Please wait a minute...
浙江大学学报(医学版)  2020, Vol. 49 Issue (1): 82-89    DOI: 10.3785/j.issn.1008-9292.2020.02.08
综述     
内源性信号通路在神经元轴突再生中的功能和机制研究
王燚锋, 王志萍
浙江大学医学院神经科学研究中心 卫生部医学神经生物学重点实验室, 浙江 杭州 310058
Research progress on intrinsic signaling pathways in axon regeneration
WANG Yifeng, WANG Zhiping
NHC and CAMS Key Laboratory of Medical Neurobiology, Center for Neuroscience, Zhejiang University School of Medicine, Hangzhou 310058, China
 全文: PDF(1883 KB)   HTML( 10 )
摘要:

神经元内源性再生能力是神经元再生和功能恢复的关键。近年研究发现了多个调控轴突再生的内源性信号通路,其中丝裂原活化蛋白激酶(MAPK)信号通路和磷脂酰肌醇3-激酶/蛋白激酶B(PI3K/Akt)信号通路最具代表性。MAPK信号通路参与轴突损伤的感知、再生的启动和维持等过程,通过调节蛋白合成和细胞骨架来调控轴突再生;PI3K/Akt信号通路则通过调节损伤后神经元内相关基因的转录和翻译调控轴突再生。多种再生促进信号的共同作用能进一步提升轴突再生能力。本文综述了MAPK和PI3K/Akt信号通路在不同模式生物中调控轴突再生的研究进展,并展望了其在促进体内神经功能恢复上的重要作用。

关键词: 神经再生/轴突有丝分裂素激活蛋白激酶类磷脂酰肌醇3-激酶信号传导综述    
Abstract:

The intrinsic regrowth ability of injured neurons is essential for axon regeneration and functional recovery. Recently, numerous intrinsic pathways that regulate axon regeneration have been discovered, among which the mitogen-activated protein kinase (MAPK) pathway and the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway are arguably the best characterized examples. MAPK signaling pathway is involved in multiple processes including sensing injury signals, initiating and promoting axonal regrowth through regulating cytoskeleton dynamics and protein synthesis. The PI3K/Akt signaling pathway regulates axon regeneration mainly through gene transcription and translation. Combinatory manipulation of multiple regeneration-promoting signals can further improve the extend of axonal regrowth. This paper summarizes current progresses on axon regeneration studies in various organisms and discuss their potentials in promoting functional recovery in vivo.

Key words: Nerve regeneration/axons    Mitogen-activated protein kinases    Phosphatidylinositol 3-kinase    Signal transduction    Review
收稿日期: 2019-11-10 出版日期: 2020-06-30
CLC:  R741  
基金资助: 国家自然科学基金(31671039)
通讯作者: 王志萍      E-mail: z4wang@zju.edu.cn
作者简介: 王燚锋(1995-),男,硕士研究生,主要从事神经再生研究;E-mail:21718555@zju.edu.cn;https://orcid.org/0000-0002-8909-8213
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王燚锋
王志萍

引用本文:

王燚锋, 王志萍. 内源性信号通路在神经元轴突再生中的功能和机制研究[J]. 浙江大学学报(医学版), 2020, 49(1): 82-89.

WANG Yifeng, WANG Zhiping. Research progress on intrinsic signaling pathways in axon regeneration. J Zhejiang Univ (Med Sci), 2020, 49(1): 82-89.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2020.02.08        http://www.zjujournals.com/med/CN/Y2020/V49/I1/82

图 1  间充质干细胞向肿瘤组织靶向归巢可能的机制
肿瘤模型 肿瘤细胞系 肿瘤组织炎症因子 MSC来源 MSC上的相应受体 参考文献
“—”:无相关资料.CXCL:趋化因子CXC亚家族配体; CXCR:趋化因子CXC亚家族受体.
乳腺癌 SUM1315、MDA-MB-231 TGF-β1 人骨髓 [39]
4T1 TGF-β1、血管内皮生长因子、血小板源生长因子BB 小鼠骨髓 CCR2 [40]
MDA-MB-231、MCF-7、MDA-MB-468 IL-6 人骨髓 [41]
肝癌 SNU-398、Hep3B CXCL12 人骨髓 CXCR4 [37]
HuH7 巨噬细胞炎性蛋白1δ、巨噬细胞炎性蛋白3α、基质金属蛋白酶1 人骨髓 [42]
HCCLM3 表皮细胞生长因子、CXCL9、CCL25、基质金属蛋白酶9 小鼠骨髓 [25]
脑胶质瘤 U251 CXCL12 人脐带血 CXCR4 [38]
U87 IL-8 人脐带血 CXCR1 [43-44]
U87、U251、LN229 血小板源生长因子BB、表皮细胞生长因子、CXCL12 人骨髓 [45]
前列腺癌 PC3、DU145 CXCL12 大鼠骨髓 CXCR4 [46]
PC3、LNCaP、DU145、RM1、Tramp CXCL16 人/小鼠骨髓 CXCR6 [47]
骨肉瘤 Saos-2 CXCL12 人骨髓 CXCR4 [19]
髓母细胞瘤 Daoy、D283 CXCL12 人脐带血 CXCR4 [48]
表 1  肿瘤细胞通过释放多种趋化因子吸引间充质干细胞(MSC)靶向归巢研究结果一览
治疗基因 基因重组载体 肿瘤类型 作用机制 参考文献
“—”:无相关资料;NK4:一种在胃癌中异常激活的肝细胞生长因子受体;HNF4α:肝细胞核因子4α;siIMPORTER:一种商品化转染试剂;Stat3:信号转导及转录激活因子3.
