Please wait a minute...
浙江大学学报(医学版)  2019, Vol. 48 Issue (6): 668-673    DOI: 10.3785/j.issn.1008-9292.2019.12.12
综述     
高原低氧对血脑屏障结构及其药物通透性影响的研究进展
丁怡丹1,2(),李文斌1,王荣1,2,*(),张建春3,*()
1. 解放军联勤保障部队第九四○医院全军高原环境损伤防治重点实验室, 甘肃 兰州 730050
2. 兰州大学药学院, 甘肃 兰州 730000
3. 中国人民解放军第一医院药剂科, 甘肃 兰州 730000
Research progress on the effects of plateau hypoxia on blood-brain barrier structure and drug permeability
DING Yidan1,2(),LI Wenbin1,WANG Rong1,2,*(),ZHANG Jianchun3,*()
1. Key Laboratory of Plateau Environmental Damage Prevention, the 940 th Hospital of PLA Joint Logistics Support Force, Lanzhou 730050, China
2. School of Pharmacy, Lanzhou University, Lanzhou 730000, China
3. Department of Pharmacy, First Hospital of Chinese People's Liberation Army, Lanzhou 730000, China
 全文: PDF(1049 KB)   HTML( 7 )
摘要:

中枢神经系统疾病治疗药物需通过血脑屏障进入脑组织发挥作用。在高原低氧环境下,血脑屏障组织结构中的紧密连接蛋白、星型胶质细胞和内皮细胞上的转运蛋白、内皮细胞上的ATP发生变化,同时血脑屏障通透性增加。这些变化是高原地区中枢神经系统疾病患者的合理用药的重要参考。本文就高原低氧对血脑屏障结构及其药物通透性影响的研究进展作一综述。

关键词: 中枢神经系统疾病血脑屏障高海拔高原病缺氧, 脑/病理生理学生物转运综述    
Abstract:

Drugs for the treatment of central nervous system diseases need to enter the brain tissue through the blood-brain barrier to function. In high altitude hypoxic environment, there are changes in tight junction proteins of blood-brain barrier tissue structure, transporters in astrocytes and endothelial cells and ATP in endothelial cells; at the same time the permeability of the blood-brain barrier is increased. These changes are an important reference for rational drug use in patients with central nervous system disease in the plateau region. This article reviews the research progress on the effects of plateau hypoxia on the structure of the blood-brain barrier and related drug permeability.

Key words: Central nervous system diseases    Blood-brain barrier    Altitude    Altitude sickness    Hypoxia, brain/physiopathology    Biological transport    Review
收稿日期: 2019-08-22 出版日期: 2020-01-19
:  R594.3  
基金资助: 国家自然科学基金(81673508)
通讯作者: 王荣,张建春     E-mail: dingyd17@lzu.edu.cn;wangrong-69@163.com;zjc1508@126.com
作者简介: 丁怡丹(1995-), 女, 硕士研究生, 主要从事高原药物转运体研究; E-mail:dingyd17@lzu.edu.cn; https://orcid.org/0000-0003-1196-5134
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
丁怡丹
李文斌
王荣
张建春

引用本文:

丁怡丹,李文斌,王荣,张建春. 高原低氧对血脑屏障结构及其药物通透性影响的研究进展[J]. 浙江大学学报(医学版), 2019, 48(6): 668-673.

DING Yidan,LI Wenbin,WANG Rong,ZHANG Jianchun. Research progress on the effects of plateau hypoxia on blood-brain barrier structure and drug permeability. J Zhejiang Univ (Med Sci), 2019, 48(6): 668-673.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2019.12.12        http://www.zjujournals.com/med/CN/Y2019/V48/I6/668

