Please wait a minute...
浙江大学学报(医学版)  2019, Vol. 48 Issue (5): 573-579    DOI: 10.3785/j.issn.1008-9292.2019.10.17
综述     
三维打印技术在先天性心脏病中的应用
徐佳俊(),舒强*()
浙江大学医学院附属儿童医院 国家儿童健康与疾病临床医学研究中心, 浙江 杭州 310052
Application of 3D printing techniques in treatment of congenital heart disease
XU Jiajun(),SHU Qiang*()
The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
 全文: PDF(754 KB)   HTML( 8 )
摘要:

先天性心脏病是发病率最高的出生缺陷。三维打印技术可以通过三维实体模型呈现心脏解剖,为进一步理解解剖结构提供了新的方法。本文就三维打印技术在先天性心脏病外科手术术前规划、术中导航中的应用、个性化植入物、医生外科手术训练和医学教育及促进医患沟通,帮助患者及家属了解病情等方面的应用进行综述。三维打印技术未来或可推动先天性心脏病诊治水平提高,提升外科医生手术熟练度,缩短手术时间,减少围术期并发症发生,以及制造出更多个性化心血管植入物及医疗器械,真正体现了精准医学的概念。

关键词: 打印, 三维心脏缺损, 先天性综述    
Abstract:

Congenital heart disease (CHD) is the most common birth defect at present. In recent years, the application of 3D printing in the diagnosis and treatment of CHD has been widely recognized, which presents CHD lesions in 3D solid model and provides a better understanding of the anatomy of CHD. In the future, 3D printing technology would improve the surgical proficiency, shorten the operation time, reduce the occurrence of perioperative complications, and create more personalized cardiovascular implants, therefore promote the precision of diagnosis and treatment for congenital heart disease. This article reviews the application of 3D printing technology in preoperative planning, intraoperative navigation and personalized implants of CHD, in surgical training and medical education, as well as in promoting doctor-patient communication and better understanding their condition for patients.

Key words: Printing, three-dimensional    Heart defects, congenital    Review
收稿日期: 2019-06-10 出版日期: 2020-01-04
:  R726.2  
基金资助: 浙江省医药卫生科技计划(2016C54006)
通讯作者: 舒强     E-mail: 123globe@163.com;shuqiang@zju.edu.cn
作者简介: 徐佳俊(1990-), 男, 博士研究生, 主要从事先天性心脏病研究; E-mail:123globe@163.com; https://orcid.org/0000-0002-3291-9922
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐佳俊
舒强

引用本文:

徐佳俊,舒强. 三维打印技术在先天性心脏病中的应用[J]. 浙江大学学报(医学版), 2019, 48(5): 573-579.

XU Jiajun,SHU Qiang. Application of 3D printing techniques in treatment of congenital heart disease. J Zhejiang Univ (Med Sci), 2019, 48(5): 573-579.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2019.10.17        http://www.zjujournals.com/med/CN/Y2019/V48/I5/573

