Please wait a minute...
浙江大学学报(医学版)  2020, Vol. 49 Issue (1): 90-99    DOI: 10.3785/j.issn.1008-9292.2020.02.09
综述     
神经元树突形态建成分子机制的研究进展
赵维霞1(),邹炜1,2,*()
1. 浙江大学转化医学研究院, 浙江 杭州 310058
2. 浙江大学医学院附属第四医院, 浙江 义乌 322000
Intrinsic and extrinsic mechanisms regulating neuronal dendrite morphogenesis
ZHAO Weixia1(),ZOU Wei1,2,*()
1. Department of Translational Medicine, Zhejiang University, Hangzhou 310058, China
2. The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang Province, China
 全文: PDF(1061 KB)   HTML( 14 )
摘要:

神经元是神经系统的基本结构和功能单元,精确的神经树突形态建成是神经环路形成的重要前提。已有研究鉴定了树突发育调控的相关因子并阐明了其功能与机制。根据其在体内发挥功能的位置分为神经元树突发育的内在调控因子和外在调控因子。内在调控因子主要可分为细胞特异性转录因子、肌动蛋白聚合与解聚调控因子和参与分泌、内吞途径的相关因子,它们由神经细胞产生并对本身的树突发育起到重要调控作用。外在调控因子主要分为分泌型因子和接触依赖型因子,分泌型因子主要通过其他组织分泌到内环境的相关因子来调控相应神经树突发育,而接触依赖型因子则主要通过相邻的组织细胞与神经元的接触作用促进或抑制树突导向与生长。本文综述了近些年来人们利用线虫、果蝇和小鼠等多种动物模型在研究神经元树突发育的内在和外在因子分子机制上的进展。这些研究将有助于理解神经系统疾病中相关的树突发育异常机制。

关键词: 树突/发育神经元分子生物学综述    
Abstract:

Neurons are the structural and functional unit of the nervous system. Precisely regulated dendrite morphogenesis is the basis of neural circuit assembly. Numerous studies have been conducted to explore the regulatory mechanisms of dendritic morphogenesis. According to their action regions, we divide them into two categories: the intrinsic and extrinsic regulators of neuronal dendritic morphogenesis. Intrinsic factors are cell type-specific transcription factors, actin polymerization or depolymerization regulators and regulators of the secretion or endocytic pathways. These intrinsic factors are produced by neuron itself and play an important role in regulating the development of dendrites. The extrinsic regulators are either secreted proteins or transmembrane domain containing cell adhesion molecules. They often form receptor-ligand pairs to mediate attractive or repulsive dendritic guidance. In this review, we summarize recent findings on the intrinsic and external molecular mechanisms of dendrite morphogenesis from multiple model organisms, including Caenorhabditis elegans, Drosophila and mice. These studies will provide a better understanding on how defective dendrite development and maintenance are associated with neurological diseases.

Key words: Dendrites/development    Neurons    Molecular biology    Review
收稿日期: 2019-07-09 出版日期: 2020-06-08
CLC:  R338.1+2  
基金资助: 国家自然科学基金(31800861)
通讯作者: 邹炜     E-mail: weixiazhao@zju.edu.cn;zouwei@zju.edu.cn
作者简介: 赵维霞(1995-), 女, 硕士研究生, 主要从事神经元树突发育研究; E-mail:weixiazhao@zju.edu.cn; https://orcid.org/0000-0003-0980-3304
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵维霞
邹炜

引用本文:

赵维霞, 邹炜. 神经元树突形态建成分子机制的研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 90-99.

