1016/j.freeradbiomed.2018.03.001
|
15 |
MAIORINO M , CONRAD M , URSINI F . GPx4, lipid peroxidation, and cell death:discoveries, rediscoveries, and open issues[J]. Antioxid Redox Signal, 2018, 29 (1): 61- 74
doi: 10.1089/ars.2017.7115
|
16 |
LU L , HOPE B T , SHAHAM Y . The cystine-glutamate transporter in the accumbens:a novel role in cocaine relapse[J]. Trends Neurosci, 2004, 27 (2): 74- 76
doi: 10.1016/j.tins.2003.11.007
|
17 |
WANG H , AN P , XIE E et al. Characterization of ferroptosis in murine models of hemochromatosis[J]. Hepatology, 2017, 66 (2): 449- 465
doi: 10.1002/hep.29117
|
18 |
BERSUKER K , HENDRICKS J M , LI Z et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis[J]. Nature, 2019, 575 (7784): 688- 692
doi: 10.1038/s41586-019-1705-2
|
19 |
DOLL S , FREITAS F P , SHAH R et al. FSP1 is a glutathione-independent ferroptosis suppressor[J]. Nature, 2019, 575 (7784): 693- 698
doi: 10.1038/s41586-019-1707-0
|
20 |
STOCKWELL B R , FRIEDMANN ANGELI J P , BAYIR H et al. Ferroptosis:a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171 (2): 273- 285
doi: 10.1016/j.cell.2017.09.021
|
21 |
LOUANDRE C , EZZOUKHRY Z , GODIN C et al. Iron-dependent cell death of hepatocellular carcinoma cells exposed to sorafenib[J]. Int J Cancer, 2013, 133 (7): 1732- 1742
doi: 10.1002/ijc.28159
|
22 |
LOUANDRE C , MARCQ I , BOUHLAL H et al. The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells[J]. Cancer Lett, 2015, 356 (2 Pt B): 971- 977
doi: 10.1016/j.canlet.2014.11.014
|
23 |
SUN X , OU Z , CHEN R et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells[J]. Hepatology, 2016, 63 (1): 173- 184
doi: 10.1002/hep.28251
|
24 |
SUZUKI T , MOTOHASHI H , YAMAMOTO M . Toward clinical application of the Keap1-Nrf2 pathway[J]. Trends Pharmacol Sci, 2013, 34 (6): 340- 346
doi: 10.1016/j.tips.2013.04.005
|
25 |
HARRISON P M , AROSIO P . The ferritins:molecular properties, iron storage function and cellular regulation[J]. Biochim Biophys Acta, 1996, 1275 (3): 161- 203
doi: 10.1016/0005-2728(96)00022-9
|
26 |
ARLT A , SEBENS S , KREBS S et al. Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity[J]. Oncogene, 2013, 32 (40): 4825- 4835
doi: 10.1038/onc.2012.493
|
27 |
KINOSHITA H , OKABE H , BEPPU T et al. Cystine/glutamic acid transporter is a novel marker for predicting poor survival in patients with hepatocellular carcinoma[J]. Oncol Rep, 2013, 29 (2): 685- 689
doi: 10.3892/or.2012.2162
|
28 |
SUN X , NIU X , CHEN R et al. Metallothionein-1G facilitates sorafenib resistance through inhibition of ferroptosis[J]. Hepatology, 2016, 64 (2): 488- 500
doi: 10.1002/hep.28574
|
29 |
EFFERTH T , DUNSTAN H , SAUERBREY A et al. The anti-malarial artesunate is also active against cancer[J]. Int J Oncol, 2001, 18 (4): 767- 773
doi: 10.3892/ijo.18.4.767
|
30 |
ELING N , REUTER L , HAZIN J et al. Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells[J]. Oncoscience, 2015, 2 (5): 517- 532
doi: 10.18632/oncoscience.160
|
31 |
YAMAGUCHI Y , KASUKABE T , KUMAKURA S . Piperlongumine rapidly induces the death of human pancreatic cancer cells mainly through the induction of ferroptosis[J]. Int J Oncol, 2018, 52 (3): 1011- 1022
doi: 10.3892/ijo.2018.4259
|
32 |
