Please wait a minute...
浙江大学学报(医学版)  2020, Vol. 49 Issue (1): 107-112    DOI: 10.3785/j.issn.1008-9292.2020.02.11
综述     
中性粒细胞胞外诱捕网与肿瘤相关研究进展
徐亦鸣(),应可净*()
浙江大学医学院附属邵逸夫医院呼吸内科, 浙江 杭州 310016
Research progress on neutrophil extracellular traps in tumor
XU Yiming(),YING Kejing*()
Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
 全文: PDF(989 KB)   HTML( 9 )
摘要:

中性粒细胞胞外诱捕网(NET)是一种来源于中性粒细胞的由DNA骨架及多种镶嵌于其上的活性蛋白组成的细胞外纤维网状结构。NET除了发挥杀菌作用,与免疫性疾病、血栓、肿瘤等多种疾病都有密切关联。近年来,多项研究表明NET在多种肿瘤中高表达,且肿瘤及其微环境可以促进NET的产生,而NET也参与多种肿瘤的发生发展,与肿瘤增殖、转移及相关血栓形成均密切相关,这也为肿瘤的临床诊治提供了新的思路。本文主要阐述NET与肿瘤相关的研究进展,并对其临床应用价值作一展望。

关键词: 肿瘤形成过程中性粒细胞胞外诱捕网肿瘤/细胞增殖肿瘤转移肿瘤复发血栓形成综述    
Abstract:

Neutrophil extracellular traps(NET)is neutrophil-derived extracellular fiber web-like structure, composed of DNA scaffold studded with various active proteins. In addition to its bactericidal effect, NET is closely related to various diseases including immune disease, thrombosis and tumor. Recently, lots of researches have shown that NET is highly expressed in a variety of tumors, tumor cells and microenvironment can promote NET formation, whereas NET participates in tumor progression as well, and is closely related to tumor proliferation, metastasis and thrombosis, which provides new clinical thinking in tumor diagnosis as well as treatment indeed. This review will focus on the research progress of NET and tumor, meanwhile make a prospect for its clinical application value.

Key words: Neoplastic processes    Neutrophil extracellular traps    Neoplasms/cell proliferation    Neoplasms metastasis    Neoplasms/recurrence    Thrombosis    Review
收稿日期: 2019-09-29 出版日期: 2020-06-08
CLC:  R730.23  
基金资助: 国家自然科学基金(81970049);国家重大科研仪器研制项目(31627801)
通讯作者: 应可净     E-mail: 21918273@zju.edu.cn;3197061@zju.edu.cn
作者简介: 徐亦鸣(1996-), 女, 硕士研究生, 主要从事肺血管疾病的基础研究; E-mail:21918273@zju.edu.cn; https://orcid.org/0000-0002-4535-1491
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐亦鸣
应可净

引用本文:

徐亦鸣,应可净. 中性粒细胞胞外诱捕网与肿瘤相关研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 107-112.

XU Yiming,YING Kejing. Research progress on neutrophil extracellular traps in tumor. J Zhejiang Univ (Med Sci), 2020, 49(1): 107-112.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2020.02.11        http://www.zjujournals.com/med/CN/Y2020/V49/I1/107