自杀基因
  单纯疱疹病毒胸苷激酶 精胺-普鲁兰多糖 黑色素肺转移瘤 表达前药活化酶,将无毒性的前药活化为DNA原料结构类似物,在杀伤间充质干细胞的同时通过旁观者效应杀伤肿瘤细胞 [33]
杆状病毒 脑胶质瘤 [75]
  胞嘧啶脱氢酶 腺病毒 脑胶质瘤 [76]
凋亡诱导蛋白
  肿瘤坏死因子相关细胞凋亡诱导配体 环糊精修饰的低分子量聚乙烯二胺 黑色素肺转移瘤 激活半胱氨酸蛋白酶8 [52]
逆转录病毒 乳腺癌、宫颈癌、胰腺癌、结肠癌 [77]
腺病毒 食道癌 [79]
逆转录病毒 尤因肉瘤 [80]
慢病毒 舌鳞状细胞癌 [81]
  Apoptin 慢病毒 肺癌 激活半胱氨酸蛋白酶3 [82]
腺病毒 肝癌 [83]
细胞因子和趋化因子
  IL-2 腺病毒 脑胶质瘤 [84]
  IL-12 腺病毒 肾细胞癌 激活自然杀伤细胞和促进γ干扰素的分泌 [85]
慢病毒 恶性腹水瘤 吸引树突细胞趋化,刺激免疫反应 [86]
腺病毒 尤因肉瘤 [87]
  IL-21 腺病毒 淋巴瘤 诱导全身性抗肿瘤免疫力 [88]
  IL-18 腺病毒 脑胶质瘤 增强T细胞浸润和长期的抗肿瘤免疫力 [89]
  β干扰素 慢病毒 乳腺癌 抑制Stat3信号激活,下调乳腺癌细胞中c-Myc和基质金属蛋白酶2表达水平 [90]
逆转录病毒 胰腺癌 [91]
  α干扰素 腺病毒 黑色素肺转移瘤 [92]
  γ干扰素 腺病毒 白血病 [93]
  CX3CL1 腺病毒 结肠癌、黑色素肺转移瘤 活化免疫系统 [94]
肿瘤血管新生抑制因子
  NK4 慢病毒 胃癌 抑制肿瘤组织血管生成 [95]
  色素上皮衍生因子 腺病毒 肺癌 [96]
腺病毒 恶性腹水瘤 [97]
转录调节因子/miRNA
  HNF4α 慢病毒 肝癌 下调Wnt/β-catenin信号通路 [98]
  miR-124、miR-145 siIMPORTER (Millipore) 脑胶质瘤 调控基因表达 [99]
表 2  间充质干细胞靶向递送系统携载治疗基因应用于肿瘤治疗的研究结果一览
1 ZHANG Y , LI N , SUH H et al. Nanoparticle anchoring targets immune agonists to tumors enabling anti-cancer immunity without systemic toxicity[J]. Nat Commun, 2018, 9 (1): 6
doi: 10.1038/s41467-017-02251-3
2 GAO J Q , LV Q , LI L M et al. Glioma targeting and blood-brain barrier penetration by dual-targeting doxorubincin liposomes[J]. Biomaterials, 2013, 34 (22): 5628- 5639
doi: 10.1016/j.biomaterials.2013.03.097
3 CABRAL H , MATSUMOTO Y , MIZUNO K et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size[J]. Nat Nanotechnol, 2011, 6 (12): 815- 823
doi: 10.1038/nnano.2011.166
4 WU J T , DENG C , MENG F H et al. Hyaluronic acid coated PLGA nanoparticulate docetaxel effectively targets and suppresses orthotopic human lung cancer[J]. J Control Release, 2017, 259:76- 82
doi: 10.1016/j.jconrel.2016.12.024
5 NIU J , CHU Y , HUANG Y F et al. Transdermal gene delivery by functional peptide-conjugated cationic gold nanoparticle reverses the progression and metastasis of cutaneous melanoma[J]. Acs Appl Mater Inter, 2017, 9 (11): 9388- 9401
doi: 10.1021/acsami.6b16378
6 COLLET G , GRILLON C , NADIM M et al. Trojan horse at cellular level for tumor gene therapies[J]. Gene, 2013, 525 (2): 208- 216
doi: 10.1016/j.gene.2013.03.057
7 LAM F C , MORTON S W , WYCKOFF J et al. Enhanced efficacy of combined temozolomide and bromodomain inhibitor therapy for gliomas using targeted nanoparticles[J]. Nat Commun, 2018, 9 (1): 1991
doi: 10.1038/s41467-018-04315-4
8 LIU H N , GUO N N , GUO W W et al. Delivery of mitochondriotropic doxorubicin derivatives using self-assembling hyaluronic acid nanocarriers in doxorubicin-resistant breast cancer[J]. Acta Pharmacol Sin, 2018, 39 (10): 1681- 1692
doi: 10.1038/aps.2018.9
9 ZHANG C , NANCE E A , MASTORAKOS P et al. Convection enhanced delivery of cisplatin-loaded brain penetrating nanoparticles cures malignant glioma in rats[J]. J Control Release, 2017, 263:112- 119
doi: 10.1016/j.jconrel.2017.03.007
10 STUCKEY D W , SHAH K . Stem cell-based therapies for cancer treatment:separating hope from hype[J]. Nat Rev Cancer, 2014, 14 (10): 683- 691
doi: 10.1038/nrc3798
11 ROGER M , CLAVREUL A , VENIER-JULIENNE M C et al. Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors[J]. Biomaterials, 2010, 31 (32): 8393- 8401
doi: 10.1016/j.biomaterials.2010.07.048
12 MüLLER F J , SNYDER E Y , LORING J F . Gene therapy:can neural stem cells deliver?[J]. Nat Rev Neurosci, 2006, 7 (1): 75- 84
doi: 10.1038/nrn1829
13 XUE J , ZHAO Z , ZHANG L et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence[J]. Nat Nanotechnol, 2017, 12 (7): 692- 700
doi: 10.1038/nnano.2017.54
14 BURKE B , SUMNER S , MAITLAND N et al. Macrophages in gene therapy:cellular delivery vehicles and in vivo targets[J]. J Leukoc Biol, 2002, 72 (3): 417- 428
15 PIERIGè F , BIGINI N , ROSSI L et al. Reengineering red blood cells for cellular therapeutics and diagnostics[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2017, 9 (5):
doi: 10.1002/wnan.1454
16 TYNDALL A , PISTOIA V . Mesenchymal stem cells combat sepsis[J]. Nat Med, 2009, 15 (1): 18- 20
doi: 10.1038/nm0109-18
