Please wait a minute...
浙江大学学报(医学版)  2020, Vol. 49 Issue (1): 35-43    DOI: 10.3785/j.issn.1008-9292.2020.02.23
专题报道     
Hippo信号通路及其在消化系统肿瘤中的作用研究进展
黄耀凭1(),杨凤1,周天华1,*(),谢珊珊1,2,*()
1. 浙江大学医学院细胞生物学系, 浙江 杭州 310058
2. 浙江大学医学院附属儿童医院, 浙江 杭州 310052
Emerging roles of Hippo signaling pathway in gastrointestinal cancers and its molecular mechanisms
HUANG Yaoping1(),YANG Feng1,ZHOU Tianhua1,*(),XIE Shanshan1,2,*()
1. Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
2. The Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
 全文: PDF(3612 KB)   HTML( 17 )
摘要:

Hippo信号通路在进化上高度保守,哺乳动物细胞中该信号通路的核心成员包括MST1/2激酶、LATS1/2激酶和效应蛋白YAP/TAZ。虽然YAP/TAZ及其下游相关研究相对较多,但Hippo信号通路的上游调控因子并不明确,是目前该通路研究的热点方向之一。另外,Hippo信号通路可与Wnt和Notch等其他信号通路发生交叉对话,并在控制器官大小、维持组织稳态、促进组织修复再生等过程中扮演重要角色。Hippo信号通路异常可能会导致多种肿瘤的发生,尤其是肝癌、结直肠癌和胃癌等消化系统肿瘤,其成员在消化系统肿瘤中的异常表达与肿瘤细胞的增殖、凋亡、侵袭和迁移等过程密切相关。Hippo信号通路对肝脏的修复再生至关重要,其失活会导致原发性肝癌的发生,YAP在肝癌中的促肿瘤作用机制主要依赖于TEAD介导的基因转录。Hippo信号通路对于维持肠道稳态也很重要,其失调会导致结直肠癌的发生及复发。在原发性和转移性胃癌中,YAP/TAZ的表达显著上调,但具体分子调控机制并不清楚。本文总结了近年来Hippo信号通路的发现、上游调控因子及其在消化系统肿瘤发生发展过程中的作用和分子调控机制,并对未来的研究方向进行初步探讨。

关键词: 消化系统肿瘤信号传导Hippo信号通路Wnt信号通路受体, Notch综述    
Abstract:

Hippo signaling pathway is highly conservative in evolution. MST1/2, LATS1/2, and the effector protein YAP/TAZ are the core members of this signaling pathway in mammalian cells. There have been many studies on YAP/TAZ and its downstream, however, the upstream regulatory factors of the Hippo signaling pathway remain unclear, and become one of the hot research directions of this pathway at present. In addition, Hippo signaling pathway can cross-talk with other signaling pathways such as Wnt and Notch signaling pathways, and plays an important role in controlling organ size, maintaining tissue homeostasis, and promoting tissue repair and regeneration. Abnormal Hippo signaling pathway may lead to the occurrence of a variety of tumors, especially gastrointestinal cancers such as liver cancer, colorectal cancer and gastric cancer. The abnormal expression of its members in gastrointestinal cancers is related to cancer cell proliferation, apoptosis, invasion and migration. Hippo signaling pathway is vital for liver repair and regeneration. Its inactivation will lead to the occurrence of primary liver cancer. The mechanism of YAP in liver cancer mainly depends on TEAD-mediated gene transcription. Hippo signaling pathway is also important for maintaining intestinal homeostasis, and its imbalance can lead to the occurrence and recurrence of colorectal cancer. In primary and metastatic gastric cancer, the expression of YAP/TAZ is significantly up-regulated, but the specific molecular mechanism is unclear. This article summarizes the recent progress on Hippo signaling pathway and its upstream regulatory factors, its roles in the development of gastrointestinal cancers and related molecular mechanisms; and also discusses the future research directions of Hippo signaling pathway.

Key words: Digestive system neoplasms    Signal transduction    Hippo signaling pathway    Wnt signaling pathway    Receptors, Notch    Review
收稿日期: 2019-12-16 出版日期: 2020-06-08
CLC:  R735  
基金资助: 国家自然科学基金(31801132)
通讯作者: 周天华,谢珊珊     E-mail: 15700084245@163.com;tzhou@zju.edu.cn;sxie@zju.edu.cn
作者简介: 黄耀凭(1994-), 女, 硕士研究生, 主要从事胃癌发生发展的分子机制研究; E-mail:15700084245@163.com; https://orcid.org/000-0002-5246-7695
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄耀凭
杨凤
周天华
谢珊珊

引用本文:

黄耀凭,杨凤,周天华,谢珊珊. Hippo信号通路及其在消化系统肿瘤中的作用研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 35-43.