YANG W S , SRIRAMARATNAM R , WELSCH M E et al. Regulation of ferroptotic cancer cell death by GPX4[J]. Cell, 2014, 156 (1-2): 317- 331
doi: 10.1016/j.cell.2013.12.010
|
33 |
ZOU Y , PALTE M J , DEIK A A et al. HIF-2α drives an intrinsic vulnerability to ferroptosis in clear cell renal cell carcinoma[J]. BioRxiv, 2018,
doi: 10.1101/388041
|
34 |
WU J , MINIKES A M , GAO M et al. Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling[J]. Nature, 2019, 572 (7769): 402- 406
doi: 10.1038/s41586-019-1426-6
|
35 |
YANG W H , DING C C , SUN T et al. The hippo pathway effector TAZ regulates ferroptosis in renal cell carcinoma[J]. Cell Rep, 2019, 28 (10): 2501- 2508
doi: 10.1016/j.celrep.2019.07.107
|
36 |
MA S , HENSON E S , CHEN Y et al. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells[J]. Cell Death Dis, 2016, 7:e2307
doi: 10.1038/cddis.2016.208
|
37 |
HASEGAWA M , TAKAHASHI H , RAJABI H et al. Functional interactions of the cystine/glutamate antiporter, CD44v and MUC1-C oncoprotein in triple-negative breast cancer cells[J]. Oncotarget, 2016, 7 (11): 11756- 11769
doi: 10.18632/oncotarget.7598
|
38 |
TIMMERMAN L A , HOLTON T , YUNEVA M et al. Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target[J]. Cancer Cell, 2013, 24 (4): 450- 465
doi: 10.1016/j.ccr.2013.08.020
|
39 |
LANZARDO S , CONTI L , ROOKE R et al. Immunotargeting of antigen xCT attenuates stem-like cell behavior and metastatic progression in breast cancer[J]. Cancer Res, 2016, 76 (1): 62- 72
doi: 10.1158/0008-5472.CAN-15-1208
|
40 |
HABASHY H O , POWE D G , STAKA C M et al. Transferrin receptor (CD71) is a marker of poor prognosis in breast cancer and can predict response to tamoxifen[J]. Breast Cancer Res Treat, 2010, 119 (2): 283- 293
doi: 10.1007/s10549-009-0345-x
|
41 |
TONIK S E , SHINDELMAN J E , SUSSMAN H H . Transferrin receptor is inversely correlated with estrogen receptor in breast cancer[J]. Breast Cancer Res Treat, 1986, 7 (2): 71- 76
doi: 10.1007/bf01806791
|
42 |
YUAN H , LI X , ZHANG X et al. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation[J]. Biochem Biophys Res Commun, 2016, 478 (2): 838- 844
doi: 10.1016/j.bbrc.2016.08.034
|
43 |
CHEN W C , WANG C Y , HUNG Y H et al. Systematic analysis of gene expression alterations and clinical outcomes for long-chain acyl-coenzyme a synthetase family in cancer[J]. PLoS One, 2016, 11 (5): e0155660
doi: 10.1371/journal.pone.0155660
|
44 |
HABIB E , LINHER-MELVILLE K , LIN H X et al. Expression of xCT and activity of system xc(-) are regulated by NRF2 in human breast cancer cells in response to oxidative stress[J]. Redox Biol, 2015, 5:33- 42
doi: 10.1016/j.redox.2015.03.003
|
45 |
LI T , KON N , JIANG L et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence[J]. Cell, 2012, 149 (6): 1269- 1283
doi: 10.1016/j.cell.2012.04.026
|
46 |
JIANG L , KON N , LI T et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520 (7545): 57- 62
doi: 10.1038/nature14344
|
47 |
WANG S J , LI D , OU Y et al. Acetylation is crucial for p53-mediated ferroptosis and tumor suppression[J]. Cell Rep, 2016, 17 (2): 366- 373
doi: 10.1016/j.celrep.2016.09.022
|
48 |
JENNIS M , KUNG C P , BASU S et al. An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model[J]. Genes Dev, 2016, 30 (8): 918- 930