ZHAO Weixia, ZOU Wei. Intrinsic and extrinsic mechanisms regulating neuronal dendrite morphogenesis. J Zhejiang Univ (Med Sci), 2020, 49(1): 90-99.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2020.02.09        http://www.zjujournals.com/med/CN/Y2020/V49/I1/90

内在调控蛋白 作用 参考文献
细胞特异性转录因子
  AHR-1 决定神经元细胞命运 [28]
  UNC-86 决定细胞命运和树突分支形成 [21]
  MEC-3 多树突神经元树突分支产生 [21, 29]
  Abrupt 决定树突形态的复杂程度 [30]
  Ngn2 调控椎体神经元树突形态发育 [31-32]
肌动蛋白聚合与解聚调控因子
  TIAM-1 调控肌动蛋白组装,促进树突分支形成 [33]
  RhoA、Rac1、Cdc42 调节肌动蛋白细胞骨架动态,从而调控树突分支形成 [34-36]
参与分泌、内吞途径的相关蛋白
  RAB-10、EXOC-8、SEC-8 调控跨膜受体蛋白的运输,促进树突生长和分支 [37-38]
表 1  神经元树突建成的内在调控蛋白
外在调控蛋白 作用 参考文献
分泌型
  UNC-6 促进神经元树突分支产生,调控树突分支自我回避 [44, 47-48]
  白细胞衍生趋化因子2 调控树突导向与分支形成 [49-50]
  NGF、BDNF、NT-3、NT-4 调控大脑皮质和海马神经元树突形态发育 [51-53]
  Wnt3a 负调控树突复杂性 [53]
  Wnt5a 促进树突分支形成 [53]
  Slit 调控树突形态发育 [54-55]
接触依赖型
  SAX-7 调控多树突神经元树突分支生长与导向 [56-58]
  SAX-3 与SAX-7/L1细胞黏附分子共同调控神经元树突导向 [59-60]
  MIG-14 调控树突分支自我回避 [48]
  唐氏综合征细胞黏附分子 可变剪接亚型调控树突自我回避 [61-62]
  原钙黏蛋白 可变剪接亚型调控树突自我回避 [23]
  Sdk1、Sdk2、接触蛋白 限定单个视网膜神经节细胞树突分布特定的一个或几个精确分层 [63-64]
  整联蛋白(果蝇) 调控树突分支三维空间分布 [65-66]
  整联蛋白(哺乳动物) 通过非受体酪氨酸激酶通路促进树突发育和分支形成 [67]
  DMA-1 作为树突受体蛋白调控树突生长与分支形成 [33, 45, 56, 58, 68]
  HPO-30 作为共受体蛋白调控树突生长与分支形成 [28, 33, 45]
表 2  神经元树突建成的外在调控蛋白
1 BARóN-MENDOZA I , DEL MORAL-SáNCHEZ I , MARTíNEZ-MARCIAL M et al. Dendritic complexity in prefrontal cortex and hippocampus of the autistic-like mice C58/J[J]. Neurosci Lett, 2019, 703:149- 155
doi: 10.1016/j.neulet.2019.03.018
2 MARTíNEZ-CERDE?O V . Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models[J]. Dev Neurobiol, 2017, 77 (4): 393- 404
doi: 10.1002/dneu.22417
3 LAUTERBORN J C , COX C D , CHAN S W et al. Synaptic actin stabilization protein loss in Down syndrome and Alzheimer disease[J]. Brain Pathol, 2020, 30 (2): 319- 331
doi: 10.1111/bpa.12779
4 BAJ G , PATRIZIO A , MONTALBANO A et al. Developmental and maintenance defects in Rett syndrome neurons identified by a new mouse staging system in vitro[J]. Front Cell Neurosci, 2014, 8:18
doi: 10.3389/fncel.2014.00018
5 MOYER C E , SHELTON M A , SWEET R A . Dendritic spine alterations in schizophrenia[J]. Neurosci Lett, 2015, 601:46- 53
doi: 10.1016/j.neulet.2014.11.042
6 MACDONALD M L , ALHASSAN J , NEWMAN J T et al. Selective loss of smaller spines in Schizophrenia[J]. Am J Psychiatry, 2017, 174 (6): 586- 594
doi: 10.1176/appi.ajp.2017.16070814
7 RAYMOND G V , BAUMAN M L , KEMPER T L . Hippocampus in autism:a Golgi analysis[J]. Acta Neuropathol, 1996, 91 (1): 117- 119
doi: 10.1007/s004010050401
8 HUTSLER J J , ZHANG H . Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders[J]. Brain Res, 2010, 1309:83- 94
doi: 10.1016/j.brainres.2009.09.120
9 GUTIERREZ H , DOLCET X , TOLCOS M et al. HGF regulates the development of cortical pyramidal dendrites[J]. Development, 2004, 131 (15): 3717- 3726
doi: 10.1242/dev.01209