1 冯江, 袁秀琴, 朱军 et al. 中国2000—2010年5岁以下儿童死亡率和死亡原因分析[J]. 中华流行病学杂志, 2012, 33 (6): 558- 561
FENG Jiang , YUAN Xiuqin , ZHU Jun et al. Under-5-mortality rate and causes of death in China, 2000 to 2010[J]. Chinese Journal of Epidemiology, 2012, 33 (6): 558- 561
doi: 10.3760/cma.j.issn.0254-6450.2012.06.003
2 SUN Z , LAU I , WONG Y H et al. Personalized three-dimensional printed models in congenital heart disease[J]. J Clin Med, 2019, 8 (4): 522
doi: 10.3390/jcm8040522
3 VUKICEVIC M , MOSADEGH B , MIN J K et al. Cardiac 3D printing and its future directions[J]. JACC Cardiovasc Imaging, 2017, 10 (2): 171- 184
doi: 10.1016/j.jcmg.2016.12.001
4 HADEED K , ACAR P , DULAC Y et al. Cardiac 3D printing for better understanding of congenital heart disease[J]. Arch Cardiovasc Dis, 2018, 111 (1): 1- 4
5 ABUDAYYEH I , GORDON B , ANSARI M M et al. A practical guide to cardiovascular 3D printing in clinical practice: Overview and examples[J]. J Interv Cardiol, 2018, 31 (3): 375- 383
doi: 10.1111/joic.12446
6 SCHMAUSS D , HAEBERLE S , HAGL C et al. Three-dimensional printing in cardiac surgery and interventional cardiology: a single-centre experience[J]. Eur J Cardiothorac Surg, 2015, 47 (6): 1044- 1052
doi: 10.1093/ejcts/ezu310
7 OLIVIERI L J , KRIEGER A , LOKE Y H et al. Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: feasibility and relative accuracy[J]. J Am Soc Echocardiogr, 2015, 28 (4): 392- 397
doi: 10.1016/j.echo.2014.12.016
8 SHIRAISHI I , KUROSAKI K , KANZAKI S et al. Development of super flexible replica of congenital heart disease with stereolithography 3D printing for simulation surgery and medical education[J]. J Card Fail, 2014, 20 (10): S180- S181
9 CANTINOTTI M , VALVERDE I , KUTTY S . Three-dimensional printed models in congenital heart disease[J]. Int J Cardiovasc Imaging, 2017, 33 (1): 137- 144
doi: 10.1007/s10554-016-0981-2
10 胡立伟, 白凯, 钟玉敏 et al. 磁共振成像技术在3D打印先天性心脏病建模中的应用[J]. 中国医学计算机成像杂志, 2016, 22 (4): 356- 360
HU Liwei , BAI Kai , ZHONG Yumin et al. Application of magnetic resonance imaging in 3D printing cardiac modeling of congenital heart disease[J]. Chinese Computed Medical Imaging, 2016, 22 (4): 356- 360
11 GOSNELL J , PIETILA T , SAMUEL B P et al. Integration of computed tomography and three-dimensional echocardiography for hybrid three-dimensional printing in congenital heart disease[J]. J Digit Imaging, 2016, 29 (6): 665- 669
doi: 10.1007/s10278-016-9879-8
12 FAROOQI K M , SENGUPTA P P . Echocardiography and three-dimensional printing: Sound ideas to touch a heart[J]. J Am Soc Echocardiogr, 2015, 28 (4): 398- 403
doi: 10.1016/j.echo.2015.02.005
13 RYAN J R , MOE T G , RICHARDSON R et al. A novel approach to neonatal management of tetralogy of Fallot, with pulmonary atresia, and multiple aortopulmonary collaterals[J]. JACC Cardiovasc Imaging, 2015, 8 (1): 103- 104
doi: 10.1016/j.jcmg.2014.04.030
14 FAROOQI K M , SAEED O , ZAIDI A et al. 3D printing to guide ventricular assist device placement in adults with congenital heart disease and heart failure[J]. JACC Heart Fail, 2016, 4 (4): 301- 311
doi: 10.1016/j.jchf.2016.01.012
15 BOUMA B J , MULDER B J . Changing landscape of congenital heart disease[J]. Circ Res, 2017, 120 (6): 908- 922
doi: 10.1161/CIRCRESAHA.116.309302
16 FORTE M , HUSSAIN T , ROEST A et al. Living the heart in three dimensions: applications of 3D printing in CHD[J]. Cardiol Young, 2019, 29 (6): 733- 743
doi: 10.1017/S1047951119000398
17 CHAOWU Y, HUA L, XIN S. Three-dimensional printing as an aid in transcatheter closure of secundum atrial septal defect with rim deficiency: in vitro trial occlusion based on a personalized heart model[J/OL]. Circulation, 2016, 133(17): e608-e610.
18 BARTEL T , RIVARD A , JIMENEZ A et al. Three-dimensional printing for quality management in device closure of interatrial communications[J]. Eur Heart J Cardiovasc Imaging, 2016, 17 (9): 1069