doi: 10.1101/gad.275891.115
|
49 |
XIE Y , ZHU S , SONG X et al. The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity[J]. Cell Rep, 2017, 20 (7): 1692- 1704
doi: 10.1016/j.celrep.2017.07.055
|
50 |
MA Q . Role of nrf2 in oxidative stress and toxicity[J]. Annu Rev Pharmacol Toxicol, 2013, 53:401- 426
doi: 10.1146/annurev-pharmtox-011112-140320
|
51 |
WANG X J , SUN Z , VILLENEUVE N F et al. Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2[J]. Carcinogenesis, 2008, 29 (6): 1235- 1243
doi: 10.1093/carcin/bgn095
|
52 |
YUAN H , LI X , ZHANG X et al. Identification of ACSL4 as a biomarker and contributor of ferroptosis[J]. Biochem Biophys Res Commun, 2016, 478 (3): 1338- 1343
doi: 10.1016/j.bbrc.2016.08.124
|
53 |
RADLOWSKI E C , JOHNSON R W . Perinatal iron deficiency and neurocognitive development[J]. Front Hum Neurosci, 2013, 7:585
doi: 10.3389/fnhum.2013.00585
|
54 |
BELAIDI A A , BUSH A I . Iron neurochemistry in Alzheimer's disease and Parkinson's disease:targets for therapeutics[J]. J Neurochem, 2016, 139 (Suppl 1): 179- 197
doi: 10.1111/jnc.13425
|
55 |
WEILAND A , WANG Y , WU W et al. Ferroptosis and its role in diverse brain diseases[J]. Mol Neurobiol, 2019, 56 (7): 4880- 4893
doi: 10.1007/s12035-018-1403-3
|
56 |
AYTON S , FAUX N G , BUSH A I et al. Ferritin levels in the cerebrospinal fluid predict Alzheimer's disease outcomes and are regulated by APOE[J]. Nat Commun, 2015, 6:6760
doi: 10.1038/ncomms7760
|
57 |
HAMBRIGHT W S , FONSECA R S , CHEN L et al. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration[J]. Redox Biol, 2017, 12:8- 17
doi: 10.1016/j.redox.2017.01.021
|
58 |
ZHANG Y H , WANG D W , XU S F et al. α-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice[J]. Redox Biol, 2018, 14:535- 548
doi: 10.1016/j.redox.2017.11.001
|
59 |
DO VAN B , GOUEL F , JONNEAUX A et al. Ferroptosis, a newly characterized form of cell death in Parkinson's disease that is regulated by PKC[J]. Neurobiol Dis, 2016, 94:169- 178
doi: 10.1016/j.nbd.2016.05.011
|
60 |
GOUEL F , DO VAN B , CHOU M L et al. The protective effect of human platelet lysate in models of neurodegenerative disease:involvement of the Akt and MEK pathways[J]. J Tissue Eng Regen Med, 2017, 11 (11): 3236- 3240
doi: 10.1002/term.2222
|
61 |
CUI Z , ZHONG Z , YANG Y et al. Ferrous iron induces Nrf2 expression in mouse brain astrocytes to prevent neurotoxicity[J]. J Biochem Mol Toxicol, 2016, 30 (8): 396- 403
doi: 10.1002/jbt.21803
|
62 |
ISHII T , WARABI E , MANN G E . Circadian control of BDNF-mediated Nrf2 activation in astrocytes protects dopaminergic neurons from ferroptosis[J]. Free Radic Biol Med, 2019, 133:169- 178
doi: 10.1016/j.freeradbiomed.2018.09.002
|
63 |
CODAZZI F , PELIZZONI I , ZACCHETTI D et al. Iron entry in neurons and astrocytes:a link with synaptic activity[J]. Front Mol Neurosci, 2015, 8:18
doi: 10.3389/fnmol.2015.00018
|
64 |
BUSH A I , CURTAIN C C . Twenty years of metallo-neurobiology:where to now?[J]. Eur Biophys J, 2008, 37 (3): 241- 245
doi: 10.1007/s00249-007-0228-1
|
65 |
CONNOR J R , SNYDER B S , BEARD J L et al. Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer's disease[J]. J Neurosci Res, 1992, 31 (2): 327- 335
doi: 10.1002/jnr.490310214
