综述 |
|
|
|
|
组蛋白甲基化水平与骨关节炎病理发展的关联性 |
杜啸添1,2( ),欧阳宏伟1,2,3,*( ) |
1. 浙江大学医学院干细胞与再生医学系 浙江大学李达三·叶耀珍干细胞与再生医学研究中心, 浙江 杭州 310058 2. 浙江省组织工程与再生医学技术重点实验室, 浙江 杭州 310058 3. 浙江大学爱丁堡大学联合学院 浙江大学海宁国际校区, 浙江 海宁 314400 |
|
Correlation between histone methylation level and pathological development of osteoarthritis |
DU Xiaotian1,2( ),OUYANG Hongwei1,2,3,*( ) |
1. Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China 2. Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China 3. Zhejiang University-University of Edinburgh Institute, International Campus of Zhejiang University, Haining 314400, Zhejiang Province, China |
1 |
WIELAND H A , MICHAELIS M , KIRSCHBAUM B J et al. Osteoarthritis-an untreatable disease?[J]. Nat Rev Drug Discov, 2005, 4 (4): 331- 344
doi: 10.1038/nrd1693
|
2 |
MOSKOWITZ R W . Osteoarthritis cartilage histopathology:grading and staging[J]. Osteoarthritis Cartilage, 2006, 14 (1): 1- 2
doi: 10.1016/j.joca.2005.08.015
|
3 |
MAHJOUB M , BERENBAUM F , HOUARD X . Why subchondral bone in osteoarthritis? The importance of the cartilage bone interface in osteoarthritis[J]. Osteoporos Int, 2012, 23 Suppl 8 S841- S846
|
4 |
EGGER G , LIANG G , APARICIO A et al. Epigenetics in human disease and prospects for epigenetic therapy[J]. Nature, 2004, 429 (6990): 457- 463
doi: 10.1038/nature02625
|
5 |
LUI J C , GARRISON P , NGUYEN Q et al. EZH1 and EZH2 promote skeletal growth by repressing inhibitors of chondrocyte proliferation and hypertrophy[J]. Nat Commun, 2016, 7 13685
doi: 10.1038/ncomms13685
|
6 |
DAI J , YU D , WANG Y et al. Kdm6b regulates cartilage development and homeostasis through anabolic metabolism[J]. Ann Rheum Dis, 2017, 76 (7): 1295- 1303
doi: 10.1136/annrheumdis-2016-210407
|
7 |
BIRD A . Perceptions of epigenetics[J]. Nature, 2007, 447 (7143): 396- 398
doi: 10.1038/nature05913
|
8 |
BARSKI A , CUDDAPAH S , CUI K et al. High-resolution profiling of histone methylations in the human genome[J]. Cell, 2007, 129 (4): 823- 837
doi: 10.1016/j.cell.2007.05.009
|
9 |
HORIKE S , CAI S , MIYANO M et al. Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome[J]. Nat Genet, 2005, 37 (1): 31- 40
doi: 10.1038/ng1491
|
10 |
SONG J , BAEK I J , CHUN C H et al. Dysregulation of the NUDT7-PGAM1 axis is responsible for chondrocyte death during osteoarthritis pathogenesis[J]. Nat Commun, 2018, 9 (1): 3427
doi: 10.1038/s41467-018-05787-0
|
11 |
ZHANG M , LU Q , EGAN B et al. Epigenetically mediated spontaneous reduction of NFAT1 expression causes imbalanced metabolic activities of articular chondrocytes in aged mice[J]. Osteoarthritis Cartilage, 2016, 24 (7): 1274- 1283
doi: 10.1016/j.joca.2016.02.003
|
12 |
EL MANSOURI F E , CHABANE N , ZAYED N et al. Contribution of H3K4 methylation by SET-1A to interleukin-1-induced cyclooxygenase 2 and inducible nitric oxide synthase expression in human osteoarthritis chondrocytes[J]. Arthritis Rheum, 2011, 63 (1): 168- 179
doi: 10.1002/art.27762
|
13 |
EL MANSOURI F E , NEBBAKI S , KAPOOR M et al. THU0464 LSD1-mediated demethylation of histone H3 lysine 9 contributes to interleukin 1-induced microsomal prostaglandin e synthase-1 expression[J]. Ann Rheum Dis, 2014, 73 (2): 344
|
14 |
YANG L , LAWSON K A , TETEAK C J et al. ESET histone methyltransferase is essential to hypertrophic differentiation of growth plate chondrocytes and formation of epiphyseal plates[J]. Dev Biol, 2013, 380 (1): 99- 110
doi: 10.1016/j.ydbio.2013.04.031
|
15 |
LIAN W S , KO J Y , WU R W et al. MicroRNA-128a represses chondrocyte autophagy and exacerbates knee osteoarthritis by disrupting Atg12[J]. Cell Death Dis, 2018, 9 (9): 919
doi: 10.1038/s41419-018-0994-y
|
16 |
YAPP C , CARR A J , PRICE A et al. H3K27me3 demethylases regulate in vitro chondrogenesis and chondrocyte activity in osteoarthritis[J]. Arthritis Res Ther, 2016, 18 (1): 158
doi: 10.1186/s13075-016-1053-7
|
17 |
GAO B, LIN X, JING H, et al. Local delivery of tetramethylpyrazine eliminates the senescent phenotype of bone marrow mesenchymal stromal cells and creates an anti-inflammatory and angiogenic environment in aging mice[J/OL]. Aging Cell, 2018, 17(3): e12741.
