综述 |
|
|
|
|
神经元树突形态建成分子机制的研究进展 |
赵维霞1( ),邹炜1,2,*( ) |
1. 浙江大学转化医学研究院, 浙江 杭州 310058 2. 浙江大学医学院附属第四医院, 浙江 义乌 322000 |
|
Intrinsic and extrinsic mechanisms regulating neuronal dendrite morphogenesis |
ZHAO Weixia1( ),ZOU Wei1,2,*( ) |
1. Department of Translational Medicine, Zhejiang University, Hangzhou 310058, China 2. The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, Zhejiang Province, China |
1 |
BARóN-MENDOZA I , DEL MORAL-SáNCHEZ I , MARTíNEZ-MARCIAL M et al. Dendritic complexity in prefrontal cortex and hippocampus of the autistic-like mice C58/J[J]. Neurosci Lett, 2019, 703:149- 155
doi: 10.1016/j.neulet.2019.03.018
|
2 |
MARTíNEZ-CERDE?O V . Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models[J]. Dev Neurobiol, 2017, 77 (4): 393- 404
doi: 10.1002/dneu.22417
|
3 |
LAUTERBORN J C , COX C D , CHAN S W et al. Synaptic actin stabilization protein loss in Down syndrome and Alzheimer disease[J]. Brain Pathol, 2020, 30 (2): 319- 331
doi: 10.1111/bpa.12779
|
4 |
BAJ G , PATRIZIO A , MONTALBANO A et al. Developmental and maintenance defects in Rett syndrome neurons identified by a new mouse staging system in vitro[J]. Front Cell Neurosci, 2014, 8:18
doi: 10.3389/fncel.2014.00018
|
5 |
MOYER C E , SHELTON M A , SWEET R A . Dendritic spine alterations in schizophrenia[J]. Neurosci Lett, 2015, 601:46- 53
doi: 10.1016/j.neulet.2014.11.042
|
6 |
MACDONALD M L , ALHASSAN J , NEWMAN J T et al. Selective loss of smaller spines in Schizophrenia[J]. Am J Psychiatry, 2017, 174 (6): 586- 594
doi: 10.1176/appi.ajp.2017.16070814
|
7 |
RAYMOND G V , BAUMAN M L , KEMPER T L . Hippocampus in autism:a Golgi analysis[J]. Acta Neuropathol, 1996, 91 (1): 117- 119
doi: 10.1007/s004010050401
|
8 |
HUTSLER J J , ZHANG H . Increased dendritic spine densities on cortical projection neurons in autism spectrum disorders[J]. Brain Res, 2010, 1309:83- 94
doi: 10.1016/j.brainres.2009.09.120
|
9 |
GUTIERREZ H , DOLCET X , TOLCOS M et al. HGF regulates the development of cortical pyramidal dendrites[J]. Development, 2004, 131 (15): 3717- 3726
doi: 10.1242/dev.01209
|
10 |
FUKUDA T , ITOH M , ICHIKAWA T et al. Delayed maturation of neuronal architecture and synaptogenesis in cerebral cortex of Mecp2-deficient mice[J]. J Neuropathol Exp Neurol, 2005, 64 (6): 537- 544
doi: 10.1093/jnen/64.6.537
|
11 |
CHAPLEAU C A , CALFA G D , LANE M C et al. Dendritic spine pathologies in hippocampal pyramidal neurons from Rett syndrome brain and after expression of Rett-associated MECP2 mutations[J]. Neurobiol Dis, 2009, 35 (2): 219- 233
doi: 10.1016/j.nbd.2009.05.001
|
12 |
JUGLOFF D G , JUNG B P , PURUSHOTHAM D et al. Increased dendritic complexity and axonal length in cultured mouse cortical neurons overexpressing methyl-CpG-binding protein MeCP2[J]. Neurobiol Dis, 2005, 19 (1-2): 18- 27
doi: 10.1016/j.nbd.2004.11.002
|
13 |
BAAS P W , DEITCH J S , BLACK M M et al. Polarity orientation of microtubules in hippocampal neurons:uniformity in the axon and nonuniformity in the dendrite[J]. Proc Natl Acad Sci U S A, 1988, 85 (21): 8335- 8339
doi: 10.1073/pnas.85.21.8335
|
14 |