|
66 |
LOVELL M A , ROBERTSON J D , TEESDALE W J et al. Copper, iron and zinc in Alzheimer's disease senile plaques[J]. J Neurol Sci, 1998, 158 (1): 47- 52
doi: 10.1016/s0022-510x(98)00092-6
|
67 |
BILGIC B , PFEFFERBAUM A , ROHLFING T et al. MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping[J]. Neuroimage, 2012, 59 (3): 2625- 2635
doi: 10.1016/j.neuroimage.2011.08.077
|
68 |
HAMBRIGHT W S , FONSECA R S , CHEN L et al. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration[J]. Redox Biol, 2017, 12:8- 17
doi: 10.1016/j.redox.2017.01.021
|
69 |
KHANDELWAL P J , HERMAN A M , MOUSSA C E . Inflammation in the early stages of neurodegenerative pathology[J]. J Neuroimmunol, 2011, 238 (1-2): 1- 11
doi: 10.1016/j.jneuroim.2011.07.002
|
70 |
RAINA A K , HOCHMAN A , ZHU X et al. Abortive apoptosis in Alzheimer's disease[J]. Acta Neuropathol, 2001, 101 (4): 305- 310
doi: 10.1007/s004010100378
|
71 |
RAEFSKY S M , FURMAN R , MILNE G et al. Deuterated polyunsaturated fatty acids reduce brain lipid peroxidation and hippocampal amyloid beta-peptide levels, without discernable behavioral effects in an APP/PS1 mutant transgenic mouse model of Alzheimer's disease[J]. Neurobiol Aging, 2018, 66:165- 176
doi: 10.1016/j.neurobiolaging.2018.02.024
|
72 |
YANG W S , KIM K J , GASCHLER M M et al. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis[J]. Proc Natl Acad Sci U S A, 2016, 113 (34): E4966- E4975
doi: 10.1073/pnas.1603244113
|
73 |
DEXTER D T , WELLS F R , AGID F et al. Increased nigral iron content in postmortem parkinsonian brain[J]. Lancet, 1987, 2 (8569): 1219- 1220
doi: 10.1016/s0140-6736(87)91361-4
|
74 |
DEXTER D T , WELLS F R , LEES A J et al. Increased nigral iron content and alterations in other metal ions occurring in brain in Parkinson's disease[J]. J Neurochem, 1989, 52 (6): 1830- 1836
doi: 10.1111/j.1471-4159.1989.tb07264.x
|
75 |
AYTON S , LEI P , DUCE J A et al. Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease[J]. Ann Neurol, 2013, 73 (4): 554- 559
doi: 10.1002/ana.23817
|
76 |
BOLL M C , SOTELO J , OTERO E et al. Reduced ferroxidase activity in the cerebrospinal fluid from patients with Parkinson's disease[J]. Neurosci Lett, 1999, 265 (3): 155- 158
doi: 10.1016/s0304-3940(99)00221-9
|
77 |
OLIVIERI S , CONTI A , IANNACCONE S et al. Ceruloplasmin oxidation, a feature of Parkinson's disease CSF, inhibits ferroxidase activity and promotes cellular iron retention[J]. J Neurosci, 2011, 31 (50): 18568- 18577
doi: 10.1523/JNEUROSCI.3768-11.2011
|
78 |
SALAZAR J , MENA N , HUNOT S et al. Divalent metal transporter 1(DMT1) contributes to neurodegeneration in animal models of Parkinson's disease[J]. Proc Natl Acad Sci U S A, 2008, 105 (47): 18578- 18583
doi: 10.1073/pnas.0804373105
|
79 |
FAUCHEUX B A , MARTIN M E , BEAUMONT C et al. Lack of up-regulation of ferritin is associated with sustained iron regulatory protein-1 binding activity in the substantia nigra of patients with Parkinson's disease[J]. J Neurochem, 2002, 83 (2): 320- 330
doi: 10.1046/j.1471-4159.2002.01118.x
|
80 |
LEI P , AYTON S , APPUKUTTAN A T et al. Clioquinol rescues Parkinsonism and dementia phenotypes of the tau knockout mouse[J]. Neurobiol Dis, 2015, 81:168- 175
doi: 10.1016/j.nbd.2015.03.015
