Please wait a minute...
浙江大学学报(医学版)  2020, Vol. 49 Issue (1): 100-106    DOI: 10.3785/j.issn.1008-9292.2020.02.10
综述     
多腺苷二磷酸核糖基化修饰与神经退行性变性疾病
王毅(),卢韵碧*()
浙江大学医学院基础医学院药理学系, 浙江 杭州 310058
Poly adenosine diphosphate-ribosylation and neurodegenerative diseases
WANG Yi(),LU Yunbi*()
Department of Pharmacology, College of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
 全文: PDF(2124 KB)   HTML( 11 )
摘要:

神经退行性疾病的发病率越来越高,但其治疗手段有限。多腺苷二磷酸核糖基化修饰(PARylation)是由多腺苷二磷酸核糖聚合酶(PARP)催化的蛋白质翻译后修饰。PARylation通过影响蛋白质在细胞内的移位、聚集、蛋白质活性和细胞死亡,参与脑卒中、帕金森病、阿尔茨海默病、运动神经元病等神经退行性变性疾病的发生和发展。PARP抑制剂通过抑制蛋白PARylation,在药物临床前试验和临床试验Ⅰ期都展现了明显的神经保护作用。然而,寻找作用更特异的、符合神经退行性变性疾病治疗药动学特点的新型PARP抑制剂,将是抗神经退行性药物研发的新方向。本文就PARylation与神经退行性变性疾病的研究进展作一综述。

关键词: 多聚ADP-核糖化作用聚ADP核糖聚合酶类神经退行性疾病酶抑制剂/治疗综述    
Abstract:

The morbidity of neurodegenerative diseases are increased in recent years, however, the treatment is limited. Poly ADP-ribosylation (PARylation) is a post-translational modification of protein that catalyzed by poly(ADP-ribose) polymerase (PARP). Studies have shown that PARylation is involved in many neurodegenerative diseases such as stroke, Parkinson's diseases, Alzheimer's disease, amyotrophic lateral sclerosis and so on, by affecting intracellular translocation of protein molecules, protein aggregation, protein activity, and cell death. PARP inhibitors have showed neuroprotective efficacy for neurodegenerative diseases in pre-clinical studies and phase Ⅰ clinical trials. To find new PARP inhibitors with more specific effects and specific pharmacokinetic characteristics will be the new direction for the treatment of neurodegenerative diseases. This paper reviews the recent progress on PARylation in neurodegenerative diseases.

Key words: Poly ADP ribosylation    Poly(ADP-ribose) polymerases    Neurodegeneration    Enzyme inhibitor/therapies    Review
收稿日期: 2019-09-05 出版日期: 2020-06-08
CLC:  R741  
基金资助: 浙江省自然科学基金(LY18H170001);浙江省医药卫生科技计划(2017KY320);浙江省教育厅一般科研项目(Y201636340)
通讯作者: 卢韵碧     E-mail: 182486@zju.edu.cn;yunbi@zju.edu.cn
作者简介: 王毅(1995-), 女, 硕士研究生, 主要从事药理学研究; E-mail:182486@zju.edu.cn; https://orcid.org/0000-0001-7628-1556
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王毅
卢韵碧

引用本文:

王毅,卢韵碧. 多腺苷二磷酸核糖基化修饰与神经退行性变性疾病[J]. 浙江大学学报(医学版), 2020, 49(1): 100-106.

WANG Yi,LU Yunbi. Poly adenosine diphosphate-ribosylation and neurodegenerative diseases. J Zhejiang Univ (Med Sci), 2020, 49(1): 100-106.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2020.02.10        http://www.zjujournals.com/med/CN/Y2020/V49/I1/100