10 FUKUDA T , ITOH M , ICHIKAWA T et al. Delayed maturation of neuronal architecture and synaptogenesis in cerebral cortex of Mecp2-deficient mice[J]. J Neuropathol Exp Neurol, 2005, 64 (6): 537- 544
doi: 10.1093/jnen/64.6.537
11 CHAPLEAU C A , CALFA G D , LANE M C et al. Dendritic spine pathologies in hippocampal pyramidal neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations[J]. Neurobiol Dis, 2009, 35 (2): 219- 233
doi: 10.1016/j.nbd.2009.05.001
12 JUGLOFF D G , JUNG B P , PURUSHOTHAM D et al. Increased dendritic complexity and axonal length in cultured mouse cortical neurons overexpressing methyl-CpG-binding protein MeCP2[J]. Neurobiol Dis, 2005, 19 (1-2): 18- 27
doi: 10.1016/j.nbd.2004.11.002
13 BAAS P W , DEITCH J S , BLACK M M et al. Polarity orientation of microtubules in hippocampal neurons:uniformity in the axon and nonuniformity in the dendrite[J]. Proc Natl Acad Sci U S A, 1988, 85 (21): 8335- 8339
doi: 10.1073/pnas.85.21.8335
14 CUI-WANG T , HANUS C , CUI T et al. Local zones of endoplasmic reticulum complexity confine cargo in neuronal dendrites[J]. Cell, 2012, 148 (1-2): 309- 321
doi: 10.1016/j.cell.2011.11.056
15 HATANAKA Y , MURAKAMI F . In vitro analysis of the origin, migratory behavior, and maturation of cortical pyramidal cells[J]. J Comp Neurol, 2002, 454 (1): 1- 14
doi: 10.1002/cne.10421
16 GAO W Q , HATTEN M E . Neuronal differentiation rescued by implantation of Weaver granule cell precursors into wild-type cerebellar cortex[J]. Science, 1993, 260 (5106): 367- 369
doi: 10.1126/science.8469990
17 CRAIG A M , JAREB M , BANKER G . Neuronal polarity[J]. Curr Opin Neurobiol, 1992, 2 (5): 602- 606
doi: 10.1016/0959-4388(92)90025-g
18 KRAMER A P , KUWADA J Y . Formation of the receptive fields of leech mechanosensory neurons during embryonic development[J]. J Neurosci, 1983, 3 (12): 2474- 2486
doi: 10.1523/JNEUROSCI.03-12-02474.1983
19 GRUEBER W B , SAGASTI A . Self-avoidance and tiling:mechanisms of dendrite and axon spacing[J]. Cold Spring Harb Perspect Biol, 2010, 2 (9):
doi: 10.1101/cshperspect.a001750
20 SMITH C J , WATSON J D , VANHOVEN M K et al. Netrin (UNC-6) mediates dendritic self-avoidance[J]. Nat Neurosci, 2012, 15 (5): 731- 737
doi: 10.1038/nn.3065
21 SMITH C J , WATSON J D , SPENCER W C et al. Time-lapse imaging and cell-specific expression profiling reveal dynamic branching and molecular determinants of a multi-dendritic nociceptor in C. elegans[J]. Dev Biol, 2010, 345 (1): 18- 33
doi: 10.1016/j.ydbio.2010.05.502
22 FUERST P G , BRUCE F , TIAN M et al. DSCAM and DSCAML1 function in self-avoidance in multiple cell types in the developing mouse retina[J]. Neuron, 2009, 64 (4): 484- 497
doi: 10.1016/j.neuron.2009.09.027
23 LEFEBVRE J L , KOSTADINOV D , CHEN W V et al. Protocadherins mediate dendritic self-avoidance in the mammalian nervous system[J]. Nature, 2012, 488 (7412): 517- 521
doi: 10.1038/nature11305