CUI-WANG T , HANUS C , CUI T et al. Local zones of endoplasmic reticulum complexity confine cargo in neuronal dendrites[J]. Cell, 2012, 148 (1-2): 309- 321
doi: 10.1016/j.cell.2011.11.056
|
15 |
HATANAKA Y , MURAKAMI F . In vitro analysis of the origin, migratory behavior, and maturation of cortical pyramidal cells[J]. J Comp Neurol, 2002, 454 (1): 1- 14
doi: 10.1002/cne.10421
|
16 |
GAO W Q , HATTEN M E . Neuronal differentiation rescued by implantation of Weaver granule cell precursors into wild-type cerebellar cortex[J]. Science, 1993, 260 (5106): 367- 369
doi: 10.1126/science.8469990
|
17 |
CRAIG A M , JAREB M , BANKER G . Neuronal polarity[J]. Curr Opin Neurobiol, 1992, 2 (5): 602- 606
doi: 10.1016/0959-4388(92)90025-g
|
18 |
KRAMER A P , KUWADA J Y . Formation of the receptive fields of leech mechanosensory neurons during embryonic development[J]. J Neurosci, 1983, 3 (12): 2474- 2486
doi: 10.1523/JNEUROSCI.03-12-02474.1983
|
19 |
GRUEBER W B , SAGASTI A . Self-avoidance and tiling:mechanisms of dendrite and axon spacing[J]. Cold Spring Harb Perspect Biol, 2010, 2 (9):
doi: 10.1101/cshperspect.a001750
|
20 |
SMITH C J , WATSON J D , VANHOVEN M K et al. Netrin (UNC-6) mediates dendritic self-avoidance[J]. Nat Neurosci, 2012, 15 (5): 731- 737
doi: 10.1038/nn.3065
|
21 |
SMITH C J , WATSON J D , SPENCER W C et al. Time-lapse imaging and cell-specific expression profiling reveal dynamic branching and molecular determinants of a multi-dendritic nociceptor in C. elegans[J]. Dev Biol, 2010, 345 (1): 18- 33
doi: 10.1016/j.ydbio.2010.05.502
|
22 |
FUERST P G , BRUCE F , TIAN M et al. DSCAM and DSCAML1 function in self-avoidance in multiple cell types in the developing mouse retina[J]. Neuron, 2009, 64 (4): 484- 497
doi: 10.1016/j.neuron.2009.09.027
|
23 |
LEFEBVRE J L , KOSTADINOV D , CHEN W V et al. Protocadherins mediate dendritic self-avoidance in the mammalian nervous system[J]. Nature, 2012, 488 (7412): 517- 521
doi: 10.1038/nature11305
|
24 |
KANO M , HASHIMOTO K . Activity-dependent maturation of climbing fiber to Purkinje cell synapses during postnatal cerebellar development[J]. Cerebellum, 2012, 11 (2): 449- 450
doi: 10.1007/s12311-011-0337-3
|
25 |
SANES J R , ZIPURSKY S L . Design principles of insect and vertebrate visual systems[J]. Neuron, 2010, 66 (1): 15- 36
doi: 10.1016/j.neuron.2010.01.018
|
26 |
IMAI T , SAKANO H , VOSSHALL L B . Topographic mapping-the olfactory system[J]. Cold Spring Harb Perspect Biol, 2010, 2 (8): a001776
doi: 10.1101/cshperspect.a001776
|
27 |
SPRUSTON N . Pyramidal neurons:dendritic structure and synaptic integration[J]. Nat Rev Neurosci, 2008, 9 (3): 206- 221
doi: 10.1038/nrn2286
|
28 |
SMITH C J , O'BRIEN T , CHATZIGEORGIOU M et al. Sensory neuron fates are distinguished by a transcriptional switch that regulates dendrite branch stabilization[J]. Neuron, 2013, 79 (2): 266- 280
doi: 10.1016/j.neuron.2013.05.009
|
29 |
TSALIK E L , NIACARIS T , WENICK A S et al. LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C. elegans nervous system[J]. Dev Biol, 2003, 263 (1): 81- 102
doi: 10.1016/s0012-1606(03)00447-0
|
30 |
