综述 |
|
|
|
|
多腺苷二磷酸核糖基化修饰与神经退行性变性疾病 |
王毅( ),卢韵碧*( ) |
浙江大学医学院基础医学院药理学系, 浙江 杭州 310058 |
|
Poly adenosine diphosphate-ribosylation and neurodegenerative diseases |
WANG Yi( ),LU Yunbi*( ) |
Department of Pharmacology, College of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China |
1 |
BASELLO D A , SCOVASSI A I . Poly(ADP-ribosylation) and neurodegenerative disorders[J]. Mitochondrion, 2015, 24:56- 63
doi: 10.1016/j.mito.2015.07.005
|
2 |
WU Y , CHEN M , JIANG J . Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling[J]. Mitochondrion, 2019, 49:35- 45
doi: 10.1016/j.mito.2019.07.003
|
3 |
CHAMBON P , WEILL J D , MANDEL P . Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme[J]. Biochem Biophys Res Commun, 1963, 11:39- 43
doi: 10.1016/0006-291x(63)90024-x
|
4 |
COSI C , SUZUKI H , MILANI D et al. Poly(ADP-ribose) polymerase:early involvement in glutamate-induced neurotoxicity in cultured cerebellar granule cells[J]. J Neurosci Res, 1994, 39 (1): 38- 46
doi: 10.1002/jnr.490390106
|
5 |
ZHANG J , DAWSON V L , DAWSON T M et al. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity[J]. Science, 1994, 263 (5147): 687- 689
doi: 10.1126/science.8080500
|
6 |
GERACE E , PELLEGRINI-GIAMPIETRO D E , MORONI F et al. Poly(ADP-ribose)polymerase 1(PARP-1) activation and Ca(2+) permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) channels in post-ischemic brain damage:New therapeutic opportunities?[J]. CNS Neurol Disord Drug Targets, 2015, 14 (5): 636- 646
doi: 10.2174/1871527314666150430162841
|
7 |
KHODYREVA S N, LAVRIK O I.[Poly(ADP-Ribose) polymerase 1 as a key regulator of DNA repair] [J]. Mol Biol (Mosk), 2016, 50(4): 655-673. DOI: 10.7868/S0026898416040030.
|
8 |
PIAO L , FUJIOKA K , NAKAKIDO M et al. Regulation of poly(ADP-Ribose) polymerase 1 functions by post-translational modifications[J]. Front Biosci (Landmark Ed), 2018, 23:13- 26
doi: 10.2741/4578
|
9 |
MCGURK L , RIFAI O M , BONINI N M . Poly(ADP-ribosylation) in age-related neurological disease[J]. Trends Genet, 2019, 35 (8): 601- 613
doi: 10.1016/j.tig.2019.05.004
|
10 |
GAGNé J P , ISABELLE M , LO K S et al. Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes[J]. Nucleic Acids Res, 2008, 36 (22): 6959- 6976
doi: 10.1093/nar/gkn771
|
11 |
ANDRABI S A , UMANAH G K , CHANG C et al. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis[J]. Proc Natl Acad Sci U S A, 2014, 111 (28): 10209- 10214
doi: 10.1073/pnas.1405158111
|
12 |
GUO L , FARE C M , SHORTER J . Therapeutic dissolution of aberrant phases by nuclear-import receptors[J]. Trends Cell Biol, 2019, 29 (4): 308- 322
doi: 10.1016/j.tcb.2018.12.004
|
13 |
TAYLOR J P , BROWN R H JR , CLEVELAND D W . Decoding ALS:from genes to mechanism[J]. Nature, 2016, 539 (7628): 197- 206
doi: 10.1038/nature20413
|
14 |
HOBSON E V , MCDERMOTT C J . Supportive and symptomatic management of amyotrophic lateral sclerosis[J]. Nat Rev Neurol, 2016, 12 (9): 526- 538
doi: 10.1038/nrneurol.2016.111
|
15 |