1 TECCHIO C , MICHELETTI A , CASSATELLA M A . Neutrophil-derived cytokines:facts beyond expression[J]. Front Immunol, 2014, 5:508
doi: 10.3389/fimmu.2014.00508
2 BRINKMANN V , REICHARD U , GOOSMANN C et al. Neutrophil extracellular traps kill bacteria[J]. Science, 2004, 303 (5663): 1532- 1535
doi: 10.1126/science.1092385
3 BRINKMANN V , ZYCHLINSKY A . Beneficial suicide:why neutrophils die to make NETs[J]. Nat Rev Microbiol, 2007, 5 (8): 577- 582
doi: 10.1038/nrmicro1710
4 REMIJSEN Q , KUIJPERS T W , WIRAWAN E et al. Dying for a cause:NETosis, mechanisms behind an antimicrobial cell death modality[J]. Cell Death Differ, 2011, 18 (4): 581- 588
doi: 10.1038/cdd.2011.1
5 DELGADO-RIZO V , MARTíNEZ-GUZMáN M A , I?IGUEZ-GUTIERREZ L et al. Neutrophil extracellular traps and its implications in inflammation:an overview[J]. Front Immunol, 2017, 8:81
doi: 10.3389/fimmu.2017.00081
6 SKENDROS P , MITROULIS I , RITIS K . Autophagy in neutrophils:from granulopoiesis to neutrophil extracellular traps[J]. Front Cell Dev Biol, 2018, 6:109
doi: 10.3389/fcell.2018.00109
7 JORCH S K , KUBES P . An emerging role for neutrophil extracellular traps in noninfectious disease[J]. Nat Med, 2017, 23 (3): 279- 287
doi: 10.1038/nm.4294
8 BERGER-ACHITUV S , BRINKMANN V , ABED U A et al. A proposed role for neutrophil extracellular traps in cancer immunoediting[J]. Front Immunol, 2013, 4:48
doi: 10.3389/fimmu.2013.00048
9 PARK J , WYSOCKI R W , AMOOZGAR Z et al. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps[J]. Sci Transl Med, 2016, 8 (361): 361r
doi: 10.1126/scitranslmed.aag1711
10 BOONE B A , ORLICHENKO L , SCHAPIRO N E et al. The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer[J]. Cancer Gene Ther, 2015, 22 (6): 326- 334
doi: 10.1038/cgt.2015.21
11 GUGLIETTA S , CHIAVELLI A , ZAGATO E et al. Coagulation induced by C3aR-dependent NETosis drives protumorigenic neutrophils during small intestinal tumorigenesis[J]. Nat Commun, 2016, 7:11037
doi: 10.1038/ncomms11037
12 TOHME S , YAZDANI H O , AL-KHAFAJI A B et al. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress[J]. Cancer Res, 2016, 76 (6): 1367- 1380
doi: 10.1158/0008-5472.CAN-15-1591
13 ZHANG Y , WANG C , YU M et al. Neutrophil extracellular traps induced by activated platelets contribute to procoagulant activity in patients with colorectal cancer[J]. Thromb Res, 2019, 180:87- 97
doi: 10.1016/j.thromres.2019.06.005
14 LEE W , KO S Y , MOHAMED M S et al. Neutrophils facilitate ovarian cancer premetastatic niche formation in the omentum[J]. J Exp Med, 2019, 216 (1): 176- 194
doi: 10.1084/jem.20181170
15 LI B , LIU Y , HU T et al. Neutrophil extracellular traps enhance procoagulant activity in patients with oral squamous cell carcinoma[J]. J Cancer Res Clin Oncol, 2019, 145 (7): 1695- 1707
doi: 10.1007/s00432-019-02922-2
16 KRISTENSEN J H , KARSDAL M A , SAND J M et al. Serological assessment of neutrophil elastase activity on elastin during lung ECM remodeling[J]. BMC Pulm Med, 2015, 15:53
doi: 10.1186/s12890-015-0048-5
17 KISTOWSKI M , DBSKI J , KARCZMARSKI J et al. A strong neutrophil elastase proteolytic fingerprint marks the carcinoma tumor proteome[J]. Mol Cell Proteomics, 2017, 16 (2): 213- 227
doi: 10.1074/mcp.M116.058818
18 LI H , QIU Z , LI F et al. The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis[J]. Oncol Lett, 2017, 14 (5): 5865- 5870
doi: 10.3892/ol.2017.6924
19 DEMERS M , KRAUSE D S , SCHATZBERG D et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis[J]. Proc Natl Acad Sci U S A, 2012, 109 (32): 13076- 13081