17 COMPTE M , CUESTA A M , SáNCHEZ-MARTíN D et al. Tumor immunotherapy using gene-modified human mesenchymal stem cells loaded into synthetic extracellular matrix scaffolds[J]. Stem Cells, 2009, 27 (3): 753- 760
doi: 10.1634/stemcells.2008-0831
18 BERNARDO M E , FIBBE W E . Mesenchymal stromal cells:sensors and switchers of inflammation[J]. Cell Stem Cell, 2013, 13 (4): 392- 402
doi: 10.1016/j.stem.2013.09.006
19 XU W T , BIAN Z Y , FAN Q M et al. Human mesenchymal stem cells (hMSCs) target osteosarcoma and promote its growth and pulmonary metastasis[J]. Cancer Lett, 2009, 281 (1): 32- 41
doi: 10.1016/j.canlet.2009.02.022
20 FRIEDENSTEIN A J , CHAILAKHYAN R K , GERASIMOV U V . Bone marrow osteogenic stem cells:in vitro cultivation and transplantation in diffusion chambers[J]. Cell Tissue Kinet, 1987, 20 (3): 263- 272
doi: 10.1111/j.1365-2184.1987.tb01309.x
21 SORDI V , MALOSIO M L , MARCHESI F et al. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets[J]. Blood, 2005, 106 (2): 419- 427
doi: 10.1182/blood-2004-09-3507
22 KARP J M , LENG TEO G S . Mesenchymal stem cell homing:the devil is in the details[J]. Cell Stem Cell, 2009, 4 (3): 206- 216
doi: 10.1016/j.stem.2009.02.001
23 KARNOUB A E , DASH A B , VO A P et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis[J]. Nature, 2007, 449 (7162): 557- 563
doi: 10.1038/nature06188
24 MADER E K , MAEYAMA Y , LIN Y et al. Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model[J]. Clin Cancer Res, 2009, 15 (23): 7246- 7255
doi: 10.1158/1078-0432.CCR-09-1292
25 XIE C , YANG Z , SUO Y et al. Systemically infused mesenchymal stem cells show different homing profiles in healthy and tumor mouse models[J]. Stem Cells Transl Med, 2017, 6 (4): 1120- 1131
doi: 10.1002/sctm.16-0204
26 LAYEK B , SADHUKHA T , PANYAM J et al. Nano-engineered mesenchymal stem cells increase therapeutic efficacy of anticancer drug through true active tumor targeting[J]. Mol Cancer Ther, 2018, 17 (6): 1196- 1206
doi: 10.1158/1535-7163.MCT-17-0682
27 ZISCHEK C , NIESS H , ISCHENKO I et al. Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma[J]. Ann Surg, 2009, 250 (5): 747- 753
doi: 10.1097/SLA.0b013e3181bd62d0
28 SCHWEIZER M T , WANG H , BIVALACQUA T J et al. A phase I study to assess the safety and cancer-homing ability of allogeneic bone marrow-derived mesenchymal stem cells in men with localized prostate cancer[J]. Stem Cells Transl Med, 2019, 8 (5): 441- 449
doi: 10.1002/sctm.18-0230
29 GRISENDI G , BUSSOLARI R , CAFARELLI L et al. Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy[J]. Cancer Res, 2010, 70 (9): 3718- 3729
doi: 10.1158/0008-5472.CAN-09-1865
30 SASPORTAS L S , KASMIEH R , WAKIMOTO H et al. Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy[J]. Proc Natl Acad Sci U S A, 2009, 106 (12): 4822- 4827
doi: 10.1073/pnas.0806647106
31 DUAN X , GUAN H , CAO Y et al. Murine bone marrow-derived mesenchymal stem cells as vehicles for interleukin-12 gene delivery into Ewing sarcoma tumors[J]. Cancer, 2009, 115 (1): 13- 22
doi: 10.1002/cncr.24013
32 MIRZAEI H , SAHEBKAR A , AVAN A et al. Application of mesenchymal stem cells in melanoma:a potential therapeutic strategy for delivery of targeted agents[J]. Curr Med Chem, 2016, 23 (5): 455- 463
doi: 10.2174/0929867323666151217122033
33 ZHANG T Y , HUANG B , WU H B et al. Synergistic effects of co-administration of suicide gene expressing mesenchymal stem cells and prodrug-encapsulated liposome on aggressive lung melanoma metastases in mice[J]. J Control Release, 2015, 209:260- 271
doi: 10.1016/j.jconrel.2015.05.007
34 WANG H , CAO F , DE A et al. Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging[J]. Stem Cells, 2009, 27 (7): 1548- 1558
doi: 10.1002/stem.81
35 MOHR A , ALBARENQUE S M , DEEDIGAN L et al. Targeting of XIAP combined with systemic mesenchymal stem cell-mediated delivery of sTRAIL ligand inhibits metastatic growth of pancreatic carcinoma cells[J]. Stem Cells, 2010, 28 (11): 2109- 2120
doi: 10.1002/stem.533