LIU C , FANG Y . New insights of poly(ADP-ribosylation) in neurodegenerative diseases:A focus on protein phase separation and pathologic aggregation[J]. Biochem Pharmacol, 2019, 167:58- 63
doi: 10.1016/j.bcp.2019.04.028
|
16 |
KIM S H , ENGELHARDT J I , HENKEL J S et al. Widespread increased expression of the DNA repair enzyme PARP in brain in ALS[J]. Neurology, 2004, 62 (2): 319- 322
doi: 10.1212/01.wnl.0000103291.04985.dc
|
17 |
KIM S H , HENKEL J S , BEERS D R et al. PARP expression is increased in astrocytes but decreased in motor neurons in the spinal cord of sporadic ALS patients[J]. J Neuropathol Exp Neurol, 2003, 62 (1): 88- 103
doi: 10.1093/jnen/62.1.88
|
18 |
MCGURK L , MOJSILOVIC-PETROVIC J , VAN DEERLIN V M et al. Nuclear poly(ADP-ribose) activity is a therapeutic target in amyotrophic lateral sclerosis[J]. Acta Neuropathol Commun, 2018, 6 (1): 84
doi: 10.1186/s40478-018-0586-1
|
19 |
MCGURK L , GOMES E , GUO L et al. Poly(ADP-ribose) prevents pathological phase separation of TDP-43 by promoting liquid demixing and stress granule localization[J]. Mol Cell, 2018, 71 (5): 703- 717
doi: 10.1016/j.molcel.2018.07.002
|
20 |
DUAN Y , DU A , GU J et al. PARylation regulates stress granule dynamics, phase separation, and neurotoxicity of disease-related RNA-binding proteins[J]. Cell Res, 2019, 29 (3): 233- 247
doi: 10.1038/s41422-019-0141-z
|
21 |
SINGATULINA A S , HAMON L , SUKHANOVA M V et al. PARP-1 activation directs FUS to DNA damage sites to form parg-reversible compartments enriched in damaged DNA[J]. Cell Rep, 2019, 27 (6): 1809- 1821
doi: 10.1016/j.celrep.2019.04.031
|
22 |
OUTEIRO T F , GRAMMATOPOULOS T N , ALTMANN S et al. Pharmacological inhibition of PARP-1 reduces alpha-synuclein- and MPP+-induced cytotoxicity in Parkinson's disease in vitro models[J]. Biochem Biophys Res Commun, 2007, 357 (3): 596- 602
doi: 10.1016/j.bbrc.2007.03.163
|
23 |
MANDIR A S , PRZEDBORSKI S , JACKSON-LEWIS V et al. Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced parkinsonism[J]. Proc Natl Acad Sci U S A, 1999, 96 (10): 5774- 5779
doi: 10.1073/pnas.96.10.5774
|
24 |
WANG H , SHIMOJI M , YU S W et al. Apoptosis inducing factor and PARP-mediated injury in the MPTP mouse model of Parkinson's disease[J]. Ann N Y Acad Sci, 2003, 991:132- 139
doi: 10.1111/j.1749-6632.2003.tb07471.x
|
25 |
WU X L , WANG P , LIU Y H et al. Effects of poly (ADP-ribose) polymerase inhibitor 3-aminobenzamide on blood-brain barrier and dopaminergic neurons of rats with lipopolysaccharide-induced Parkinson's disease[J]. J Mol Neurosci, 2014, 53 (1): 1- 9
doi: 10.1007/s12031-013-0175-5
|
26 |
KAM T I , MAO X , PARK H et al. Poly(ADP-ribose) drives pathologic alpha-synuclein neurodegeneration in Parkinson's disease[J]. Science, 2018, 362 (6414): pii:eaat8407
doi: 10.1126/science.aat8407
|
27 |
SARAIVA L M, SEIXAS DA SILVA G S, GALINA A, et al. Amyloid-beta triggers the release of neuronal hexokinase 1 from mitochondria[J/OL]. PLoS One, 2010, 5: e15230. DOI: 10.1371/journal.pone.0015230.