doi: 10.1073/pnas.1200419109
20 ALFARO C , TEIJEIRA A , O?ATE C et al. Tumor-produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs)[J]. Clin Cancer Res, 2016, 22 (15): 3924- 3936
doi: 10.1158/1078-0432.CCR-15-2463
21 NIE M , YANG L , BI X et al. Neutrophil extracellular traps induced by IL8 promote diffuse large B-cell lymphoma progression via the TLR9 signaling[J]. Clin Cancer Res, 2019, 25 (6): 1867- 1879
doi: 10.1158/1078-0432.CCR-18-1226
22 TEIJEIRA á , GARASA S , GATO M et al. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity[J]. Immunity, 2020,
doi: 10.1016/j.immuni.2020.03.001
23 ABDOL RAZAK N , ELASKALANI O , METHAROM P . Pancreatic cancer-induced neutrophil extracellular traps:a potential contributor to cancer-associated thrombosis[J]. Int J Mol Sci, 2017, 18 (3):
doi: 10.3390/ijms18030487
24 LEAL A C , MIZURINI D M , GOMES T et al. Tumor-derived exosomes induce the formation of neutrophil extracellular traps:implications for the establishment of cancer-associated thrombosis[J]. Sci Rep, 2017, 7 (1): 6438
doi: 10.1038/s41598-017-06893-7
25 DEMERS M, WONG S L, MARTINOD K, et al. Priming of neutrophils toward NETosis promotes tumor growth[J/OL]. Oncoimmunology, 2016, 5(5): e1134073. DOI: 10.1080/2162402X.2015.1134073.
26 MILLER-OCUIN J L, LIANG X, BOONE B A, et al. DNA released from neutrophil extracellular traps (NETs) activates pancreatic stellate cells and enhances pancreatic tumor growth[J/OL]. Oncoimmunology, 2019, 8(9): e1605822. DOI: 10.1080/2162402X.2019.1605822.
27 HOUGHTON A M , RZYMKIEWICZ D M , JI H et al. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth[J]. Nat Med, 2010, 16 (2): 219- 223
doi: 10.1038/nm.2084
28 GONG L , CUMPIAN A M , CAETANO M S et al. Promoting effect of neutrophils on lung tumorigenesis is mediated by CXCR2 and neutrophil elastase[J]. Mol Cancer, 2013, 12 (1): 154
doi: 10.1186/1476-4598-12-154
29 WARNATSCH A , IOANNOU M , WANG Q et al. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis[J]. Science, 2015, 349 (6245): 316- 320
doi: 10.1126/science.aaa8064
30 COOLS-LARTIGUE J , SPICER J , MCDONALD B et al. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis[J]. J Clin Invest, 2013, 123 (8): 3446- 3458
doi: 10.1172/JCI67484
31 RAYES R F , MOUHANNA J G , NICOLAU I et al. Primary tumors induce neutrophil extracellular traps with targetable metastasis promoting effects[J]. JCI Insight, 2019, 5:pii:128008
doi: 10.1172/jci.insight.128008
32 NAJMEH S , COOLS-LARTIQUE J , RAYES R F et al. Neutrophil extracellular traps sequester circulating tumor cells via β1-integrin mediated interactions[J]. Int J Cancer, 2017, 140 (10): 2321- 2330
doi: 10.1002/ijc.30635
33 YANG L Y , LUO Q , LU L et al. Increased neutrophil extracellular traps promote metastasis potential of hepatocellular carcinoma via provoking tumorous inflammatory response[J]. J Hematol Oncol, 2020, 13 (1): 3
doi: 10.1186/s13045-019-0836-0
34 SOSA M S , BRAGADO P , AGUIRRE-GHISO J A . Mechanisms of disseminated cancer cell dormancy:an awakening field[J]. Nat Rev Cancer, 2014, 14 (9): 611- 622
doi: 10.1038/nrc3793
35 ALBRENGUES J , SHIELDS M A , NG D et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice[J]. Science, 2018, 361 (6409):
doi: 10.1126/science.aao4227
36 HISADA Y , MACKMAN N . Cancer-associated pathways and biomarkers of venous thrombosis[J]. Blood, 2017, 130 (13): 1499- 1506
doi: 10.1182/blood-2017-03-743211
37 D?RING Y , SOEHNLEIN O , WEBER C . Neutrophil extracellular traps in atherosclerosis and atherothrombosis[J]. Circ Res, 2017, 120 (4): 736- 743