SUGIMURA K , SATOH D , ESTES P et al. Development of morphological diversity of dendrites in Drosophila by the BTB-zinc finger protein abrupt[J]. Neuron, 2004, 43 (6): 809- 822
doi: 10.1016/j.neuron.2004.08.016
|
31 |
HAND R , BORTONE D , MATTAR P et al. Phosphorylation of Neurogenin2 specifies the migration properties and the dendritic morphology of pyramidal neurons in the neocortex[J]. Neuron, 2005, 48 (1): 45- 62
doi: 10.1016/j.neuron.2005.08.032
|
32 |
FLORIO M , LETO K , MUZIO L et al. Neurogenin 2 regulates progenitor cell-cycle progression and Purkinje cell dendritogenesis in cerebellar development[J]. Development, 2012, 139 (13): 2308- 2320
doi: 10.1242/dev.075861
|
33 |
ZOU W , DONG X , BROEDERDORF T R et al. A dendritic guidance receptor complex brings together distinct actin regulators to drive efficient f-actin assembly and branching[J]. Dev Cell, 2018, 45 (3): 362- 375
doi: 10.1016/j.devcel.2018.04.008
|
34 |
CHEN H , FIRESTEIN B L . RhoA regulates dendrite branching in hippocampal neurons by decreasing cypin protein levels[J]. J Neurosci, 2007, 27 (31): 8378- 8386
doi: 10.1523/JNEUROSCI.0872-07.2007
|
35 |
LEEMHUIS J , BOUTILLIER S , BARTH H et al. Rho GTPases and phosphoinositide 3-kinase organize formation of branched dendrites[J]. J Biol Chem, 2004, 279 (1): 585- 596
doi: 10.1074/jbc.M307066200
|
36 |
NEWEY S E , VELAMOOR V , GOVEK E E et al. Rho GTPases, dendritic structure, and mental retardation[J]. J Neurobiol, 2005, 64 (1): 58- 74
doi: 10.1002/neu.20153
|
37 |
ZOU W, YADAV S, DEVAULT L, et al. RAB-10-dependent membrane transport is required for dendrite arborization[J/OL]. PLoS Genet, 2015, 11(9): e1005484. DOI: 10.1371/journal.pgen.1005484.
|
38 |
TAYLOR C A, YAN J, HOWELL A S, et al. RAB-10 regulates dendritic branching by balancing dendritic transport[J/OL]. PLoS Genet, 2015, 11(12): e1005695. DOI: 10.1371/journal.pgen.1005695.
|
39 |
NAKAYAMA A Y , HARMS M B , LUO L . Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons[J]. J Neurosci, 2000, 20 (14): 5329- 5338
doi: 10.1523/JNEUROSCI.20-14-05329.2000
|
40 |
CACERES A , MAUTINO J , KOSIK K S . Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation[J]. Neuron, 1992, 9 (4): 607- 618
doi: 10.1016/0896-6273(92)90025-9
|
41 |
HARTERINK M , EDWARDS S L , DE HAAN B et al. Local microtubule organization promotes cargo transport in C. elegans dendrites[J]. J Cell Sci, 2018, 131 (20): pii. jcs223107
doi: 10.1242/jcs.223107
|
42 |
MANIAR T A , KAPLAN M , WANG G J et al. UNC-33(CRMP) and ankyrin organize microtubules and localize kinesin to polarize axon-dendrite sorting[J]. Nat Neurosci, 2011, 15 (1): 48- 56
doi: 10.1038/nn.2970
|
43 |
RICHARDSON C E, SPILKER K A, CUEVA J G, et al. PTRN-1, a microtubule minus end-binding CAMSAP homolog, promotes microtubule function in Caenorhabditis elegans neurons[J/OL]. Elife, 2014, 3: e01498. DOI: 10.7554/eLife.01498.
|
44 |
SUNDARARAJAN L, SMITH C J, WATSON J D, et al. Actin assembly and non-muscle myosin activity drive dendrite retraction in an UNC-6/Netrin dependent self-avoidance response[J/OL]. PLoS Genetics, 2019, 15(6): e1008228. DOI: 10.1371/journal.pgen.1008228.