HUANG Yaoping,YANG Feng,ZHOU Tianhua,XIE Shanshan. Emerging roles of Hippo signaling pathway in gastrointestinal cancers and its molecular mechanisms. J Zhejiang Univ (Med Sci), 2020, 49(1): 35-43.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2020.02.23        http://www.zjujournals.com/med/CN/Y2020/V49/I1/35

图 1  果蝇和哺乳动物中Hippo信号通路的关键蛋白
图 2  哺乳动物Hippo信号通路的上游调控因子
图 3  哺乳动物中Hippo信号通路与Wnt信号通路、Notch信号通路的相互作用
1 YU F X , MENG Z , PLOUFFE S W et al. Hippo pathway regulation of gastrointestinal tissues[J]. Annu Rev Physiol, 2015, 77:201- 227
doi: 10.1146/annurev-physiol-021014-071733
2 JUSTICE R W , ZILIAN O , WOODS D F et al. The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation[J]. Genes Dev, 1995, 9 (5): 534- 546
doi: 10.1101/gad.9.5.534
3 TAPON N , HARVEY K F , BELL D W et al. Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines[J]. Cell, 2002, 110 (4): 467- 478
doi: 10.1016/s0092-8674(02)00824-3
4 HAY B A , GUO M . Coupling cell growth, proliferation, and death. Hippo weighs in[J]. Dev Cell, 2003, 5 (3): 361- 363
doi: 10.1016/s1534-5807(03)00270-3
5 CHAI Y , XIANG K , WU Y et al. Cucurbitacin B inhibits the hippo-YAP signaling pathway and exerts anticancer activity in colorectal cancer cells[J]. Med Sci Monit, 2018, 24:9251- 9258
doi: 10.12659/MSM.911594
6 KANG W , CHENG A S , YU J et al. Emerging role of Hippo pathway in gastric and other gastrointestinal cancers[J]. World J Gastroenterol, 2016, 22 (3): 1279- 1288
doi: 10.3748/wjg.v22.i3.1279
7 SHIMOMURA T , MIYAMURA N , HATA S et al. The PDZ-binding motif of Yes-associated protein is required for its co-activation of TEAD-mediated CTGF transcription and oncogenic cell transforming activity[J]. Biochem Biophys Res Commun, 2014, 443 (3): 917- 923
doi: 10.1016/j.bbrc.2013.12.100
8 YU J , ZHENG Y , DONG J et al. Kibra functions as a tumor suppressor protein that regulates Hippo signaling in conjunction with Merlin and Expanded[J]. Dev Cell, 2010, 18 (2): 288- 299
doi: 10.1016/j.devcel.2009.12.012
9 MA L , CUI J , XI H et al. Fat4 suppression induces Yap translocation accounting for the promoted proliferation and migration of gastric cancer cells[J]. Cancer Biol Ther, 2016, 17 (1): 36- 47
doi: 10.1080/15384047.2015.1108488
10 SHARMA P , MCNEILL H . Fat and Dachsous cadherins[J]. Prog Mol Biol Transl Sci, 2013, 116:215- 235
doi: 10.1016/B978-0-12-394311-8.00010-8
11 AVRUCH J , ZHOU D , FITAMANT J et al. Protein kinases of the Hippo pathway:regulation and substrates[J]. Semin Cell Dev Biol, 2012, 23 (7): 770- 784
doi: 10.1016/j.semcdb.2012.07.002
12 LUO J , YU F X . GPCR-Hippo signaling in cancer[J]. Cells, 2019, 8 (5):
doi: 10.3390/cells8050426
13 PAN D . The Hippo signaling pathway in development and cancer[J]. Dev Cell, 2010, 19 (4): 491- 505
doi: 10.1016/j.devcel.2010.09.011
14 MA B , CHEN Y , CHEN L et al. Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase[J]. Nat Cell Biol, 2015, 17 (1): 95- 103
doi: 10.1038/ncb3073
15 WANG W , XIAO Z D , LI X et al. AMPK modulates Hippo pathway activity to regulate energy homeostasis[J]. Nat Cell Biol, 2015, 17 (4): 490- 499
doi: 10.1038/ncb3113
16 GALAN J A , AVRUCH J . MST1/MST2 protein kinases:regulation and physiologic roles[J]. Biochemistry, 2016, 55 (39): 5507- 5519