|
18 |
CAKOUROS D , ISENMANN S , COOPER L et al. Twist-1 induces Ezh2 recruitment regulating histone methylation along the Ink4A/Arf locus in mesenchymal stem cells[J]. Mol Cell Biol, 2012, 32 (8): 1433- 1441
doi: 10.1128/MCB.06315-11
|
19 |
CHEN L , WU Y , WU Y et al. The inhibition of EZH2 ameliorates osteoarthritis development through the Wnt/β-catenin pathway[J]. Sci Rep, 2016, 6 29176
doi: 10.1038/srep29176
|
20 |
AURY-LANDAS J , BAZILLE C , ALLAS L et al. Anti-inflammatory and chondroprotective effects of the S-adenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin A, in human articular chondrocytes[J]. Sci Rep, 2017, 7 (1): 6483
|
21 |
WANG P, LI Y, MENG T, et al. KDM6A promotes chondrogenic differentiation of periodontal ligament stem cells by demethylation of SOX9[J/OL]. Cell Prolif, 2018, 51(3): e12413.
|
22 |
MONTEAGUDO S , CAILOTTO F , LORIES R J et al. A4.13? The DOT1L protein and gene network in chondrocytes identifies H3K79 histone methylation as key regulator of WNT and other growth factor cascades[J]. Ann Rheum Dis, 2015, 74 (1): A41
|
23 |
CASTA?O BETANCOURT M C , CAILOTTO F , KERKHOF H J et al. Genome-wide association and functional studies identify the DOT1L gene to be involved in cartilage thickness and hip osteoarthritis[J]. Proc Natl Acad Sci U S A, 2012, 109 (21): 8218- 8223
doi: 10.1073/pnas.1119899109
|
24 |
MONTEAGUDO S , CORNELIS F , AZNAR-LOPEZ C et al. DOT1L safeguards cartilage homeostasis and protects against osteoarthritis[J]. Nat Commun, 2017, 8 15889
doi: 10.1038/ncomms15889
|
25 |
WHETSTINE J R , NOTTKE A , LAN F et al. Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases[J]. Cell, 2006, 125 (3): 467- 481
|
26 |
ZHANG M , LU Q , MILLER A H et al. Dynamic epigenetic mechanisms regulate age-dependent SOX9 expression in mouse articular cartilage[J]. Int J Biochem Cell Biol, 2016, 72 125- 134
doi: 10.1016/j.biocel.2016.01.013
|
27 |
SANTOS-ROSA H , SCHNEIDER R , BANNISTER A J et al. Active genes are tri-methylated at K4 of histone H3[J]. Nature, 2002, 419 (6905): 407- 411
doi: 10.1038/nature01080
|
28 |
WYSOCKA J , MYERS M P , LAHERTY C D et al. Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3-K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1[J]. Genes Dev, 2003, 17 (7): 896- 911
doi: 10.1101/gad.252103
|
29 |
DOU Y , MILNE T A , RUTHENBURG A J et al. Regulation of MLL1 H3K4 methyltransferase activity by its core components[J]. Nat Struct Mol Biol, 2006, 13 (8): 713- 719
doi: 10.1038/nsmb1128
|
30 |
WANG P , LIN C , SMITH E R et al. Global analysis of H3K4 methylation defines MLL family member targets and points to a role for MLL1-mediated H3K4 methylation in the regulation of transcriptional initiation by RNA polymerase Ⅱ[J]. Mol Cell Biol, 2009, 29 (22): 6074- 6085
doi: 10.1128/MCB.00924-09
|
31 |
ZHANG M , EGAN B , WANG J . Epigenetic mechanisms underlying the aberrant catabolic and anabolic activities of osteoarthritic chondrocytes[J]. Int J Biochem Cell Biol, 2015, 67 101- 109
doi: 10.1016/j.biocel.2015.04.019
|
32 |
ROBERTS S B , WOOTTON E , DE FERRARI L et al. Epigenetics of osteoarticular diseases:recent developments[J]. Rheumatol Int, 2015, 35 (8): 1293- 1305