24 KANO M , HASHIMOTO K . Activity-dependent maturation of climbing fiber to Purkinje cell synapses during postnatal cerebellar development[J]. Cerebellum, 2012, 11 (2): 449- 450
doi: 10.1007/s12311-011-0337-3
25 SANES J R , ZIPURSKY S L . Design principles of insect and vertebrate visual systems[J]. Neuron, 2010, 66 (1): 15- 36
doi: 10.1016/j.neuron.2010.01.018
26 IMAI T , SAKANO H , VOSSHALL L B . Topographic mapping-the olfactory system[J]. Cold Spring Harb Perspect Biol, 2010, 2 (8): a001776
doi: 10.1101/cshperspect.a001776
27 SPRUSTON N . Pyramidal neurons:dendritic structure and synaptic integration[J]. Nat Rev Neurosci, 2008, 9 (3): 206- 221
doi: 10.1038/nrn2286
28 SMITH C J , O'BRIEN T , CHATZIGEORGIOU M et al. Sensory neuron fates are distinguished by a transcriptional switch that regulates dendrite branch stabilization[J]. Neuron, 2013, 79 (2): 266- 280
doi: 10.1016/j.neuron.2013.05.009
29 TSALIK E L , NIACARIS T , WENICK A S et al. LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system[J]. Dev Biol, 2003, 263 (1): 81- 102
doi: 10.1016/s0012-1606(03)00447-0
30 SUGIMURA K , SATOH D , ESTES P et al. Development of morphological diversity of dendrites in Drosophila by the BTB-zinc finger protein abrupt[J]. Neuron, 2004, 43 (6): 809- 822
doi: 10.1016/j.neuron.2004.08.016
31 HAND R , BORTONE D , MATTAR P et al. Phosphorylation of Neurogenin2 specifies the migration properties and the dendritic morphology of pyramidal neurons in the neocortex[J]. Neuron, 2005, 48 (1): 45- 62
doi: 10.1016/j.neuron.2005.08.032
32 FLORIO M , LETO K , MUZIO L et al. Neurogenin 2 regulates progenitor cell-cycle progression and Purkinje cell dendritogenesis in cerebellar development[J]. Development, 2012, 139 (13): 2308- 2320
doi: 10.1242/dev.075861
33 ZOU W , DONG X , BROEDERDORF T R et al. A dendritic guidance receptor complex brings together distinct actin regulators to drive efficient f-actin assembly and branching[J]. Dev Cell, 2018, 45 (3): 362- 375
doi: 10.1016/j.devcel.2018.04.008
34 CHEN H , FIRESTEIN B L . RhoA regulates dendrite branching in hippocampal neurons by decreasing cypin protein levels[J]. J Neurosci, 2007, 27 (31): 8378- 8386
doi: 10.1523/JNEUROSCI.0872-07.2007
35 LEEMHUIS J , BOUTILLIER S , BARTH H et al. Rho GTPases and phosphoinositide 3-kinase organize formation of branched dendrites[J]. J Biol Chem, 2004, 279 (1): 585- 596
doi: 10.1074/jbc.M307066200
36 NEWEY S E , VELAMOOR V , GOVEK E E et al. Rho GTPases, dendritic structure, and mental retardation[J]. J Neurobiol, 2005, 64 (1): 58- 74
doi: 10.1002/neu.20153
37 ZOU W, YADAV S, DEVAULT L, et al. RAB-10-dependent membrane transport is required for dendrite arborization[J/OL]. PLoS Genet, 2015, 11(9): e1005484. DOI: 10.1371/journal.pgen.1005484.
38 TAYLOR C A, YAN J, HOWELL A S, et al. RAB-10 regulates dendritic branching by balancing dendritic transport[J/OL]. PLoS Genet, 2015, 11(12): e1005695. DOI: 10.1371/journal.pgen.1005695.