36 WYNN R F , HART C A , CORRADI-PERINI C et al. A small proportion of mesenchymal stem cells strongly expresses functionally active CXCR4 receptor capable of promoting migration to bone marrow[J]. Blood, 2004, 104 (9): 2643- 2645
doi: 10.1182/blood-2004-02-0526
37 FONTANELLA R , PELAGALLI A , NARDELLI A et al. A novel antagonist of CXCR4 prevents bone marrow-derived mesenchymal stem cell-mediated osteosarcoma and hepatocellular carcinoma cell migration and invasion[J]. Cancer Lett, 2016, 370 (1): 100- 107
doi: 10.1016/j.canlet.2015.10.018
38 PARK S A , RYU C H , KIM S M et al. CXCR4-transfected human umbilical cord blood-derived mesenchymal stem cells exhibit enhanced migratory capacity toward gliomas[J]. Int J Oncol, 2011, 38 (1): 97- 103
39 GOLDSTEIN R H , REAGAN M R , ANDERSON K et al. Human bone marrow-derived MSCs can home to orthotopic breast cancer tumors and promote bone metastasis[J]. Cancer Res, 2010, 70 (24): 10044- 10050
doi: 10.1158/0008-5472.CAN-10-1254
40 KLOPP A H , SPAETH E L , DEMBINSKI J L et al. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment[J]. Cancer Res, 2007, 67 (24): 11687- 11695
doi: 10.1158/0008-5472.CAN-07-1406
41 RATTIGAN Y , HSU J M , MISHRA P J et al. Interleukin 6 mediated recruitment of mesenchymal stem cells to the hypoxic tumor milieu[J]. Exp Cell Res, 2010, 316 (20): 3417- 3424
doi: 10.1016/j.yexcr.2010.07.002
42 LEJMI E , PERRIRAZ N , CLEMENT S et al. Inflammatory chemokines MIP-1 delta and MIP-3 alpha are involved in the migration of multipotent mesenchymal stromal cells induced by hepatoma cells[J]. Stem Cells Dev, 2015, 24 (10): 1223- 1235
doi: 10.1089/scd.2014.0176
43 KIM S M , KIM D S , JEONG C H et al. CXC chemokine receptor 1 enhances the ability of human umbilical cord blood-derived mesenchymal stem cells to migrate toward gliomas[J]. Biochem Biophys Res Commun, 2011, 407 (4): 741- 746
doi: 10.1016/j.bbrc.2011.03.093
44 KIM S M , OH J H , PARK S A et al. Irradiation enhances the tumor tropism and therapeutic potential of tumor necrosis factor-related apoptosis-inducing ligand-secreting human umbilical cord blood-derived mesenchymal stem cells in glioma therapy[J]. Stem Cells, 2010, 28 (12): 2217- 2228
doi: 10.1002/stem.543
45 NAKAMIZO A , MARINI F , AMANO T et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas[J]. Cancer Res, 2005, 65 (8): 3307- 3318
doi: 10.1158/0008-5472.CAN-04-1874
46 SONG C , LI G . CXCR4 and matrix metalloproteinase-2 are involved in mesenchymal stromal cell homing and engraftment to tumors[J]. Cytotherapy, 2011, 13 (5): 549- 561
doi: 10.3109/14653249.2010.542457
47 JUNG Y , KIM J K , SHIOZAWA Y et al. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis[J]. Nat Commun, 2013, 4:1795
doi: 10.1038/ncomms2766
48 BHOOPATHI P , CHETTY C , GOGINENI V R et al. MMP-2 mediates mesenchymal stem cell tropism towards medulloblastoma tumors[J]. Gene Ther, 2011, 18 (7): 692- 701
doi: 10.1038/gt.2011.14
49 CIHOVA M , ALTANEROVA V , ALTANER C . Stem cell based cancer gene therapy[J]. Mol Pharm, 2011, 8 (5): 1480- 1487
doi: 10.1021/mp200151a
50 FURLANI D , UGURLUCAN M , ONG L et al. Is the intravascular administration of mesenchymal stem cells safe? Mesenchymal stem cells and intravital microscopy[J]. Microvasc Res, 2009, 77 (3): 370- 376
doi: 10.1016/j.mvr.2009.02.001
51 NYSTEDT J , ANDERSON H , TIKKANEN J et al. Cell surface structures influence lung clearance rate of systemically infused mesenchymal stromal cells[J]. Stem Cells, 2013, 31 (2): 317- 326
doi: 10.1002/stem.1271
52 WU H H , ZHOU Y , TABATA Y et al. Mesenchymal stem cell-based drug delivery strategy:from cells to biomimetic[J]. J Control Release, 2019, 294:102- 113
doi: 10.1016/j.jconrel.2018.12.019
53 HU Y L , HUANG B , ZHANG T Y et al. Mesenchymal stem cells as a novel carrier for targeted delivery of gene in cancer therapy based on nonviral transfection[J]. Mol Pharm, 2012, 9 (9): 2698- 2709
doi: 10.1021/mp300254s
54 SHARIF S , GHAHREMANI M H , SOLEIMANI M . Delivery of exogenous miR-124 to glioblastoma multiform cells by wharton's jelly mesenchymal stem cells decreases cell proliferation and migration, and confers chemosensitivity[J]. Stem Cell Rev Rep, 2018, 14 (2): 236- 246