1 LU H , WANG R , JIA Z P et al. Effects of high altitude exposure on physiology and pharmacokinetics[J]. Curr Drug Metab, 2016, 17 (6): 559- 565
doi: 10.2174/1389200216666151015113948
2 DEHNERT C , GRUNIG E , MERELES D et al. Identification of individuals susceptible to high-altitude pulmonary oedema at low altitude[J]. Eur Respir J, 2005, 25 (3): 545- 551
doi: 10.1183/09031936.05.00070404
3 QUAEGEBEUR A , CARMELIET P . Oxygen sensing:a common crossroad in cancer and neurodegeneration[J]. Curr Top Microbiol Immunol, 2010, 345 71- 103
4 BANKS W A . From blood-brain barrier to blood-brain interface:new opportunities for CNS drug delivery[J]. Nat Rev Drug Discov, 2016, 15 (4): 275- 292
doi: 10.1038/nrd.2015.21
5 ENGELHARDT S , PATKAR S , OGUNSHOLA O O . Cell-specific blood-brain barrier regulation in health and disease:a focus on hypoxia[J]. Br J Pharmacol, 2014, 171 (5): 1210- 1230
doi: 10.1111/bph.12489
6 LUKS A M , SWENSON E R , B?RTSCH P . Acute high-altitude sickness[J]. Eur Respir Rev, 2017, 26 (143): 1- 14
7 姜北芳, 刘威 . 缺氧状态下神经系统的改变和护理[J]. 中国实用医药, 2008, 3 (35): 183- 184
JIANG Beifang , LIU Wei . Changes and nursing of the nervous system in hypoxia[J]. China Practical Medicine, 2008, 3 (35): 183- 184
doi: 10.3969/j.issn.1673-7555.2008.35.159
8 KUMAR K V S H , SHIJITH K P , SINGH D . High altitude cerebral oedema[J]. Curr Med Res Pract, 2016, 6 (3): 126- 128
doi: 10.1016/j.cmrp.2016.03.008
9 WILLMANN G , GEKELER F , SCHOMMER K et al. Update on high altitude cerebral edema including recent work on the eye[J]. High Alt Med Biol, 2014, 15 (2): 112- 122
doi: 10.1089/ham.2013.1142
10 BAILEY D M , B?RTSCH P , KNAUTH M et al. Emerging concepts in acute mountain sickness and high-altitude cerebral edema:from the molecular to the morphological[J]. Cell Mol Life Sci, 2009, 66 (22): 3583- 3594
doi: 10.1007/s00018-009-0145-9
11 李虎, 王百忍, 巩固 . 高原脑水肿病理生理机制的研究进展[J]. 中华神经外科疾病研究杂志, 2016, 15 (4): 381- 384
LI Hu , WANG Bairen , GONG Gu . Research progress in pathophysiological mechanism of high altitude cerebral edema[J]. Chinese Journal of Neurosurgical Disease Research, 2016, 15 (4): 381- 384
12 LIN C , ZHAO X , SUN H . Analysis on the risk factors of intracranial infection secondary to traumatic brain injury[J]. Chin J Traumatol, 2015, 18 (2): 81- 83
doi: 10.1016/j.cjtee.2014.10.007
13 舒勤, 周明芳, 李巍 . 现代高原颅脑火器伤的救护重点[J]. 现代护理, 2007, 13 (1): 68- 69
SHU Qing , ZHOU Mingfang , LI Wei . Key points of rescue for modern high altitude craniocerebral firearm injury[J]. Modern Nursing, 2007, 13 (1): 68- 69
doi: 10.3760/cma.j.issn.1674-2907.2007.01.032
14 NAGARKATTI N , DESHPANDE L S , DELORENZO R J . Development of the calcium plateau following status epilepticus, role of calcium in epileptogenesis[J]. Expert Rev Neurother, 2009, 9 (6): 813- 824
doi: 10.1586/ern.09.21
15 VEZZANI A , FUJINAMI R S , WHITE H S et al. Infections, inflammation and epilepsy[J]. Acta Neuropathol, 2016, 131 (2): 211- 234
doi: 10.1007/s00401-015-1481-5