图 1  多腺苷二磷酸核糖基化修饰(PARylation)在神经退行性变性疾病中的作用
1 BASELLO D A , SCOVASSI A I . Poly(ADP-ribosylation) and neurodegenerative disorders[J]. Mitochondrion, 2015, 24:56- 63
doi: 10.1016/j.mito.2015.07.005
2 WU Y , CHEN M , JIANG J . Mitochondrial dysfunction in neurodegenerative diseases and drug targets via apoptotic signaling[J]. Mitochondrion, 2019, 49:35- 45
doi: 10.1016/j.mito.2019.07.003
3 CHAMBON P , WEILL J D , MANDEL P . Nicotinamide mononucleotide activation of new DNA-dependent polyadenylic acid synthesizing nuclear enzyme[J]. Biochem Biophys Res Commun, 1963, 11:39- 43
doi: 10.1016/0006-291x(63)90024-x
4 COSI C , SUZUKI H , MILANI D et al. Poly(ADP-ribose) polymerase:early involvement in glutamate-induced neurotoxicity in cultured cerebellar granule cells[J]. J Neurosci Res, 1994, 39 (1): 38- 46
doi: 10.1002/jnr.490390106
5 ZHANG J , DAWSON V L , DAWSON T M et al. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity[J]. Science, 1994, 263 (5147): 687- 689
doi: 10.1126/science.8080500
6 GERACE E , PELLEGRINI-GIAMPIETRO D E , MORONI F et al. Poly(ADP-ribose)polymerase 1(PARP-1) activation and Ca(2+) permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) channels in post-ischemic brain damage:New therapeutic opportunities?[J]. CNS Neurol Disord Drug Targets, 2015, 14 (5): 636- 646
doi: 10.2174/1871527314666150430162841
7 KHODYREVA S N, LAVRIK O I.[Poly(ADP-Ribose) polymerase 1 as a key regulator of DNA repair] [J]. Mol Biol (Mosk), 2016, 50(4): 655-673. DOI: 10.7868/S0026898416040030.
8 PIAO L , FUJIOKA K , NAKAKIDO M et al. Regulation of poly(ADP-Ribose) polymerase 1 functions by post-translational modifications[J]. Front Biosci (Landmark Ed), 2018, 23:13- 26
doi: 10.2741/4578
9 MCGURK L , RIFAI O M , BONINI N M . Poly(ADP-ribosylation) in age-related neurological disease[J]. Trends Genet, 2019, 35 (8): 601- 613
doi: 10.1016/j.tig.2019.05.004
10 GAGNé J P , ISABELLE M , LO K S et al. Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes[J]. Nucleic Acids Res, 2008, 36 (22): 6959- 6976
doi: 10.1093/nar/gkn771
11 ANDRABI S A , UMANAH G K , CHANG C et al. Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis[J]. Proc Natl Acad Sci U S A, 2014, 111 (28): 10209- 10214
doi: 10.1073/pnas.1405158111
12 GUO L , FARE C M , SHORTER J . Therapeutic dissolution of aberrant phases by nuclear-import receptors[J]. Trends Cell Biol, 2019, 29 (4): 308- 322
doi: 10.1016/j.tcb.2018.12.004
13 TAYLOR J P , BROWN R H JR , CLEVELAND D W . Decoding ALS:from genes to mechanism[J]. Nature, 2016, 539 (7628): 197- 206
doi: 10.1038/nature20413
14 HOBSON E V , MCDERMOTT C J . Supportive and symptomatic management of amyotrophic lateral sclerosis[J]. Nat Rev Neurol, 2016, 12 (9): 526- 538
doi: 10.1038/nrneurol.2016.111
15 LIU C , FANG Y . New insights of poly(ADP-ribosylation) in neurodegenerative diseases:A focus on protein phase separation and pathologic aggregation[J]. Biochem Pharmacol, 2019, 167:58- 63
doi: 10.1016/j.bcp.2019.04.028
16 KIM S H , ENGELHARDT J I , HENKEL J S et al. Widespread increased expression of the DNA repair enzyme PARP in brain in ALS[J]. Neurology, 2004, 62 (2): 319- 322
doi: 10.1212/01.wnl.0000103291.04985.dc
17 KIM S H , HENKEL J S , BEERS D R et al. PARP expression is increased in astrocytes but decreased in motor neurons in the spinal cord of sporadic ALS patients[J]. J Neuropathol Exp Neurol, 2003, 62 (1): 88- 103