|
81 |
LEI P , AYTON S , FINKELSTEIN D I et al. Tau protein:relevance to Parkinson's disease[J]. Int J Biochem Cell Biol, 2010, 42 (11): 1775- 1778
doi: 10.1016/j.biocel.2010.07.016
|
82 |
LEI P , AYTON S , MOON S et al. Motor and cognitive deficits in aged tau knockout mice in two background strains[J]. Mol Neurodegener, 2014, 9:29
doi: 10.1186/1750-1326-9-29
|
83 |
SIAN J , DEXTER D T , LEES A J et al. Alterations in glutathione levels in Parkinson's disease and other neurodegenerative disorders affecting basal ganglia[J]. Ann Neurol, 1994, 36 (3): 348- 355
doi: 10.1002/ana.410360305
|
84 |
LEI P , AYTON S , FINKELSTEIN D I et al. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export[J]. Nat Med, 2012, 18 (2): 291- 295
doi: 10.1038/nm.2613
|
85 |
DEVOS D , MOREAU C , DEVEDJIAN J C et al. Targeting chelatable iron as a therapeutic modality in parkinson's disease[J]. Antioxid Redox Signal, 2014, 21 (2): 195- 210
doi: 10.1089/ars.2013.5593
|
86 |
COLES L D , TUITE P J , ?Z G et al. Repeated-dose oral n-acetylcysteine in Parkinson's disease:pharmacokinetics and effect on brain glutathione and oxidative stress[J]. J Clin Pharmacol, 2018, 58 (2): 158- 167
doi: 10.1002/jcph.1008
|
87 |
PARK S W , KIM S H , PARK K H et al. Preventive effect of antioxidants in MPTP-induced mouse model of Parkinson's disease[J]. Neurosci Lett, 2004, 363 (3): 243- 246
doi: 10.1016/j.neulet.2004.03.072
|
88 |
PERRY T L , YONG V W , CLAVIER R M et al. Partial protection from the dopaminergic neurotoxin N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine by four different antioxidants in the mouse[J]. Neurosci Lett, 1985, 60 (2): 109- 114
doi: 10.1016/0304-3940(85)90229-0
|
89 |
MONTI D A , ZABRECKY G , KREMENS D et al. N-acetyl cysteine may support dopamine neurons in Parkinson's disease:preliminary clinical and cell line data[J]. PLoS One, 2016, 11 (6): e0157602
doi: 10.1371/journal.pone.0157602
|
90 |
GAJOWIAK A , STYS' A , STARZYN'SKI R R et al. Misregulation of iron homeostasis in amyotrophic lateral sclerosis[J]. Postepy Hig Med Dosw (Online), 2016, 70 (0): 709- 721
doi: 10.5604/17322693.1208036
|
91 |
MOREAU C , DANEL V , DEVEDJIAN J C et al. Could conservative iron chelation lead to neuroprotection in amyotrophic lateral sclerosis?[J]. Antioxid Redox Signal, 2018, 29 (8): 742- 748
doi: 10.1089/ars.2017.7493
|
92 |
VEYRAT-DUREBEX C , CORCIA P , MUCHA A et al. Iron metabolism disturbance in a French cohort of ALS patients[J]. Biomed Res Int, 2014, 2014:485723
doi: 10.1155/2014/485723
|
93 |
CHOI I Y , LEE P , STATLAND J et al. Reduction in cerebral antioxidant, glutathione (GSH), in patients with ALS:A preliminary study (P6.105)[J]. Neurology, 2015, 84 (14 Supplement):
|
94 |
SIMPSON E P , HENRY Y K , HENKEL J S et al. Increased lipid peroxidation in sera of ALS patients:a potential biomarker of disease burden[J]. Neurology, 2004, 62 (10): 1758- 1765
doi: 10.1212/wnl.62.10.1758
|
95 |
GAO M , MONIAN P , QUADRI N et al. Glutaminolysis and transferrin regulate ferroptosis[J]. Mol Cell, 2015, 59 (2): 298- 308
doi: 10.1016/j.molcel.2015.06.011
|
96 |
FANG X , WANG H , HAN D et al. Ferroptosis as a target for protection against cardiomyopathy[J]. Proc Natl Acad Sci U S A, 2019, 116 (7): 2672- 2680