16 TAKESHITA Y , RANSOHOFF R M . Blood-brain barrier and neurological diseases[J]. Clin Exp Immunol, 2015, 6 351- 361
17 DING Y , WANG R , ZHANG J et al. Potential regulation mechanisms of P-gp in the blood-brain barrier in hypoxia[J]. Curr Pharm Design, 2019, 25 1- 9
doi: 10.2174/138161282501190514091805
18 FILOUS A R , SILVER J . Targeting astrocytes in CNS injury and disease:A translational research approach[J]. Prog Neurobiol, 2016, 144 173- 187
doi: 10.1016/j.pneurobio.2016.03.009
19 MCCAFFREY G , DAVIS T P . Physiology and pathophysiology of the blood-brain barrier:P-glycoprotein and occludin trafficking as therapeutic targets to optimize central nervous system drug delivery[J]. J Investig Med, 2012, 60 (8): 1131- 1140
doi: 10.2310/JIM.0b013e318276de79
20 ENGELHARDT S , AL-AHMAD A J , GASSMANN M et al. Hypoxia selectively disrupts brain microvascular endothelial tight junction complexes through a hypoxia-inducible factor-1(HIF-1) dependent mechanism[J]. J Cell Physiol, 2014, 229 (8): 1096- 1105
doi: 10.1002/jcp.24544
21 KAUR C , LING E A . Blood brain barrier in hypoxic-ischemic conditions[J]. Curr Neuro Res, 2008, 5 71- 81
doi: 10.2174/156720208783565645
22 EK C J , D'ANGELO B , BABURAMANI A A et al. Brain barrier properties and cerebral blood flow in neonatal mice exposed to cerebral hypoxia-ischemia[J]. J Cereb Blood Flow Metab, 2015, 35 (5): 818- 827
doi: 10.1038/jcbfm.2014.255
23 LOCHHEAD J J , RONALDSON P T , DAVIS T P . Hypoxic Stress and inflammatory pain disrupt blood-brain barrier tight junctions:implications for drug delivery to the central nervous system[J]. AAPS J, 2017, 19 (4): 910- 920
doi: 10.1208/s12248-017-0076-6
24 张明霞.高原缺氧对血脑屏障中药物转运蛋白的影响[D].兰州: 兰州大学, 2018.
ZHANG Mingxia. Effect of plateau hypoxia on drug transporter in blood-brain barrier[D]. Lanzhou: Lanzhou University, 2018. (in Chinese)
25 LOCHHEAD J J , MCCAFFREY G , QUIGLEY C E et al. Oxidative stress increases blood-brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation[J]. J Cereb Blood Flow Metab, 2010, 30 (9): 1625- 1636
doi: 10.1038/jcbfm.2010.29
26 KAUR C , SIVAKUMAR V , ZHANG Y et al. Hypoxia-induced astrocytic reaction and increased vascular permeability in the rat cerebellum[J]. Glia, 2006, 54 (8): 826- 839
doi: 10.1002/glia.20420
27 IORIO A L , MD R , FANTAPPIè O et al. Blood-brain barrier and breast cancer resistance protein:A limit to the therapy of CNS tumors and neurodegenerative diseases[J]. Anticancer Agents Med Chem, 2016, 16 (7): 810- 815
doi: 10.2174/1871520616666151120121928
28 HERMANN D M . Future perspectives for brain pharmacotherapies:Implications of drug transport processes at the blood-brain barrier[J]. Ther Adv Neurol Disord, 2008, 1 (3): 167- 179
29 张明霞, 王荣, 李文斌 et al. 高原缺氧对药物转运体影响的研究进展[J]. 中国药理学通报, 2018, 34 (3): 316- 321
ZHANG Mingxia , WANG Rong , LI Wenbin et al. Advances in the effects of plateau hypoxia on drug transporters[J]. Chinese Pharmacological Bulletin, 2018, 34 (3): 316- 321
doi: 10.3969/j.issn.1001-1978.2018.03.005