doi: 10.1007/s00296-015-3260-y
|
33 |
LAWSON K A , TETEAK C J , ZOU J et al. Mesenchyme-specific knockout of ESET histone methyltransferase causes ectopic hypertrophy and terminal differentiation of articular chondrocytes[J]. J Biol Chem, 2013, 288 (45): 32119- 32125
doi: 10.1074/jbc.M113.473827
|
34 |
KIM K I , PARK Y S , IM G I . Changes in the epigenetic status of the SOX-9 promoter in human osteoarthritic cartilage[J]. J Bone Miner Res, 2013, 28 (5): 1050- 1060
doi: 10.1002/jbmr.1843
|
35 |
RODOVA M , LU Q , LI Y et al. Nfat1 regulates adult articular chondrocyte function through its age-dependent expression mediated by epigenetic histone methylation[J]. J Bone Miner Res, 2011, 26 (8): 1974- 1986
doi: 10.1002/jbmr.397
|
36 |
PORTAL-Nú?EZ S , ESBRIT P , ALCARAZ M J et al. Oxidative stress, autophagy, epigenetic changes and regulation by miRNAs as potential therapeutic targets in osteoarthritis[J]. Biochem Pharmacol, 2016, 108 1- 10
doi: 10.1016/j.bcp.2015.12.012
|
37 |
HONG S , CHO Y W , YU L R et al. Identification of JmjC domain-containing UTX and JMJD3 as histone H3 lysine 27 demethylases[J]. Proc Natl Acad Sci U S A, 2007, 104 (47): 18439- 18444
doi: 10.1073/pnas.0707292104
|
38 |
XIANG Y , ZHU Z , HAN G et al. JMJD3 is a histone H3K27 demethylase[J]. Cell Res, 2007, 17 (10): 850- 857
doi: 10.1038/cr.2007.83
|
39 |
KONDO Y , SHEN L , CHENG A S et al. Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation[J]. Nat Genet, 2008, 40 (6): 741- 750
doi: 10.1038/ng.159
|
40 |
SPAAPEN F, VAN DEN AKKER G G, CARON M M, et al. The immediate early gene product EGR1 and polycomb group proteins interact in epigenetic programming during chondrogenesis[J/OL]. PLoS One, 2013, 8(3): e58083.
|
41 |
LI J , OHLIGER J , PEI M . Significance of epigenetic landscape in cartilage regeneration from the cartilage development and pathology perspective[J]. Stem Cells Dev, 2014, 23 (11): 1178- 1194
doi: 10.1089/scd.2014.0002
|
42 |
ZHANG F , XU L , XU L et al. JMJD3 promotes chondrocyte proliferation and hypertrophy during endochondral bone formation in mice[J]. J Mol Cell Biol, 2015, 7 (1): 23- 34
doi: 10.1093/jmcb/mjv003
|
43 |
GREENE M A , LOESER R F . Aging-related inflammation in osteoarthritis[J]. Osteoarthritis Cartilage, 2015, 23 (11): 1966- 1971
doi: 10.1016/j.joca.2015.01.008
|
44 |
MOBASHERI A , MATTA C , ZáKáNY R et al. Chondrosenescence:definition, hallmarks and potential role in the pathogenesis of osteoarthritis[J]. Maturitas, 2015, 80 (3): 237- 244
doi: 10.1016/j.maturitas.2014.12.003
|
45 |
MASTROGIACOMO M , CANCEDDA R , QUARTO R . Effect of different growth factors on the chondrogenic potential of human bone marrow stromal cells[J]. Osteoarthritis Cartilage, 2001, 9 Suppl A S36- S40
|
46 |
ZHANG R , MA J , HAN J et al. Mesenchymal stem cell related therapies for cartilage lesions and osteoarthritis[J]. Am J Transl Res, 2019, 11 (10): 6275- 6289
|
47 |
HE D , LIU J , HAI Y et al. Increased DOT1L in synovial biopsies of patients with OA and RA[J]. Clin Rheumatol, 2018, 37 (5): 1327- 1332
doi: 10.1007/s10067-017-3941-x
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|