doi: 10.1073/pnas.1821022116
|
97 |
LI W , FENG G , GAUTHIER J M et al. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation[J]. J Clin Invest, 2019, 129 (6): 2293- 2304
doi: 10.1172/JCI126428
|
98 |
SPEER R E , KARUPPAGOUNDER S S , BASSO M et al. Hypoxia-inducible factor prolyl hydroxylases as targets for neuroprotection by "antioxidant" metal chelators:From ferroptosis to stroke[J]. Free Radic Biol Med, 2013, 62:26- 36
doi: 10.1016/j.freeradbiomed.2013.01.026
|
99 |
TUO Q Z , LEI P , JACKMAN K A et al. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke[J]. Mol Psychiatry, 2017, 22 (11): 1520- 1530
doi: 10.1038/mp.2017.171
|
100 |
CHANG C F , CHO S , WANG J . (-)-Epicatechin protects hemorrhagic brain via synergistic Nrf2 pathways[J]. Ann Clin Transl Neurol, 2014, 1 (4): 258- 271
doi: 10.1002/acn3.54
|
101 |
LI Q , HAN X , LAN X et al. Inhibition of neuronal ferroptosis protects hemorrhagic brain[J]. JCI Insight, 2017, 2 (7): e90777
doi: 10.1172/jci.insight.90777
|
102 |
ZILLE M , KARUPPAGOUNDER S S , CHEN Y et al. Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis[J]. Stroke, 2017, 48 (4): 1033- 1043
doi: 10.1161/STROKEAHA.116.015609
|
103 |
ZHANG Z , WU Y , YUAN S et al. Glutathione peroxidase 4 participates in secondary brain injury through mediating ferroptosis in a rat model of intracerebral hemorrhage[J]. Brain Res, 2018, 1701:112- 125
doi: 10.1016/j.brainres.2018.09.012
|
104 |
CADENAS S . ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection[J]. Free Radic Biol Med, 2018, 117:76- 89
doi: 10.1016/j.freeradbiomed.2018.01.024
|
105 |
DAS D K , ENGELMAN R M , LIU X et al. Oxygen-derived free radicals and hemolysis during open heart surgery[J]. Mol Cell Biochem, 1992, 111 (1-2): 77- 86
doi: 10.1007/bf00229577
|
106 |
MEERSON F Z , KAGAN V E , YUP K et al. The role of lipid peroxidation in pathogenesis of ischemic damage and the antioxidant protection of the heart[J]. Basic Res Cardiol, 1982, 77 (5): 465- 485
doi: 10.1007/bf01907940
|
107 |
LINKERMANN A , SKOUTA R , HIMMERKUS N et al. Synchronized renal tubular cell death involves ferroptosis[J]. Proc Natl Acad Sci U S A, 2014, 111 (47): 16836- 16841
doi: 10.1073/pnas.1415518111
|
108 |
FRIEDMANN ANGELI J P , SCHNEIDER M , PRONETH B et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice[J]. Nat Cell Biol, 2014, 16 (12): 1180- 1191
doi: 10.1038/ncb3064
|
109 |
LU L , WU W , YAN J et al. Adriamycin-induced autophagic cardiomyocyte death plays a pathogenic role in a rat model of heart failure[J]. Int J Cardiol, 2009, 134 (1): 82- 90
doi: 10.1016/j.ijcard.2008.01.043
|
110 |
TAKEMURA G , KANOH M , MINATOGUCHI S et al. Cardiomyocyte apoptosis in the failing heart——a critical review from definition and classification of cell death[J]. Int J Cardiol, 2013, 167 (6): 2373- 2386
doi: 10.1016/j.ijcard.2013.01.163
|
111 |
ZHANG T , ZHANG Y , CUI M et al. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis[J]. Nat Med, 2016, 22 (2): 175- 182
doi: 10.1038/nm.4017
|
112 |
DIETRICH R B , BRADLEY WG J R . Iron accumulation in the basal ganglia following severe ischemic-anoxic insults in children[J]. Radiology, 1988, 168 (1): 203- 206
doi: 10.1148/radiology.168.1.3380958
|