30 KINGWELL K . Drug delivery:New targets for drug delivery across the BBB[J]. Nat Rev Drug Discov, 2016, 15 (2): 84- 85
31 KOZIEL A , JARMUSZKIEWICZ W . Hypoxia and aerobic metabolism adaptations of human endothelial cells[J]. Pflugers Arch, 2017, 469 (5-6): 815- 827
doi: 10.1007/s00424-017-1935-9
32 LOSENKOVA K , ZUCCARINI M , HELENIUS M et al. Endothelial cells cope with hypoxia-induced depletion of ATP via activation of cellular purine turnover and phosphotransfer networks[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864 (5 Pt A): 1804- 1815
33 BAILEY D M , TAUDORF S , BERG R M et al. Increased cerebral output of free radicals during hypoxia:implications for acute mountain sickness?[J]. Am J Physiol Regul Integr Comp Physiol, 2009, 297 (5): R1283- R1292
doi: 10.1152/ajpregu.00366.2009
34 郭平, 周其全, 罗涵 et al. 七叶皂苷钠对低氧暴露下大鼠血-脑脊液屏障通透性变化的影响及其抗渗漏机制研究[J]. 解放军医学杂志, 2012, 37 (2): 98- 103
GUO Ping , ZHOU Qiquan , LUO Han et al. Effects of sodium aescinate on blood-cerebrospinal fluid barrier permeability and its anti-leakage mechanism in rats exposed to hypoxia[J]. Medical Journal of Chinese People's Liberation Army, 2012, 37 (2): 98- 103
35 林驰, 宗希涛, 刘倩绫 et al. 亚高原高血压脑出血后继发癫痫的发生率及治疗的临床统计分析[J]. 立体定向和功能性神经外科杂志, 2016, 29 (6): 362- 364
LIN Chi , ZONG Xitao , LIU Qianling et al. Clinical analysis of the incidence and treatment of epilepsy after hypertensive intracerebral hemorrhage in subalpine[J]. Chinese Journal of Stereotactic and Functional Neurosurg, 2016, 29 (6): 362- 364
36 RATAN R R , SIDDIQ A , SMIRNOVA N et al. Harnessing hypoxic adaptation to prevent, treat, and repair stroke[J]. J Mol Med (Berl), 2007, 85 (12): 1331- 1338
doi: 10.1007/s00109-007-0283-1
37 AMIN M L . P-glycoprotein inhibition for optimal drug delivery[J]. Drug Target Insights, 2013, 7 27- 34
[1] 杜啸添, 欧阳宏伟. 组蛋白甲基化水平与骨关节炎病理发展的关联性[J]. 浙江大学学报(医学版), 2019, 48(6): 682-687.
[2] 袁雪纯,向大伟,敏琼,丁怡丹,赵安鹏,王荣. 急进高原缺氧对大鼠肝脏孕烷X受体表达的影响[J]. 浙江大学学报(医学版), 2019, 48(6): 603-608.
[3] 李雪, 李文斌, 封士兰, 王荣. 血红蛋白在高原低氧适应中的机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(6): 674-681.
[4] 孔丽敏, 陆婧怡, 祝华建, 张建康. 选择性免疫蛋白酶体抑制剂研究进展[J]. 浙江大学学报(医学版), 2019, 48(6): 688-694.
[5] 徐佳俊,舒强. 三维打印技术在先天性心脏病中的应用[J]. 浙江大学学报(医学版), 2019, 48(5): 573-579.
[6] 张军浩,金静华,杨巍. 自噬调控血管平滑肌细胞功能在颅内动脉瘤形成和破裂中的作用[J]. 浙江大学学报(医学版), 2019, 48(5): 552-559.
[7] 陈钿雨,祁鸣. 单亲二体及其在癌症中的作用研究进展[J]. 浙江大学学报(医学版), 2019, 48(5): 560-566.
[8] 林静,陈志敏. 儿童重症腺病毒肺炎早期识别的研究进展[J]. 浙江大学学报(医学版), 2019, 48(5): 567-572.
[9] 黄淑敏,赵正言. 重症联合免疫缺陷病新生儿筛查及免疫系统重建研究进展[J]. 浙江大学学报(医学版), 2019, 48(4): 351-357.
[10] 陈光杰,王晓豪,唐达星. 性别发育异常的评估、诊断和治疗研究进展[J]. 浙江大学学报(医学版), 2019, 48(4): 358-366.
[11] 张建民. 缺血性脑血管疾病手术治疗新进展[J]. 浙江大学学报(医学版), 2019, 48(3): 233-240.
[12] 吴雨星, 张世红, 陈忠. 缰核及其神经环路在神经精神疾病中的作用研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 310-317.
[13] 张韵竹, 朱春鹏, 陆新良. 胃癌早期诊断的血清生物学标志物研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 326-333.
[14] 朱紫菱, 谈静, 邓红. 肿瘤细胞膜/质蛋白转位入核研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 318-325.
[15] BabooKalianee Devi,陈正云,张信美. 子宫腺肌病患者药物治疗进展[J]. 浙江大学学报(医学版), 2019, 48(2): 142-147.