doi: 10.1093/ehjci/jew119
19 杨帆, 郑宏, 吕建华 et al. 3D打印技术指导下采用动脉导管未闭封堵器治疗下腔型房间隔缺损一例[J]. 中华心血管病杂志, 2015, 43 (7): 631- 633
YANG Fan , ZHENG Hong , LYU Jianhua et al. Treatment of atrial septal defect with a patent ductus arteriosus occlusion device under the guidance of 3D printing technology[J]. Chinese Journal of Cardiology, 2015, 43 (7): 631- 633
doi: 10.3760/cma.j.issn.0253-3758.2015.07.013
20 GAREKAR S , BHARATI A , CHOKHANDRE M et al. Clinical application and multidisciplinary assessment of three dimensional printing in double outlet right ventricle with remote ventricular septal defect[J]. World J Pediatr Congenit Heart Surg, 2016, 7 (3): 344- 350
doi: 10.1177/2150135116645604
21 FAROOQI K M, NIELSEN J C, UPPU S C, et al. Use of 3-dimensional printing to demonstrate complex intracardiac relationships in double-outlet right ventricle for surgical planning[J/OL]. Circ Cardiovasc Imaging, 2015, 8(5). pii: e003043.
22 BHATLA P , TRETTER J T , CHIKKABYRAPPA S et al. Surgical planning for a complex double-outlet right ventricle using 3D printing[J]. Echocardiography, 2017, 34 (5): 802- 804
doi: 10.1111/echo.13512
23 VODISKAR J , KVTTING M , STEINSEIFER U et al. Using 3D physical modeling to plan surgical corrections of complex congenital heart defects[J]. Thorac Cardiovasc Surg, 2017, 65 (1): 31- 35
24 VALVERDE I , GOMEZ G , GONZALEZ A et al. Three-dimensional patient-specific cardiac model for surgical planning in Nikaidoh procedure[J]. Cardiol Young, 2015, 25 (4): 698- 704
doi: 10.1017/S1047951114000742
25 刘坤, 吕滨, 郑哲 et al. 三维打印心脏病模型指导诊治复杂先天性心脏病3例[J]. 中华胸心血管外科杂志, 2015, 31 (7): 436- 438
LIU Kun , LYU Bin , ZHENG Zhe et al. Three-dimensional printing of heart disease model for diagnosis and treatment of 3 cases of complex congenital heart disease[J]. Chinese Journal of Thoracic and Cardiovascular Surgery, 2015, 31 (7): 436- 438
doi: 10.3760/cma.j.issn.1001-4497.2015.07.018
26 SMITH M L , MCGUINNESS J , O'REILLY M K et al. The role of 3D printing in preoperative planning for heart transplantation in complex congenital heart disease[J]. Ir J Med Sci, 2017, 186 (3): 753- 756
doi: 10.1007/s11845-017-1564-5
27 ZHANG W , LIU J , YAN Q et al. Computationalhaemodynamic analysis of left pulmonary artery angulation effects on pulmonary blood flow[J]. Interact Cardiovasc Thorac Surg, 2016, 23 (4): 519- 525
doi: 10.1093/icvts/ivw179
28 MELCHIORRI A J , HIBINO N , BEST C A et al. 3D-printed biodegradable polymeric vascular grafts[J]. Adv Healthc Mater, 2016, 5 (3): 319- 325
doi: 10.1002/adhm.201500725
29 JIN C , ZHANG J , LI X et al. Injectable 3-D fabrication of medical electronics at the target biological tissues[J]. Sci Rep, 2013, 3 3442
doi: 10.1038/srep03442
30 XU L , GUTBROD S R , BONIFAS A P et al. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium[J]. Nat Commun, 2014, 5 3329
doi: 10.1038/ncomms4329
31 NATHAN M , KARAMICHALIS J M , LIU H et al. Surgical technical performance scores are predictors of late mortality and unplanned reinterventions in infants after cardiac surgery[J]. J Thorac Cardiovasc Surg, 2012, 144 (5): 1095- 1101
doi: 10.1016/j.jtcvs.2012.07.081
32 JACOBS J P , O'BRIEN S M , HILL K D et al. Refining the society of thoracic surgeons congenital heart surgery database mortality risk model with enhanced risk adjustment for chromosomal abnormalities, syndromes, and noncardiac congenital anatomic abnormalities[J]. Ann Thorac Surg, 2019, 108 (2): 558- 566
doi: 10.1016/j.athoracsur.2019.01.069
33 YOO S J , SPRAY T , AUSTIN E H 3RD et al. Hands-on surgical training of congenital heart surgery using 3-dimensional print models[J]. J Thorac Cardiovasc Surg, 2017, 153 (6): 1530- 1540
doi: 10.1016/j.jtcvs.2016.12.054