doi: 10.1007/s12015-017-9788-3
55 RATTIGAN Y , HSU J M , MISHRA P J et al. Interleukin 6 mediated recruitment of mesenchymal stem cells to the hypoxic tumor milieu[J]. Exp Cell Res, 2010, 316 (20): 3417- 3424
doi: 10.1016/j.yexcr.2010.07.002
56 MA H C , SHI X L , REN H Z et al. Targeted migration of mesenchymal stem cells modified with CXCR4 to acute failing liver improves liver regeneration[J]. World J Gastroenterol, 2014, 20 (40): 14884- 14894
doi: 10.3748/wjg.v20.i40.14884
57 HUANG W , WANG T , ZHANG D et al. Mesenchymal stem cells overexpressing CXCR4 attenuate remodeling of postmyocardial infarction by releasing matrix metalloproteinase-9[J]. Stem Cells Dev, 2012, 21 (5): 778- 789
doi: 10.1089/scd.2011.0126
58 HUANG B , JIANG X C , ZHANG T Y et al. Peptide modified mesenchymal stem cells as targeting delivery system transfected with miR-133b for the treatment of cerebral ischemia[J]. Int J Pharm, 2017, 531 (1): 90- 100
doi: 10.1016/j.ijpharm.2017.08.073
59 FISCHER U M , HARTING M T , JIMENEZ F et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery:the pulmonary first-pass effect[J]. Stem Cells Dev, 2009, 18 (5): 683- 692
doi: 10.1089/scd.2008.0253
60 PESSINA A , BONOMI A , COCCè V et al. Mesenchymal stromal cells primed with paclitaxel provide a new approach for cancer therapy[J]. PLoS One, 2011, 6 (12): e28321
doi: 10.1371/journal.pone.0028321
61 PESSINA A , COCCè V , PASCUCCI L et al. Mesenchymal stromal cells primed with Paclitaxel attract and kill leukaemia cells, inhibit angiogenesis and improve survival of leukaemia-bearing mice[J]. Br J Haematol, 2013, 160 (6): 766- 778
doi: 10.1111/bjh.12196
62 BONOMI A , SILINI A , VERTUA E et al. Human amniotic mesenchymal stromal cells (hAMSCs) as potential vehicles for drug delivery in cancer therapy:an in vitro study[J]. Stem Cell Res Ther, 2015, 6:155
doi: 10.1186/s13287-015-0140-z
63 PACIONI S , D'ALESSANDRIS Q G , GIANNETTI S et al. Mesenchymal stromal cells loaded with paclitaxel induce cytotoxic damage in glioblastoma brain xenografts[J]. Stem Cell Res Ther, 2015, 6:194
doi: 10.1186/s13287-015-0185-z
64 KALIMUTHU S , ZHU L , OH J M et al. Migration of mesenchymal stem cells to tumor xenograft models and in vitro drug delivery by doxorubicin[J]. Int J Med Sci, 2018, 15 (10): 1051- 1061
doi: 10.7150/ijms.25760
65 BONOMI A , SORDI V , DUGNANI E et al. Gemcitabine-releasing mesenchymal stromal cells inhibit in vitro proliferation of human pancreatic carcinoma cells[J]. Cytotherapy, 2015, 17 (12): 1687- 1695
doi: 10.1016/j.jcyt.2015.09.005
66 WANG X , CHEN H , ZENG X et al. Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system[J]. Acta Pharm Sin B, 2019, 9 (1): 167- 176
doi: 10.1016/j.apsb.2018.08.006
67 SADHUKHA T , O'BRIEN T D , PRABHA S . Nano-engineered mesenchymal stem cells as targeted therapeutic carriers[J]. J Control Release, 2014, 196:243- 251
doi: 10.1016/j.jconrel.2014.10.015
68 ZHAO Y , TANG S , GUO J et al. Targeted delivery of doxorubicin by nano-loaded mesenchymal stem cells for lung melanoma metastases therapy[J]. Sci Rep, 2017, 7:44758
doi: 10.1038/srep44758
69 MOKU G , LAYEK B , TRAUTMAN L et al. Improving payload capacity and anti-tumor efficacy of mesenchymal stem cells using TAT peptide functionalized polymeric nanoparticles[J]. Cancers(Basel), 2019, 11 (4):
doi: 10.3390/cancers11040491
70 ZHANG X , YAO S , LIU C et al. Tumor tropic delivery of doxorubicin-polymer conjugates using mesenchymal stem cells for glioma therapy[J]. Biomaterials, 2015, 39:269- 281
doi: 10.1016/j.biomaterials.2014.11.003
71 LI L , GUAN Y , LIU H et al. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy[J]. ACS Nano, 2011, 5 (9): 7462- 7470
doi: 10.1021/nn202399w
72 MOHR A , ZWACKA R . The future of mesenchymal stem cell-based therapeutic approaches for cancer-From cells to ghosts[J]. Cancer Lett, 2018, 414:239- 249
doi: 10.1016/j.canlet.2017.11.025
73 MOHAMMADI M , JAAFARI M R , MIRZAEI H R et al. Mesenchymal stem cell:a new horizon in cancer gene therapy[J]. Cancer Gene Ther, 2016, 23 (9): 285- 286