doi: 10.1093/jnen/62.1.88
18 MCGURK L , MOJSILOVIC-PETROVIC J , VAN DEERLIN V M et al. Nuclear poly(ADP-ribose) activity is a therapeutic target in amyotrophic lateral sclerosis[J]. Acta Neuropathol Commun, 2018, 6 (1): 84
doi: 10.1186/s40478-018-0586-1
19 MCGURK L , GOMES E , GUO L et al. Poly(ADP-ribose) prevents pathological phase separation of TDP-43 by promoting liquid demixing and stress granule localization[J]. Mol Cell, 2018, 71 (5): 703- 717
doi: 10.1016/j.molcel.2018.07.002
20 DUAN Y , DU A , GU J et al. PARylation regulates stress granule dynamics, phase separation, and neurotoxicity of disease-related RNA-binding proteins[J]. Cell Res, 2019, 29 (3): 233- 247
doi: 10.1038/s41422-019-0141-z
21 SINGATULINA A S , HAMON L , SUKHANOVA M V et al. PARP-1 activation directs FUS to DNA damage sites to form parg-reversible compartments enriched in damaged DNA[J]. Cell Rep, 2019, 27 (6): 1809- 1821
doi: 10.1016/j.celrep.2019.04.031
22 OUTEIRO T F , GRAMMATOPOULOS T N , ALTMANN S et al. Pharmacological inhibition of PARP-1 reduces alpha-synuclein- and MPP+-induced cytotoxicity in Parkinson's disease in vitro models[J]. Biochem Biophys Res Commun, 2007, 357 (3): 596- 602
doi: 10.1016/j.bbrc.2007.03.163
23 MANDIR A S , PRZEDBORSKI S , JACKSON-LEWIS V et al. Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced parkinsonism[J]. Proc Natl Acad Sci U S A, 1999, 96 (10): 5774- 5779
doi: 10.1073/pnas.96.10.5774
24 WANG H , SHIMOJI M , YU S W et al. Apoptosis inducing factor and PARP-mediated injury in the MPTP mouse model of Parkinson's disease[J]. Ann N Y Acad Sci, 2003, 991:132- 139
doi: 10.1111/j.1749-6632.2003.tb07471.x
25 WU X L , WANG P , LIU Y H et al. Effects of poly (ADP-ribose) polymerase inhibitor 3-aminobenzamide on blood-brain barrier and dopaminergic neurons of rats with lipopolysaccharide-induced Parkinson's disease[J]. J Mol Neurosci, 2014, 53 (1): 1- 9
doi: 10.1007/s12031-013-0175-5
26 KAM T I , MAO X , PARK H et al. Poly(ADP-ribose) drives pathologic alpha-synuclein neurodegeneration in Parkinson's disease[J]. Science, 2018, 362 (6414): pii:eaat8407
doi: 10.1126/science.aat8407
27 SARAIVA L M, SEIXAS DA SILVA G S, GALINA A, et al. Amyloid-beta triggers the release of neuronal hexokinase 1 from mitochondria[J/OL]. PLoS One, 2010, 5: e15230. DOI: 10.1371/journal.pone.0015230.
28 CORONA J C , GIMENEZ-CASSINA A , LIM F et al. Hexokinase Ⅱ gene transfer protects against neurodegeneration in the rotenone and MPTP mouse models of Parkinson's disease[J]. J Neurosci Res, 2010, 88 (9): 1943- 1950
doi: 10.1002/jnr.22357
29 FATOKUN A A , DAWSON V L , DAWSON T M . Parthanatos:mitochondrial-linked mechanisms and therapeutic opportunities[J]. Br J Pharmacol, 2014, 171 (8): 2000- 2016
doi: 10.1111/bph.12416
30 YU Y M , KIM J B , LEE K W et al. Inhibition of the cerebral ischemic injury by ethyl pyruvate with a wide therapeutic window[J]. Stroke, 2005, 36 (10): 2238- 2243
doi: 10.1161/01.STR.0000181779.83472.35
31 YING W , CHEN Y , ALANO C C et al. Tricarboxylic acid cycle substrates prevent PARP-mediated death of neurons and astrocytes[J]. J Cereb Blood Flow Metab, 2002, 22 (7): 774- 779
doi: 10.1097/00004647-200207000-00002
32 GALLUZZI L , VITALE I , AARONSON S A et al. Molecular mechanisms of cell death:recommendations of the Nomenclature Committee on Cell Death 2018[J]. Cell Death Differ, 2018, 25 (3): 486- 541
doi: 10.1038/s41418-017-0012-4