113 |
LIPSCOMB D C , GORMAN L G , TRAYSTMAN R J et al. Low molecular weight iron in cerebral ischemic acidosis in vivo[J]. Stroke, 1998, 29 (2): 487- 492
doi: 10.1161/01.str.29.2.487
|
114 |
DING H , YAN C Z , SHI H et al. Hepcidin is involved in iron regulation in the ischemic brain[J]. PLoS One, 2011, 6 (9): e25324
doi: 10.1371/journal.pone.0025324
|
115 |
PARK U J , LEE Y A , WON S M et al. Blood-derived iron mediates free radical production and neuronal death in the hippocampal CA1 area following transient forebrain ischemia in rat[J]. Acta Neuropathol, 2011, 121 (4): 459- 473
doi: 10.1007/s00401-010-0785-8
|
116 |
PATT A , HORESH I R , BERGER E M et al. Iron depletion or chelation reduces ischemia/reperfusion-induced edema in gerbil brains[J]. J Pediatr Surg, 1990, 25 (2): 224- 227
doi: 10.1016/0022-3468(90)90407-z
|
117 |
DAVIS S , HELFAER M A , TRAYSTMAN R J et al. Parallel antioxidant and antiexcitotoxic therapy improves outcome after incomplete global cerebral ischemia in dogs[J]. Stroke, 1997, 28 (1): 198- 204
doi: 10.1161/01.str.28.1.198
|
118 |
PRASS K , RUSCHER K , KARSCH M et al. Desferrioxamine induces delayed tolerance against cerebral ischemia in vivo and in vitro[J]. J Cereb Blood Flow Metab, 2002, 22 (5): 520- 525
doi: 10.1097/00004647-200205000-00003
|
119 |
HANSON L R , ROEYTENBERG A , MARTINEZ P M et al. Intranasal deferoxamine provides increased brain exposure and significant protection in rat ischemic stroke[J]. J Pharmacol Exp Ther, 2009, 330 (3): 679- 686
doi: 10.1124/jpet.108.149807
|
120 |
HANDA P , THOMAS S , MORGAN-STEVENSON V et al. Iron alters macrophage polarization status and leads to steatohepatitis and fibrogenesis[J]. J Leukoc Biol, 2019, 105 (5): 1015- 1026
doi: 10.1002/JLB.3A0318-108R
|
121 |
WOODHOO A , IRUARRIZAGA-LEJARRETA M , BERAZA N et al. Human antigen R contributes to hepatic stellate cell activation and liver fibrosis[J]. Hepatology, 2012, 56 (5): 1870- 1882
doi: 10.1002/hep.25828
|
122 |
ZHANG Z , YAO Z , WANG L et al. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells[J]. Autophagy, 2018, 14 (12): 2083- 2103
doi: 10.1080/15548627.2018.1503146
|
123 |
ATARASHI M , IZAWA T , KUWAMURA M et al. The role of iron overload in the progression of nonalcoholic steatohepatitis (NASH)[J]. Nihon Yakurigaku Zasshi, 2019, 154 (2): 61- 65
doi: 10.1254/fpj.154.61
|
124 |
TSURUSAKI S , TSUCHIYA Y , KOUMURA T et al. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis[J]. Cell Death Dis, 2019, 10 (6): 449
doi: 10.1038/s41419-019-1678-y
|
125 |
WANG W , GREEN M , CHOI J E et al. CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy[J]. Nature, 2019, 569 (7755): 270- 274
doi: 10.1038/s41586-019-1170-y
|
126 |
方学贤, 蔡昭贤, 王浩 et al. 铁过载及铁死亡在心脏疾病中的研究进展[J]. 科学通报, 2019, 64 (28-29): 2974- 2987 FANG Xuexian , CAI Zhaoxian , WANG Hao et al. Role of iron overload and ferroptosis in heart disease[J]. Chinese Science Bulletin, 2019, 64 (28-29): 2974- 2987
doi: 10.1360/TB-2019-0242
|
127 |
ZHENG D W , LEI Q , ZHU J Y et al. Switching apoptosis to ferroptosis:metal-organic network for high-efficiency anticancer therapy[J]. Nano Lett, 2017, 17 (1): 284- 291
doi: 10.1021/acs.nanolett.6b04060
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|