doi: 10.1038/cgt.2016.35
74 ZHANG T Y , HUANG B , YUAN Z Y et al. Gene recombinant bone marrow mesenchymal stem cells as a tumor-targeted suicide gene delivery vehicle in pulmonary metastasis therapy using non-viral transfection[J]. Nanomedicine, 2014, 10 (1): 257- 267
doi: 10.1016/j.nano.2013.06.003
75 BAK X Y , YANG J , WANG S . Baculovirus-transduced bone marrow mesenchymal stem cells for systemic cancer therapy[J]. Cancer Gene Ther, 2010, 17 (10): 721- 729
doi: 10.1038/cgt.2010.32
76 KOSAKA H , ICHIKAWA T , KUROZUMI K et al. Therapeutic effect of suicide gene-transferred mesenchymal stem cells in a rat model of glioma[J]. Cancer Gene Ther, 2012, 19 (8): 572- 578
doi: 10.1038/cgt.2012.35
77 GRISENDI G , BUSSOLARI R , CAFARELLI L et al. Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy[J]. Cancer Res, 2010, 70 (9): 3718- 3729
doi: 10.1158/0008-5472.CAN-09-1865
78 WALCZAK H , MILLER R E , ARIAIL K et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo[J]. Nat Med, 1999, 5 (2): 157- 163
doi: 10.1038/5517
79 LI L , LI F , TIAN H et al. Human mesenchymal stem cells with adenovirus-mediated TRAIL gene transduction have antitumor effects on esophageal cancer cell line Eca-109[J]. Acta Biochim Biophys Sin(Shanghai), 2014, 46 (6): 471- 476
doi: 10.1093/abbs/gmu024
80 GUIHO R , BITEAU K , GRISENDI G et al. TRAIL delivered by mesenchymal stromal/stem cells counteracts tumor development in orthotopic Ewing sarcoma models[J]. Int J Cancer, 2016, 139 (12): 2802- 2811
doi: 10.1002/ijc.30402
81 XIA L , PENG R , LENG W et al. TRAIL-expressing gingival-derived mesenchymal stem cells inhibit tumorigenesis of tongue squamous cell carcinoma[J]. J Dent Res, 2015, 94 (1): 219- 228
doi: 10.1177/0022034514557815
82 DU J , ZHANG Y , XU C et al. Apoptin-modified human mesenchymal stem cells inhibit growth of lung carcinoma in nude mice[J]. Mol Med Rep, 2015, 12 (1): 1023- 1029
doi: 10.3892/mmr.2015.3501
83 ZHANG J , HOU L , WU X et al. Inhibitory effect of genetically engineered mesenchymal stem cells with Apoptin on hepatoma cells in vitro and in vivo[J]. Mol Cell Biochem, 2016, 416 (1-2): 193- 203
doi: 10.1007/s11010-016-2707-0
84 NAKAMURA K , ITO Y , KAWANO Y et al. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model[J]. Gene Ther, 2004, 11 (14): 1155- 1164
doi: 10.1038/sj.gt.3302276
85 GAO P , DING Q , WU Z et al. Therapeutic potential of human mesenchymal stem cells producing IL-12 in a mouse xenograft model of renal cell carcinoma[J]. Cancer Lett, 2010, 290 (2): 157- 166
doi: 10.1016/j.canlet.2009.08.031
86 HAN J , ZHAO J , XU J et al. Mesenchymal stem cells genetically modified by lentivirus-mediated interleukin-12 inhibit malignant ascites in mice[J]. Exp Ther Med, 2014, 8 (4): 1330- 1334
doi: 10.3892/etm.2014.1918
87 DUAN X , GUAN H , CAO Y et al. Murine bone marrow-derived mesenchymal stem cells as vehicles for interleukin-12 gene delivery into Ewing sarcoma tumors[J]. Cancer, 2009, 115 (1): 13- 22
doi: 10.1002/cncr.24013
88 KIM N , NAM Y S , IM K I et al. IL-21-expressing mesenchymal stem cells prevent lethal B-cell lymphoma through efficient delivery of IL-21, which redirects the immune system to target the tumor[J]. Stem Cells Dev, 2015, 24 (23): 2808- 2821
doi: 10.1089/scd.2015.0103
89 XU G , JIANG X D , XU Y et al. Adenoviral-mediated interleukin-18 expression in mesenchymal stem cells effectively suppresses the growth of glioma in rats[J]. Cell Biol Int, 2009, 33 (4): 466- 474
doi: 10.1016/j.cellbi.2008.07.023
90 AHN J O , LEE H W , SEO K W et al. Anti-tumor effect of adipose tissue derived-mesenchymal stem cells expressing interferon-β and treatment with cisplatin in a xenograft mouse model for canine melanoma[J]. PLoS One, 2013, 8 (9): e74897
doi: 10.1371/journal.pone.0074897
91 KIDD S , CALDWELL L , DIETRICH M et al. Mesenchymal stromal cells alone or expressing interferon-beta suppress pancreatic tumors in vivo, an effect countered by anti-inflammatory treatment[J]. Cytotherapy, 2010, 12 (5): 615- 625
doi: 10.3109/14653241003631815