doi: 10.1021/acs.biochem.6b00763
17 WIERZBICKI P M , RYBARCZY A . The Hippo pathway in colorectal cancer[J]. Folia Histochem Cytobiol, 2015, 53 (2): 105- 119
doi: 10.5603/FHC.a2015.0015
18 TSCHAHARGANEH D F , CHEN X , LATZKO P et al. Yes-associated protein up-regulates Jagged-1 and activates the Notch pathway in human hepatocellular carcinoma[J]. Gastroenterology, 2013, 144:1530- 1542
doi: 10.1053/j.gastro.2013.02.009
19 YIMLAMAI D , CHRISTODOULOU C , GALLI G G et al. Hippo pathway activity influences liver cell fate[J]. Cell, 2014, 157 (6): 1324- 1338
doi: 10.1016/j.cell.2014.03.060
20 ZHOU D , CONRAD C , XIA F et al. Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene[J]. Cancer Cell, 2009, 16 (5): 425- 438
doi: 10.1016/j.ccr.2009.09.026
21 LOFORESE G , MALINKA T , KEOGH A et al. Impaired liver regeneration in aged mice can be rescued by silencing Hippo core kinases MST1 and MST2[J]. EMBO Mol Med, 2017, 9 (1): 46- 60
doi: 10.15252/emmm.201506089
22 HONG L , CAI Y , JIANG M et al. The Hippo signaling pathway in liver regeneration and tumorigenesis[J]. Acta Biochim Biophys Sin (Shanghai), 2015, 47:46- 52
doi: 10.1093/abbs/gmu106
23 ZENDER L , SPECTOR M S , XUE W et al. Identification and validation of oncogenes in liver cancer using an integrative oncogenomic approach[J]. Cell, 2006, 125 (7): 1253- 1267
doi: 10.1016/j.cell.2006.05.030
24 ZHANG L , SONG X , LI X et al. Yes-associated protein 1 as a novel prognostic biomarker for gastrointestinal cancer:a meta-analysis[J]. Biomed Res Int, 2018, 2018:4039173
doi: 10.1155/2018/4039173
25 JIAO S , LI C , HAO Q et al. VGLL4 targets a TCF4-TEAD4 complex to coregulate Wnt and Hippo signalling in colorectal cancer[J]. Nat Commun, 2017, 8:14058
doi: 10.1038/ncomms14058
26 SHEN S , GUO X , YAN H et al. A miR-130a-YAP positive feedback loop promotes organ size and tumorigenesis[J]. Cell Res, 2015, 25 (9): 997- 1012
doi: 10.1038/cr.2015.98
27 ZHANG S , CHEN Q , LIU Q et al. Hippo signaling suppresses cell ploidy and tumorigenesis through Skp2[J]. Cancer Cell, 2017, 31 (5): 669- 684
doi: 10.1016/j.ccell.2017.04.004
28 HONG A W , MENG Z , GUAN K L . The Hippo pathway in intestinal regeneration and disease[J]. Nat Rev Gastroenterol Hepatol, 2016, 13 (6): 324- 337
doi: 10.1038/nrgastro.2016.59
29 ZHOU D , ZHANG Y , WU H et al. Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance[J]. Proc Natl Acad Sci U S A, 2011, 108 (49): E1312- 1320
doi: 10.1073/pnas.1110428108
30 DEHGHANIAN F , HOJATI Z , HOSSEINKHAN N et al. Reconstruction of the genome-scale co-expression network for the Hippo signaling pathway in colorectal cancer[J]. Comput Biol Med, 2018, 99:76- 84
doi: 10.1016/j.compbiomed.2018.05.023
31 LIANG K , ZHOU G , ZHANG Q et al. Expression of hippo pathway in colorectal cancer[J]. Saudi J Gastroenterol, 2014, 20 (3): 188- 194
doi: 10.4103/1319-3767.133025
32 YUEN H F , MCCRUDDEN C M , HUANG Y H et al. TAZ expression as a prognostic indicator in colorectal cancer[J]. PLoS One, 2013, 8 (1): e54211
doi: 10.1371/journal.pone.0054211
33 SONG R , GU D , ZHANG L et al. Functional significance of Hippo/YAP signaling for drug resistance in colorectal cancer[J]. Mol Carcinog, 2018, 57 (11): 1608- 1615