|
45 |
TANG L T, DIAZ-BALZAC C A, RAHMAN M, et al. TIAM-1/GEF can shape somatosensory dendrites independently of its GEF activity by regulating F-actin localization[J/OL]. Elife, 2019, 8: e38949. DOI: 10.7554/eLife.38949.
|
46 |
KIM I H , ROSSI M A , ARYAL D K et al. Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine[J]. Nat Neurosci, 2015, 18 (6): 883- 891
doi: 10.1038/nn.4015
|
47 |
SUNDARARAJAN L, SMITH C J, WATSON J D, et al. Actin assembly and non-muscle myosin activity drive dendrite retraction in an UNC-6/Netrin dependent self-avoidance response[J/OL]. PLoS Genet, 2019, 15(6): e1008228. DOI: 10.1371/journal.pgen.1008228.
|
48 |
LIAO C P , LI H , LEE H H et al. Cell-autonomous regulation of dendrite self-avoidance by the wnt secretory factor MIG-14/Wntless[J]. Neuron, 2018, 98 (2): 320- 334
doi: 10.1016/j.neuron.2018.03.031
|
49 |
ZOU W , SHEN A , DONG X et al. A multi-protein receptor-ligand complex underlies combinatorial dendrite guidance choices in C. elegans[J]. Elife, 2016, 5
doi: 10.7554/ELIFE.18345
|
50 |
DíAZ-BALZAC C A , RAHMAN M , LáZARO-PE?A M I et al. Muscle- and skin-derived cues jointly orchestrate patterning of somatosensory dendrites[J]. Curr Biol, 2016, 26 (17): 2397
doi: 10.1016/j.cub.2016.07.078
|
51 |
GATES M A , TAI C C , MACKLIS J D . Neocortical neurons lacking the protein-tyrosine kinase B receptor display abnormal differentiation and process elongation in vitro and in vivo[J]. Neuroscience, 2000, 98 (3): 437- 447
doi: 10.1016/s0306-4522(00)00106-8
|
52 |
LAZO O M , GONZALEZ A , ASCA?O M et al. BDNF regulates Rab11-mediated recycling endosome dynamics to induce dendritic branching[J]. J Neurosci, 2013, 33 (14): 6112- 6122
doi: 10.1523/JNEUROSCI.4630-12.2013
|
53 |
PINO D, CHOE Y, PLEASURE S J. Wnt5a controls neurite development in olfactory bulb interneurons[J/OL]. ASN Neuro, 2011, 3(3): e00059. DOI: 10.1042/AN20100038.
|
54 |
WHITFORD K L , MARILLAT V , STEIN E et al. Regulation of cortical dendrite development by Slit-Robo interactions[J]. Neuron, 2002, 33 (1): 47- 61
doi: 10.1016/s0896-6273(01)00566-9
|
55 |
KIDD T , BLAND K S , GOODMAN C S . Slit is the midline repellent for the robo receptor in Drosophila[J]. Cell, 1999, 96 (6): 785- 794
doi: 10.1016/s0092-8674(00)80589-9
|
56 |
SALZBERG Y , DíAZ-BALZAC C A , RAMIREZ-SUAREZ N J et al. Skin-derived cues control arborization of sensory dendrites in Caenorhabditis elegans[J]. Cell, 2013, 155 (2): 308- 320
doi: 10.1016/j.cell.2013.08.058
|
57 |
LIANG X , DONG X , MOERMAN D G et al. Sarcomeres pattern proprioceptive sensory dendritic endings through UNC-52/Perlecan in C. elegans[J]. Dev Cell, 2015, 33 (4): 388- 400
doi: 10.1016/j.devcel.2015.03.010
|
58 |
DONG X , LIU O W , HOWELL A S et al. An extracellular adhesion molecule complex patterns dendritic branching and morphogenesis[J]. Cell, 2013, 155 (2): 296- 307
doi: 10.1016/j.cell.2013.08.059
|
59 |
RAMIREZ-SUAREZ N J , BELALCAZAR H M , SALAZAR C J et al. Axon-dependent patterning and maintenance of somatosensory dendritic arbors[J]. Dev Cell, 2019, 48 (2): 229- 244