92 REN C , KUMAR S , CHANDA D et al. Therapeutic potential of mesenchymal stem cells producing interferon-alpha in a mouse melanoma lung metastasis model[J]. Stem Cells, 2008, 26 (9): 2332- 2338
doi: 10.1634/stemcells.2008-0084
93 LI X , LU Y , HUANG W et al. In vitro effect of adenovirus-mediated human Gamma Interferon gene transfer into human mesenchymal stem cells for chronic myelogenous leukemia[J]. Hematol Oncol, 2006, 24 (3): 151- 158
doi: 10.1002/hon.779
94 XIN H , KANEHIRA M , MIZUGUCHI H et al. Targeted delivery of CX3CL1 to multiple lung tumors by mesenchymal stem cells[J]. Stem Cells, 2007, 25 (7): 1618- 1626
doi: 10.1634/stemcells.2006-0461
95 ZHU Y , CHENG M , YANG Z et al. Mesenchymal stem cell-based NK4 gene therapy in nude mice bearing gastric cancer xenografts[J]. Drug Des Devel Ther, 2014, 8:2449- 2462
doi: 10.2147/DDDT.S71466
96 CHEN Q , CHENG P , YIN T et al. Therapeutic potential of bone marrow-derived mesenchymal stem cells producing pigment epithelium-derived factor in lung carcinoma[J]. Int J Mol Med, 2012, 30 (3): 527- 534
doi: 10.3892/ijmm.2012.1015
97 YANG L , ZHANG Y , CHENG L et al. Mesenchymal stem cells engineered to secrete pigment epithelium-derived factor inhibit tumor metastasis and the formation of malignant ascites in a murine colorectal peritoneal carcinomatosis model[J]. Hum Gene Ther, 2016, 27 (3): 267- 277
doi: 10.1089/hum.2015.135
98 WU N , ZHANG Y L , WANG H T et al. Overexpression of hepatocyte nuclear factor 4α in human mesenchymal stem cells suppresses hepatocellular carcinoma development through Wnt/β-catenin signaling pathway downregulation[J]. Cancer Biol Ther, 2016, 17 (5): 558- 565
doi: 10.1080/15384047.2016.1177675
99 LEE H K , FINNISS S , CAZACU S et al. Mesenchymal stem cells deliver synthetic microRNA mimics to glioma cells and glioma stem cells and inhibit their cell migration and self-renewal[J]. Oncotarget, 2013, 4 (2): 346- 361
doi: 10.18632/oncotarget.868
100 GHEISARI Y , SOLEIMANI M , AZADMANESH K et al. Multipotent mesenchymal stromal cells:optimization and comparison of five cationic polymer-based gene delivery methods[J]. Cytotherapy, 2008, 10 (8): 815- 823
doi: 10.1080/14653240802474307
101 张添源, 胡瑜兰, 梁文权 et al. 基因重组间充质干细胞作为肿瘤靶向细胞载体的研究进展[J]. 药学学报, 2013, 48 (8): 1209- 1220
ZHANG Tianyuan , HU Yulan , LIANG Wenquan et al. Research progress of gene recombinant mesenchymal stem cells as tumor targeting delivery vehicles[J]. Acta Pharmaceutica Sinica, 2013, 48 (8): 1209- 1220
102 KIM K S , PARK W , NA K . Gadolinium-chelate nanoparticle entrapped human mesenchymal stem cell via photochemical internalization for cancer diagnosis[J]. Biomaterials, 2015, 36:90- 97
doi: 10.1016/j.biomaterials.2014.09.014
103 SURYAPRAKASH S , LI M , LAO Y H et al. Graphene oxide cellular patches for mesenchymal stem cell-based cancer therapy[J]. Carbon, 2018, 129:863- 868
doi: 10.1016/j.carbon.2017.12.031
104 KRUEGER T , THOREK D , DENMEADE S R et al. Concise review:mesenchymal stem cell-based drug delivery:the good, the bad, the ugly, and the promise[J]. Stem Cells Transl Med, 2018, 7 (9): 651- 663
doi: 10.1002/sctm.18-0024
105 RUAN J , JI J , SONG H et al. Fluorescent magnetic nanoparticle-labeled mesenchymal stem cells for targeted imaging and hyperthermia therapy of in vivo gastric cancer[J]. Nanoscale Res Lett, 2012, 7 (1): 309
doi: 10.1186/1556-276X-7-309
106 CAO B , YANG M , ZHU Y et al. Stem cells loaded with nanoparticles as a drug carrier for in vivo breast cancer therapy[J]. Adv Mater, 2014, 26 (27): 4627- 4631
doi: 10.1002/adma.201401550
107 KANG S , BHANG S H , HWANG S et al. Mesenchymal stem cells aggregate and deliver gold nanoparticles to tumors for photothermal therapy[J]. ACS Nano, 2015, 9 (10): 9678- 9690
doi: 10.1021/acsnano.5b02207
108 KANG S , LEE J , RYU S et al. Gold nanoparticle/graphene oxide hybrid sheets attached on mesenchymal stem cells for effective photothermal cancer therapy[J]. Chem Mate, 2017, 29 (8): 3461- 3476
doi: 10.1021/acs.chemmater.6b05164