|
28 |
CORONA J C , GIMENEZ-CASSINA A , LIM F et al. Hexokinase Ⅱ gene transfer protects against neurodegeneration in the rotenone and MPTP mouse models of Parkinson's disease[J]. J Neurosci Res, 2010, 88 (9): 1943- 1950
doi: 10.1002/jnr.22357
|
29 |
FATOKUN A A , DAWSON V L , DAWSON T M . Parthanatos:mitochondrial-linked mechanisms and therapeutic opportunities[J]. Br J Pharmacol, 2014, 171 (8): 2000- 2016
doi: 10.1111/bph.12416
|
30 |
YU Y M , KIM J B , LEE K W et al. Inhibition of the cerebral ischemic injury by ethyl pyruvate with a wide therapeutic window[J]. Stroke, 2005, 36 (10): 2238- 2243
doi: 10.1161/01.STR.0000181779.83472.35
|
31 |
YING W , CHEN Y , ALANO C C et al. Tricarboxylic acid cycle substrates prevent PARP-mediated death of neurons and astrocytes[J]. J Cereb Blood Flow Metab, 2002, 22 (7): 774- 779
doi: 10.1097/00004647-200207000-00002
|
32 |
GALLUZZI L , VITALE I , AARONSON S A et al. Molecular mechanisms of cell death:recommendations of the Nomenclature Committee on Cell Death 2018[J]. Cell Death Differ, 2018, 25 (3): 486- 541
doi: 10.1038/s41418-017-0012-4
|
33 |
LI X , KLAUS J A , ZHANG J et al. Contributions of poly(ADP-ribose) polymerase-1 and -2 to nuclear translocation of apoptosis-inducing factor and injury from focal cerebral ischemia[J]. J Neurochem, 2010, 113 (4): 1012- 1022
doi: 10.1111/j.1471-4159.2010.06667.x
|
34 |
BIANCHETTI E, MLADINIC M, NISTRI A. Mechanisms underlying cell death in ischemia-like damage to the rat spinal cord in vitro[J/OL]. Cell Death Dis, 2013, 4: e707. DOI: 10.1038/cddis.2013.237.
|
35 |
YANG X , CHENG J , GAO Y et al. Downregulation of Iduna is associated with AIF nuclear translocation in neonatal brain after hypoxia-ischemia[J]. Neuroscience, 2017, 346:74- 80
doi: 10.1016/j.neuroscience.2017.01.010
|
36 |
MARTIRE S , MOSCA L , D'ERME M . PARP-1 involvement in neurodegeneration:A focus on Alzheimer's and Parkinson's diseases[J]. Mech Ageing Dev, 2015, 146-148:53- 64
doi: 10.1016/j.mad.2015.04.001
|
37 |
LEE Y , KANG H C , LEE B D et al. Poly (ADP-ribose) in the pathogenesis of Parkinson's disease[J]. BMB Rep, 2014, 47 (8): 424- 432
doi: 10.5483/bmbrep.2014.47.8.119
|
38 |
ANGLADE P , VYAS S , JAVOY-AGID F et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease[J]. Histol Histopathol, 1997, 12 (1): 25- 31
|
39 |
BOYCHUK T M , NIKA O M , TKACHUK S S . The ratio of p53-proapoptotic and bcl-2 antiapoptotic activity in the hippocampus of rats with brain ischemia-reperfusion and experimental diabetes[J]. Fiziol Zh, 2016, 62 (6): 25- 33
doi: 10.15407/fz62.06.025
|
40 |
WESIERSKA-GADEK J , SCHMID G . Poly(ADP-ribose) polymerase-1 regulates the stability of the wild-type p53 protein[J]. Cell Mol Biol Lett, 2001, 6 (2): 117- 140
doi: 10.1046/j.1462-5822.2001.00094.x
|
41 |
MARTIRE S, FUSO A, ROTILI D, et al. PARP-1 modulates amyloid beta peptide-induced neuronal damage[J/OL]. PLoS One, 2013, 8(9): e72169. DOI: 10.1371/journal.pone.0072169.
|
42 |
ZHOU J , JI M , YAO H et al. Discovery of quinazoline-2, 4(1H, 3H)-dione derivatives as novel PARP-1/2 inhibitors:design, synthesis and their antitumor activity[J]. Org Biomol Chem, 2018, 16 (17): 3189- 3202
doi: 10.1039/c8ob00286j
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|