39 NAKAYAMA A Y , HARMS M B , LUO L . Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons[J]. J Neurosci, 2000, 20 (14): 5329- 5338
doi: 10.1523/JNEUROSCI.20-14-05329.2000
40 CACERES A , MAUTINO J , KOSIK K S . Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation[J]. Neuron, 1992, 9 (4): 607- 618
doi: 10.1016/0896-6273(92)90025-9
41 HARTERINK M , EDWARDS S L , DE HAAN B et al. Local microtubule organization promotes cargo transport in C. elegans dendrites[J]. J Cell Sci, 2018, 131 (20): pii. jcs223107
doi: 10.1242/jcs.223107
42 MANIAR T A , KAPLAN M , WANG G J et al. UNC-33(CRMP) and ankyrin organize microtubules and localize kinesin to polarize axon-dendrite sorting[J]. Nat Neurosci, 2011, 15 (1): 48- 56
doi: 10.1038/nn.2970
43 RICHARDSON C E, SPILKER K A, CUEVA J G, et al. PTRN-1, a microtubule minus end-binding CAMSAP homolog, promotes microtubule function in Caenorhabditis elegans neurons[J/OL]. Elife, 2014, 3: e01498. DOI: 10.7554/eLife.01498.
44 SUNDARARAJAN L, SMITH C J, WATSON J D, et al. Actin assembly and non-muscle myosin activity drive dendrite retraction in an UNC-6/Netrin dependent self-avoidance response[J/OL]. PLoS Genetics, 2019, 15(6): e1008228. DOI: 10.1371/journal.pgen.1008228.
45 TANG L T, DIAZ-BALZAC C A, RAHMAN M, et al. TIAM-1/GEF can shape somatosensory dendrites independently of its GEF activity by regulating F-actin localization[J/OL]. Elife, 2019, 8: e38949. DOI: 10.7554/eLife.38949.
46 KIM I H , ROSSI M A , ARYAL D K et al. Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine[J]. Nat Neurosci, 2015, 18 (6): 883- 891
doi: 10.1038/nn.4015
47 SUNDARARAJAN L, SMITH C J, WATSON J D, et al. Actin assembly and non-muscle myosin activity drive dendrite retraction in an UNC-6/Netrin dependent self-avoidance response[J/OL]. PLoS Genet, 2019, 15(6): e1008228. DOI: 10.1371/journal.pgen.1008228.
48 LIAO C P , LI H , LEE H H et al. Cell-autonomous regulation of dendrite self-avoidance by the wnt secretory factor MIG-14/Wntless[J]. Neuron, 2018, 98 (2): 320- 334
doi: 10.1016/j.neuron.2018.03.031
49 ZOU W , SHEN A , DONG X et al. A multi-protein receptor-ligand complex underlies combinatorial dendrite guidance choices in C. elegans[J]. Elife, 2016, 5
doi: 10.7554/ELIFE.18345
50 DíAZ-BALZAC C A , RAHMAN M , LáZARO-PE?A M I et al. Muscle- and skin-derived cues jointly orchestrate patterning of somatosensory dendrites[J]. Curr Biol, 2016, 26 (17): 2397
doi: 10.1016/j.cub.2016.07.078
51 GATES M A , TAI C C , MACKLIS J D . Neocortical neurons lacking the protein-tyrosine kinase B receptor display abnormal differentiation and process elongation in vitro and in vivo[J]. Neuroscience, 2000, 98 (3): 437- 447
doi: 10.1016/s0306-4522(00)00106-8
52 LAZO O M , GONZALEZ A , ASCA?O M et al. BDNF regulates Rab11-mediated recycling endosome dynamics to induce dendritic branching[J]. J Neurosci, 2013, 33 (14): 6112- 6122
doi: 10.1523/JNEUROSCI.4630-12.2013
53 PINO D, CHOE Y, PLEASURE S J. Wnt5a controls neurite development in olfactory bulb interneurons[J/OL]. ASN Neuro, 2011, 3(3): e00059. DOI: 10.1042/AN20100038.