doi: 10.1002/mc.22883
34 LIU B S , XIA H W , ZHOU S et al. Inhibition of YAP reverses primary resistance to EGFR inhibitors in colorectal cancer cells[J]. Oncol Rep, 2018, 40 (4): 2171- 2182
doi: 10.3892/or.2018.6630
35 WIERZBICKI P M , ADRYCH K , KARTANOWICZ D et al. Underexpression of LATS1 TSG in colorectal cancer is associated with promoter hypermethylation[J]. World J Gastroenterol, 2013, 19 (27): 4363- 4373
doi: 10.3748/wjg.v19.i27.4363
36 MCKEY J , MARTIRE D , DE SANTA BARBARA P et al. LIX1 regulates YAP1 activity and controls the proliferation and differentiation of stomach mesenchymal progenitors[J]. BMC Biol, 2016, 14:34
doi: 10.1186/s12915-016-0257-2
37 YU M , CUI R , HUANG Y et al. Increased proton-sensing receptor GPR4 signalling promotes colorectal cancer progression by activating the hippo pathway[J]. EBioMedicine, 2019, 48:264- 276
doi: 10.1016/j.ebiom.2019.09.016
38 YAO H , ASHIHARA E , MAEKAWA T . Targeting the Wnt/beta-catenin signaling pathway in human cancers[J]. Expert Opin Ther Targets, 2011, 15 (7): 873- 887
doi: 10.1517/14728222.2011.577418
39 CHOI W , KIM J , PARK J et al. YAP/TAZ initiates gastric tumorigenesis via upregulation of MYC[J]. Cancer Res, 2018, 78 (12): 3306- 3320
doi: 10.1158/0008-5472.CAN-17-3487
40 LI L , ZHAO J , HUANG S et al. MiR-93-5p promotes gastric cancer-cell progression via inactivation of the Hippo signaling pathway[J]. Gene, 2018, 641:240- 247
doi: 10.1016/j.gene.2017.09.071
41 YAN H , QIU C , SUN W et al. Yap regulates gastric cancer survival and migration via SIRT1/Mfn2/mitophagy[J]. Oncol Rep, 2018, 39 (4):
42 JIAO S , GUAN J , CHEN M et al. Targeting IRF3 as a YAP agonist therapy against gastric cancer[J]. J Exp Med, 2018, 215 (2): 699- 718
doi: 10.1084/jem.20171116
[1] 朱慧琦,应可净. 组织因子与肿瘤患者静脉血栓栓塞[J]. 浙江大学学报(医学版), 2020, 49(6): 772-778.
[2] 林翠翠,陈正云,王春艳,席咏梅. 基于脂质组学的子宫内膜异位症生物标志物研究进展[J]. 浙江大学学报(医学版), 2020, 49(6): 779-784.
[3] 李梦瑶,刘盼,柯越海,张雪. 放射性肺损伤中巨噬细胞作用机制的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 623-628.
[4] 韩雪,蒋国军,石巧娟. 降血糖药对内皮祖细胞作用的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 629-636.
[5] 段润平,许叶圣,郑利斌,姚玉峰. 病毒感染性眼病病原学诊断的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 644-650.
[6] 吴唯,徐键. 正五聚蛋白3在多囊卵巢综合征中的作用研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 637-643.
[7] 徐清霖,楼国东,王甜甜,张力三. 发作性睡病的药物治疗进展[J]. 浙江大学学报(医学版), 2020, 49(4): 419-424.
[8] 蒋沛然,王志萍. 模式生物神经轴突再生的研究进展[J]. 浙江大学学报(医学版), 2020, 49(4): 500-507.
[9] 陈峻逸,杨翔,方学贤,王福俤,闵军霞. 铁死亡与重大慢性疾病[J]. 浙江大学学报(医学版), 2020, 49(1): 44-57.
[10] 俞卿, 熊秀芳, 孙毅. 靶向Cullin-RING E3泛素连接酶的抗肿瘤策略及相关药物研发进展[J]. 浙江大学学报(医学版), 2020, 49(1): 1-19.
[11] 段玲艳,尹香菊,孟红恩,方学贤,闵军霞,王福俤. 铁稳态代谢表观遗传调控机制的研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 58-70.
[12] 李艾,张添源,高建青. 间充质干细胞的肿瘤归巢特性及其肿瘤靶向治疗应用研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 20-34.
[13] 钟文,楼燕,邱宸阳,李栋林,张鸿坤. 髂静脉支架植入术后药物治疗策略研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 131-136.
[14] 徐亦鸣,应可净. 中性粒细胞胞外诱捕网与肿瘤相关研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 107-112.
[15] 刘晓晓,郭莉琼,梁成. 抗N-甲基-D-天冬氨酸受体脑炎患者脑电图特点的研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 118-123.