33 LI X , KLAUS J A , ZHANG J et al. Contributions of poly(ADP-ribose) polymerase-1 and -2 to nuclear translocation of apoptosis-inducing factor and injury from focal cerebral ischemia[J]. J Neurochem, 2010, 113 (4): 1012- 1022
doi: 10.1111/j.1471-4159.2010.06667.x
34 BIANCHETTI E, MLADINIC M, NISTRI A. Mechanisms underlying cell death in ischemia-like damage to the rat spinal cord in vitro[J/OL]. Cell Death Dis, 2013, 4: e707. DOI: 10.1038/cddis.2013.237.
35 YANG X , CHENG J , GAO Y et al. Downregulation of Iduna is associated with AIF nuclear translocation in neonatal brain after hypoxia-ischemia[J]. Neuroscience, 2017, 346:74- 80
doi: 10.1016/j.neuroscience.2017.01.010
36 MARTIRE S , MOSCA L , D'ERME M . PARP-1 involvement in neurodegeneration:A focus on Alzheimer's and Parkinson's diseases[J]. Mech Ageing Dev, 2015, 146-148:53- 64
doi: 10.1016/j.mad.2015.04.001
37 LEE Y , KANG H C , LEE B D et al. Poly (ADP-ribose) in the pathogenesis of Parkinson's disease[J]. BMB Rep, 2014, 47 (8): 424- 432
doi: 10.5483/bmbrep.2014.47.8.119
38 ANGLADE P , VYAS S , JAVOY-AGID F et al. Apoptosis and autophagy in nigral neurons of patients with Parkinson's disease[J]. Histol Histopathol, 1997, 12 (1): 25- 31
39 BOYCHUK T M , NIKA O M , TKACHUK S S . The ratio of p53-proapoptotic and bcl-2 antiapoptotic activity in the hippocampus of rats with brain ischemia-reperfusion and experimental diabetes[J]. Fiziol Zh, 2016, 62 (6): 25- 33
doi: 10.15407/fz62.06.025
40 WESIERSKA-GADEK J , SCHMID G . Poly(ADP-ribose) polymerase-1 regulates the stability of the wild-type p53 protein[J]. Cell Mol Biol Lett, 2001, 6 (2): 117- 140
doi: 10.1046/j.1462-5822.2001.00094.x
41 MARTIRE S, FUSO A, ROTILI D, et al. PARP-1 modulates amyloid beta peptide-induced neuronal damage[J/OL]. PLoS One, 2013, 8(9): e72169. DOI: 10.1371/journal.pone.0072169.
42 ZHOU J , JI M , YAO H et al. Discovery of quinazoline-2, 4(1H, 3H)-dione derivatives as novel PARP-1/2 inhibitors:design, synthesis and their antitumor activity[J]. Org Biomol Chem, 2018, 16 (17): 3189- 3202
doi: 10.1039/c8ob00286j
[1] 朱慧琦,应可净. 组织因子与肿瘤患者静脉血栓栓塞[J]. 浙江大学学报(医学版), 2020, 49(6): 772-778.
[2] 林翠翠,陈正云,王春艳,席咏梅. 基于脂质组学的子宫内膜异位症生物标志物研究进展[J]. 浙江大学学报(医学版), 2020, 49(6): 779-784.
[3] 李梦瑶,刘盼,柯越海,张雪. 放射性肺损伤中巨噬细胞作用机制的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 623-628.
[4] 韩雪,蒋国军,石巧娟. 降血糖药对内皮祖细胞作用的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 629-636.
[5] 段润平,许叶圣,郑利斌,姚玉峰. 病毒感染性眼病病原学诊断的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 644-650.
[6] 吴唯,徐键. 正五聚蛋白3在多囊卵巢综合征中的作用研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 637-643.
[7] 徐清霖,楼国东,王甜甜,张力三. 发作性睡病的药物治疗进展[J]. 浙江大学学报(医学版), 2020, 49(4): 419-424.
[8] 蒋沛然,王志萍. 模式生物神经轴突再生的研究进展[J]. 浙江大学学报(医学版), 2020, 49(4): 500-507.
[9] 王春林,梁黎. 第三代非甾体类芳香化酶抑制剂在儿科内分泌临床应用的再认识[J]. 浙江大学学报(医学版), 2020, 49(3): 275-282.
[10] 于冰青,聂敏,伍学焱,茅江峰,王曦,马婉璐,季文,黄奇彬,张睿. 来曲唑有效提高性发育异常男性患儿的睾酮水平[J]. 浙江大学学报(医学版), 2020, 49(3): 297-301.
[11] 徐德,陆文丽,王雪晴,王俊祺,谢轶雯,董治亚,王伟. 来曲唑治疗纤维性骨营养不良综合征女性患儿外周性性早熟疗效观察[J]. 浙江大学学报(医学版), 2020, 49(3): 291-296.
[12] 王燚锋, 王志萍. 内源性信号通路在神经元轴突再生中的功能和机制研究[J]. 浙江大学学报(医学版), 2020, 49(1): 82-89.
[13] 俞卿, 熊秀芳, 孙毅. 靶向Cullin-RING E3泛素连接酶的抗肿瘤策略及相关药物研发进展[J]. 浙江大学学报(医学版), 2020, 49(1): 1-19.
[14] 段玲艳,尹香菊,孟红恩,方学贤,闵军霞,王福俤. 铁稳态代谢表观遗传调控机制的研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 58-70.
[15] 李艾,张添源,高建青. 间充质干细胞的肿瘤归巢特性及其肿瘤靶向治疗应用研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 20-34.