54 WHITFORD K L , MARILLAT V , STEIN E et al. Regulation of cortical dendrite development by Slit-Robo interactions[J]. Neuron, 2002, 33 (1): 47- 61
doi: 10.1016/s0896-6273(01)00566-9
55 KIDD T , BLAND K S , GOODMAN C S . Slit is the midline repellent for the robo receptor in Drosophila[J]. Cell, 1999, 96 (6): 785- 794
doi: 10.1016/s0092-8674(00)80589-9
56 SALZBERG Y , DíAZ-BALZAC C A , RAMIREZ-SUAREZ N J et al. Skin-derived cues control arborization of sensory dendrites in Caenorhabditis elegans[J]. Cell, 2013, 155 (2): 308- 320
doi: 10.1016/j.cell.2013.08.058
57 LIANG X , DONG X , MOERMAN D G et al. Sarcomeres pattern proprioceptive sensory dendritic endings through UNC-52/Perlecan in C. elegans[J]. Dev Cell, 2015, 33 (4): 388- 400
doi: 10.1016/j.devcel.2015.03.010
58 DONG X , LIU O W , HOWELL A S et al. An extracellular adhesion molecule complex patterns dendritic branching and morphogenesis[J]. Cell, 2013, 155 (2): 296- 307
doi: 10.1016/j.cell.2013.08.059
59 RAMIREZ-SUAREZ N J , BELALCAZAR H M , SALAZAR C J et al. Axon-dependent patterning and maintenance of somatosensory dendritic arbors[J]. Dev Cell, 2019, 48 (2): 229- 244
doi: 10.1016/j.devcel.2018.12.015
60 CHEN C H , HSU H W , CHANG Y H et al. Adhesive L1CAM-Robo signaling aligns growth cone f-actin dynamics to promote axon-dendrite fasciculation in c. elegans[J]. Dev Cell, 2019, 49 (3): 490- 491
doi: 10.1016/j.devcel.2019.04.028
61 SOBA P , ZHU S , EMOTO K et al. Drosophila sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization[J]. Neuron, 2007, 54 (3): 403- 416
doi: 10.1016/j.neuron.2007.03.029
62 MATTHEWS B J , KIM M E , FLANAGAN J J et al. Dendrite self-avoidance is controlled by Dscam[J]. Cell, 2007, 129 (3): 593- 604
doi: 10.1016/j.cell.2007.04.013
63 KUFFLER S W . Discharge patterns and functional organization of mammalian retina[J]. J Neurophysiol, 1953, 16 (1): 37- 68
doi: 10.1152/jn.1953.16.1.37
64 YAMAGATA M , SANES J R . Expanding the Ig superfamily code for laminar specificity in retina:expression and role of contactins[J]. J Neurosci, 2012, 32 (41): 14402- 14414
doi: 10.1523/JNEUROSCI.3193-12.2012
65 KIM M E , SHRESTHA B R , BLAZESKI R et al. Integrins establish dendrite-substrate relationships that promote dendritic self-avoidance and patterning in drosophila sensory neurons[J]. Neuron, 2012, 73 (1): 79- 91
doi: 10.1016/j.neuron.2011.10.033
66 HAN C , WANG D , SOBA P et al. Integrins regulate repulsion-mediated dendritic patterning of drosophila sensory neurons by restricting dendrites in a 2D space[J]. Neuron, 2012, 73 (1): 64- 78
doi: 10.1016/j.neuron.2011.10.036