doi: 10.1016/j.devcel.2018.12.015
|
60 |
CHEN C H , HSU H W , CHANG Y H et al. Adhesive L1CAM-Robo signaling aligns growth cone f-actin dynamics to promote axon-dendrite fasciculation in c. elegans[J]. Dev Cell, 2019, 49 (3): 490- 491
doi: 10.1016/j.devcel.2019.04.028
|
61 |
SOBA P , ZHU S , EMOTO K et al. Drosophila sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization[J]. Neuron, 2007, 54 (3): 403- 416
doi: 10.1016/j.neuron.2007.03.029
|
62 |
MATTHEWS B J , KIM M E , FLANAGAN J J et al. Dendrite self-avoidance is controlled by Dscam[J]. Cell, 2007, 129 (3): 593- 604
doi: 10.1016/j.cell.2007.04.013
|
63 |
KUFFLER S W . Discharge patterns and functional organization of mammalian retina[J]. J Neurophysiol, 1953, 16 (1): 37- 68
doi: 10.1152/jn.1953.16.1.37
|
64 |
YAMAGATA M , SANES J R . Expanding the Ig superfamily code for laminar specificity in retina:expression and role of contactins[J]. J Neurosci, 2012, 32 (41): 14402- 14414
doi: 10.1523/JNEUROSCI.3193-12.2012
|
65 |
KIM M E , SHRESTHA B R , BLAZESKI R et al. Integrins establish dendrite-substrate relationships that promote dendritic self-avoidance and patterning in drosophila sensory neurons[J]. Neuron, 2012, 73 (1): 79- 91
doi: 10.1016/j.neuron.2011.10.033
|
66 |
HAN C , WANG D , SOBA P et al. Integrins regulate repulsion-mediated dendritic patterning of drosophila sensory neurons by restricting dendrites in a 2D space[J]. Neuron, 2012, 73 (1): 64- 78
doi: 10.1016/j.neuron.2011.10.036
|
67 |
KERRISK M E , GREER C A , KOLESKE A J . Integrin α3 is required for late postnatal stability of dendrite arbors, dendritic spines and synapses, and mouse behavior[J]. J Neurosci, 2013, 33 (16): 6742- 6752
doi: 10.1523/JNEUROSCI.0528-13.2013
|
68 |
LIU O W , SHEN K . The transmembrane LRR protein DMA-1 promotes dendrite branching and growth in C. elegans[J]. Nat Neurosci, 2012, 15 (1): 57- 63
doi: 10.1038/nn.2978
|
69 |
CELESTRIN K , DíAZ-BALZAC C A , TANG L et al. Four specific immunoglobulin domains in UNC-52/Perlecan function with NID-1/Nidogen during dendrite morphogenesis in Caenorhabditis elegans[J]. Development, 2018, 145 (10):
doi: 10.1242/dev.158881
|
70 |
MERZ D C , ZHENG H , KILLEEN M T et al. Multiple signaling mechanisms of the UNC-6/netrin receptors UNC-5 and UNC-40/DCC in vivo[J]. Genetics, 2001, 158 (3): 1071- 1080
doi: 10.1002/GEPI.1019
|
71 |
BOTHWELL M . NGF, BDNF, NT3, and NT4[J]. Handb Exp Pharmacol, 2014, 220:3- 15
doi: 10.1007/978-3-642-45106-5_1
|
72 |
O'NEILL K M , KWON M , DONOHUE K E et al. Distinct effects on the dendritic arbor occur by microbead versus bath administration of brain-derived neurotrophic factor[J]. Cell Mol Life Sci, 2017, 74 (23): 4369- 4385
doi: 10.1007/s00018-017-2589-7
|
73 |
PURAM S V , KIM A H , IKEUCHI Y et al. A CaMKIIβ signaling pathway at the centrosome regulates dendrite patterning in the brain[J]. Nat Neurosci, 2011, 14 (8): 973- 983
doi: 10.1038/NN.2857
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|