109 QIAO Y , GUMIN J , MACLELLAN C J et al. Magnetic resonance and photoacoustic imaging of brain tumor mediated by mesenchymal stem cell labeled with multifunctional nanoparticle introduced via carotid artery injection[J]. Nanotechnology, 2018, 29 (16): 165101
doi: 10.1088/1361-6528/aaaf16
110 CHENG J , LI L , LIU Y et al. Interleukin-1α induces immunosuppression by mesenchymal stem cells promoting the growth of prostate cancer cells[J]. Mol Med Rep, 2012, 6 (5): 955- 960
doi: 10.3892/mmr.2012.1019
111 LI H J , REINHARDT F , HERSCHMAN H R et al. Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling[J]. Cancer Discov, 2012, 2 (9): 840- 855
doi: 10.1158/2159-8290.CD-12-0101
112 MA F , CHEN D , CHEN F et al. Human umbilical cord mesenchymal stem cells promote breast cancer metastasis by interleukin-8- and interleukin-6-dependent induction of CD44(+)/CD24(-) cells[J]. Cell Transplant, 2015, 24 (12): 2585- 2599
doi: 10.3727/096368915X687462
113 HUANG W H , CHANG M C , TSAI K S et al. Mesenchymal stem cells promote growth and angiogenesis of tumors in mice[J]. Oncogene, 2013, 32 (37): 4343- 4354
doi: 10.1038/onc.2012.458
114 OTSU K , DAS S , HOUSER S D et al. Concentration-dependent inhibition of angiogenesis by mesenchymal stem cells[J]. Blood, 2009, 113 (18): 4197- 4205
doi: 10.1182/blood-2008-09-176198
115 DOI C , MAURYA D K , PYLE M M et al. Cytotherapy with naive rat umbilical cord matrix stem cells significantly attenuates growth of murine pancreatic cancer cells and increases survival in syngeneic mice[J]. Cytotherapy, 2010, 12 (3): 408- 417
doi: 10.3109/14653240903548194
116 COUSIN B , RAVET E , POGLIO S et al. Adult stromal cells derived from human adipose tissue provoke pancreatic cancer cell death both in vitro and in vivo[J]. PLoS One, 2009, 4 (7): e6278
doi: 10.1371/journal.pone.0006278
117 CHANDA D , ISAYEVA T , KUMAR S et al. Therapeutic potential of adult bone marrow-derived mesenchymal stem cells in prostate cancer bone metastasis[J]. Clin Cancer Res, 2009, 15 (23): 7175- 7185
doi: 10.1158/1078-0432.CCR-09-1938
118 AKIMOTO K , KIMURA K , NAGANO M et al. Umbilical cord blood-derived mesenchymal stem cells inhibit, but adipose tissue-derived mesenchymal stem cells promote, glioblastoma multiforme proliferation[J]. Stem Cells Dev, 2013, 22 (9): 1370- 1386
doi: 10.1089/scd.2012.0486
119 ALTANEROVA U , JAKUBECHOVA J , BENEJOVA K et al. Prodrug suicide gene therapy for cancer targeted intracellular by mesenchymal stem cell exosomes[J]. Int J Cancer, 2019, 144 (4): 897- 908
doi: 10.1002/ijc.31792
120 TOLEDANO FURMAN N E , LUPU-HABER Y , BRONSHTEIN T et al. Reconstructed stem cell nanoghosts:a natural tumor targeting platform[J]. Nano Lett, 2013, 13 (7): 3248- 3255
doi: 10.1021/nl401376w
[1] 朱慧琦,应可净. 组织因子与肿瘤患者静脉血栓栓塞[J]. 浙江大学学报(医学版), 2020, 49(6): 772-778.
[2] 林翠翠,陈正云,王春艳,席咏梅. 基于脂质组学的子宫内膜异位症生物标志物研究进展[J]. 浙江大学学报(医学版), 2020, 49(6): 779-784.
[3] 李梦瑶,刘盼,柯越海,张雪. 放射性肺损伤中巨噬细胞作用机制的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 623-628.
[4] 韩雪,蒋国军,石巧娟. 降血糖药对内皮祖细胞作用的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 629-636.
[5] 段润平,许叶圣,郑利斌,姚玉峰. 病毒感染性眼病病原学诊断的研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 644-650.
[6] 吴唯,徐键. 正五聚蛋白3在多囊卵巢综合征中的作用研究进展[J]. 浙江大学学报(医学版), 2020, 49(5): 637-643.
[7] 徐清霖,楼国东,王甜甜,张力三. 发作性睡病的药物治疗进展[J]. 浙江大学学报(医学版), 2020, 49(4): 419-424.
[8] 蒋沛然,王志萍. 模式生物神经轴突再生的研究进展[J]. 浙江大学学报(医学版), 2020, 49(4): 500-507.
[9] 陈峻逸,杨翔,方学贤,王福俤,闵军霞. 铁死亡与重大慢性疾病[J]. 浙江大学学报(医学版), 2020, 49(1): 44-57.
[10] 俞卿, 熊秀芳, 孙毅. 靶向Cullin-RING E3泛素连接酶的抗肿瘤策略及相关药物研发进展[J]. 浙江大学学报(医学版), 2020, 49(1): 1-19.
[11] 段玲艳,尹香菊,孟红恩,方学贤,闵军霞,王福俤. 铁稳态代谢表观遗传调控机制的研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 58-70.
[12] 李艾,张添源,高建青. 间充质干细胞的肿瘤归巢特性及其肿瘤靶向治疗应用研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 20-34.
[13] 黄耀凭,杨凤,周天华,谢珊珊. Hippo信号通路及其在消化系统肿瘤中的作用研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 35-43.
[14] 钟文,楼燕,邱宸阳,李栋林,张鸿坤. 髂静脉支架植入术后药物治疗策略研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 131-136.
[15] 徐亦鸣,应可净. 中性粒细胞胞外诱捕网与肿瘤相关研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 107-112.