doi: 10.1161/CIRCRESAHA.116.309692
38 JUNG H S, GU J, KIM J E, et al. Cancer cell-induced neutrophil extracellular traps promote both hypercoagulability and cancer progression[J/OL]. PLoS One, 2019, 14(4): e0216055. DOI: 10.1371/journal.pone.0216055.
39 YANG C , SUN W , CUI W et al. Procoagulant role of neutrophil extracellular traps in patients with gastric cancer[J]. Int J Clin Exp Pathol, 2015, 8 (11): 14075- 14086
40 TH?LIN C , DEMERS M , BLOMGREN B et al. NETosis promotes cancer-associated arterial microthrombosis presenting as ischemic stroke with troponin elevation[J]. Thromb Res, 2016, 139:56- 64
doi: 10.1016/j.thromres.2016.01.009
41 CEDERVALL J , ZHANG Y , HUANG H et al. Neutrophil extracellular traps accumulate in peripheral blood vessels and compromise organ function in tumor-bearing animals[J]. Cancer Res, 2015, 75 (13): 2653- 2662
doi: 10.1158/0008-5472.CAN-14-3299
42 KAMBAS K, MITROULIS I, APOSTOLIDOU E, et al. Autophagy mediates the delivery of thrombogenic tissue factor to neutrophil extracellular traps in human sepsis[J/OL]. PLoS One, 2012, 7(9): e45427. DOI: 10.1371/journal.pone.0045427.
43 THOMAS G M , BRILL A , MEZOUAR S et al. Tissue factor expressed by circulating cancer cell-derived microparticles drastically increases the incidence of deep vein thrombosis in mice[J]. J Thromb Haemost, 2015, 13 (7): 1310- 1319
doi: 10.1111/jth.13002
44 MASSBERG S , GRAHL L , VON BRUEHL M L et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases[J]. Nat Med, 2010, 16 (8): 887- 896
doi: 10.1038/nm.2184
45 BOONE B A , MURTHY P , MILLER-OCUIN J et al. Chloroquine reduces hypercoagulability in pancreatic cancer through inhibition of neutrophil extracellular traps[J]. BMC Cancer, 2018, 18 (1): 678
doi: 10.1186/s12885-018-4584-2
46 CEDERVALL J, DRAGOMIR A, SAUPE F, et al. Pharmacological targeting of peptidylarginine deiminase 4 prevents cancer-associated kidney injury in mice[J/OL]. Oncoimmunology, 2017, 6(8): e1320009. DOI: 10.1080/2162402X.2017.1320009.
47 SHAK S , CAPON D J , HELLMISS R et al. Recombinant human DNase I reduces the viscosity of cystic fibrosis sputum[J]. Proc Natl Acad Sci U S A, 1990, 87 (23): 9188- 9192
doi: 10.1073/pnas.87.23.9188
[1] 朱慧琦,应可净. 组织因子与肿瘤患者静脉血栓栓塞[J]. 浙江大学学报(医学版), 2020, 49(6): 772-778.
[2] 林翠翠,陈正云,王春艳,席咏梅. 基于脂质组学的子宫内膜异位症生物标志物研究进展[J]. 浙江大学学报(医学版), 2020, 49(6): 779-784.
[3] 李梦瑶,刘盼,柯越海,张雪. 放射性肺损伤中巨噬细胞作用机制的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 623-628.
[4] 韩雪,蒋国军,石巧娟. 降血糖药对内皮祖细胞作用的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 629-636.
[5] 段润平,许叶圣,郑利斌,姚玉峰. 病毒感染性眼病病原学诊断的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 644-650.
[6] 吴唯,徐键. 正五聚蛋白3在多囊卵巢综合征中的作用研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 637-643.
[7] 徐清霖,楼国东,王甜甜,张力三. 发作性睡病的药物治疗进展[J]. 浙江大学学报(医学版), 2020, 49(4): 419-424.
[8] 蒋沛然,王志萍. 模式生物神经轴突再生的研究进展[J]. 浙江大学学报(医学版), 2020, 49(4): 500-507.
[9] 陈峻逸,杨翔,方学贤,王福俤,闵军霞. 铁死亡与重大慢性疾病[J]. 浙江大学学报(医学版), 2020, 49(1): 44-57.
[10] 俞卿, 熊秀芳, 孙毅. 靶向Cullin-RING E3泛素连接酶的抗肿瘤策略及相关药物研发进展[J]. 浙江大学学报(医学版), 2020, 49(1): 1-19.
[11] 段玲艳,尹香菊,孟红恩,方学贤,闵军霞,王福俤. 铁稳态代谢表观遗传调控机制的研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 58-70.
[12] 李艾,张添源,高建青. 间充质干细胞的肿瘤归巢特性及其肿瘤靶向治疗应用研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 20-34.
[13] 黄耀凭,杨凤,周天华,谢珊珊. Hippo信号通路及其在消化系统肿瘤中的作用研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 35-43.
[14] 钟文,楼燕,邱宸阳,李栋林,张鸿坤. 髂静脉支架植入术后药物治疗策略研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 131-136.
[15] 刘晓晓,郭莉琼,梁成. 抗N-甲基-D-天冬氨酸受体脑炎患者脑电图特点的研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 118-123.