67 KERRISK M E , GREER C A , KOLESKE A J . Integrin α3 is required for late postnatal stability of dendrite arbors, dendritic spines and synapses, and mouse behavior[J]. J Neurosci, 2013, 33 (16): 6742- 6752
doi: 10.1523/JNEUROSCI.0528-13.2013
68 LIU O W , SHEN K . The transmembrane LRR protein DMA-1 promotes dendrite branching and growth in C. elegans[J]. Nat Neurosci, 2012, 15 (1): 57- 63
doi: 10.1038/nn.2978
69 CELESTRIN K , DíAZ-BALZAC C A , TANG L et al. Four specific immunoglobulin domains in UNC-52/Perlecan function with NID-1/Nidogen during dendrite morphogenesis in Caenorhabditis elegans[J]. Development, 2018, 145 (10):
doi: 10.1242/dev.158881
70 MERZ D C , ZHENG H , KILLEEN M T et al. Multiple signaling mechanisms of the UNC-6/netrin receptors UNC-5 and UNC-40/DCC in vivo[J]. Genetics, 2001, 158 (3): 1071- 1080
doi: 10.1002/GEPI.1019
71 BOTHWELL M . NGF, BDNF, NT3, and NT4[J]. Handb Exp Pharmacol, 2014, 220:3- 15
doi: 10.1007/978-3-642-45106-5_1
72 O'NEILL K M , KWON M , DONOHUE K E et al. Distinct effects on the dendritic arbor occur by microbead versus bath administration of brain-derived neurotrophic factor[J]. Cell Mol Life Sci, 2017, 74 (23): 4369- 4385
doi: 10.1007/s00018-017-2589-7
73 PURAM S V , KIM A H , IKEUCHI Y et al. A CaMKIIβ signaling pathway at the centrosome regulates dendrite patterning in the brain[J]. Nat Neurosci, 2011, 14 (8): 973- 983
doi: 10.1038/NN.2857
[1] 朱慧琦,应可净. 组织因子与肿瘤患者静脉血栓栓塞[J]. 浙江大学学报(医学版), 2020, 49(6): 772-778.
[2] 林翠翠,陈正云,王春艳,席咏梅. 基于脂质组学的子宫内膜异位症生物标志物研究进展[J]. 浙江大学学报(医学版), 2020, 49(6): 779-784.
[3] 李梦瑶,刘盼,柯越海,张雪. 放射性肺损伤中巨噬细胞作用机制的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 623-628.
[4] 韩雪,蒋国军,石巧娟. 降血糖药对内皮祖细胞作用的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 629-636.
[5] 段润平,许叶圣,郑利斌,姚玉峰. 病毒感染性眼病病原学诊断的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 644-650.
[6] 吴唯,徐键. 正五聚蛋白3在多囊卵巢综合征中的作用研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 637-643.
[7] 徐清霖,楼国东,王甜甜,张力三. 发作性睡病的药物治疗进展[J]. 浙江大学学报(医学版), 2020, 49(4): 419-424.
[8] 李杰,许均瑜,罗建红. γ-氨基丁酸能中间神经元与自闭症谱系障碍的研究进展[J]. 浙江大学学报(医学版), 2020, 49(4): 508-513.
[9] 蒋沛然,王志萍. 模式生物神经轴突再生的研究进展[J]. 浙江大学学报(医学版), 2020, 49(4): 500-507.
[10] 陈峻逸,杨翔,方学贤,王福俤,闵军霞. 铁死亡与重大慢性疾病[J]. 浙江大学学报(医学版), 2020, 49(1): 44-57.
[11] 俞卿, 熊秀芳, 孙毅. 靶向Cullin-RING E3泛素连接酶的抗肿瘤策略及相关药物研发进展[J]. 浙江大学学报(医学版), 2020, 49(1): 1-19.
[12] 段玲艳,尹香菊,孟红恩,方学贤,闵军霞,王福俤. 铁稳态代谢表观遗传调控机制的研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 58-70.
[13] 李艾,张添源,高建青. 间充质干细胞的肿瘤归巢特性及其肿瘤靶向治疗应用研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 20-34.
[14] 黄耀凭,杨凤,周天华,谢珊珊. Hippo信号通路及其在消化系统肿瘤中的作用研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 35-43.
[15] 钟文,楼燕,邱宸阳,李栋林,张鸿坤. 髂静脉支架植入术后药物治疗策略研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 131-136.