34 SARRIS G E , POLIMENAKOS A C . Three-dimensional modeling in congenital and structural heart perioperative care and education: a path in evolution[J]. Pediatr Cardiol, 2017, 38 (5): 883- 885
doi: 10.1007/s00246-017-1614-9
35 JONES T W , SECKELER M D . Use of 3D models of vascular rings and slings to improve resident education[J]. Congenit Heart Dis, 2017, 12 (5): 578- 582
doi: 10.1111/chd.12486
36 GARAS M , VACCAREZZA M , NEWLAND G et al. 3D-printed specimens as a valuable tool in anatomy education: a pilot study[J]. Ann Anat, 2018, 219 57- 64
doi: 10.1016/j.aanat.2018.05.006
37 OLIVIERI L J , SU L , HYNES C F et al. "Just-in-time" simulation training using 3-d printed cardiac models after congenital cardiac surgery[J]. World J Pediatr Congenit Heart Surg, 2016, 7 (2): 164- 168
doi: 10.1177/2150135115623961
38 COSTELLO J P , OLIVIERI L J , KRIEGER A et al. Utilizing three-dimensional printing technology to assess the feasibility of high-fidelity synthetic ventricular septal defect models for simulation in medical education[J]. World J Pediatr Congenit Heart Surg, 2014, 5 (3): 421- 426
doi: 10.1177/2150135114528721
39 GIANNOPOULOS A A , MITSOURAS D , YOO S J et al. Applications of 3D printing in cardiovascular diseases[J]. Nat Rev Cardiol, 2016, 13 (12): 701- 718
doi: 10.1038/nrcardio.2016.170
40 BIGLINO G, CAPELLI C, WRAY J, et al. 3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: feasibility and acceptability[J/OL]. BMJ Open, 2015, 5(4): e007165.
41 GIANNOPOULOS A A , CHEPELEV L , SHEIKH A et al. 3D printed ventricular septal defect patch: a primer for the 2015 Radiological Society of North America (RSNA) hands-on course in 3D printing[J]. 3D Print Med, 2015, 1 (1): 3
doi: 10.1186/s41205-015-0002-4
42 HADEED K , ACAR P , DULAC Y et al. Cardiac 3D printing for better understanding of congenital heart disease[J]. Arch Cardiovasc Dis, 2018, 111 (1): 1- 4
43 BIGLINO G , KONIORDOU D , GASPARINI M et al. Piloting the use of patient-specific cardiac models as a novel tool to facilitate communication during cinical consultations[J]. Pediatr Cardiol, 2017, 38 (4): 813- 818
doi: 10.1007/s00246-017-1586-9
44 KIRALY L . Three-dimensional modelling and three-dimensional printing in pediatric and congenital cardiac surgery[J]. Transl Pediatr, 2018, 7 (2): 129- 138
doi: 10.21037/tp.2018.01.02
45 OGDEN K M , ASLAN C , ORDWAY N et al. Factors affecting dimensional accuracy of 3-D printed anatomical structures derived from CT data[J]. J Digit Imaging, 2015, 28 (6): 654- 663
doi: 10.1007/s10278-015-9803-7
46 WANG K , ZHAO Y , CHANG Y H et al. Controlling the mechanical behavior of dual-material 3D printed meta-materials for patient-specific tissue-mimicking phantoms[J]. Mater Des, 2016, 90 704- 712
doi: 10.1016/j.matdes.2015.11.022
47 LAU I , WONG Y H , YEONG C H et al. Quantitative and qualitative comparison of low- and high-cost 3D-printed heart models[J]. Quant Imaging Med Surg, 2019, 9 (1): 107- 114
doi: 10.21037/qims.2019.01.02
48 LAU I, LIU D, XU L, et al. Clinical value of patient-specific three-dimensional printing of congenital heart disease: Quantitative and qualitative assessments[J/OL]. PLoS One, 2018, 13(3): e0194333.
49 XU J J , LUO Y J , WANG J H et al. Patient-specific three-dimensional printed heart models benefit preoperative planning for complex congenital heart disease[J]. World J Pediatr, 2019, 15 (3): 246- 254
doi: 10.1007/s12519-019-00228-4
50 DUAN B , HOCKADAY L A , KANG K H et al. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels[J]. J Biomed Mater Res A, 2013, 101 (5): 1255- 1264
51 LEE A , HUDSON A R , SHIWARSKI D J et al. 3D bioprinting of collagen to rebuild components of the human heart[J]. Science, 2019, 365 (6452): 482- 487
doi: 10.1126/science.aav9051
52 CHEUNG D Y C, DUAN B, BUTCHER J T. Bioprinting of cardiac tissues[M]// ATALA A, YOO J J. Essentials of 3D Biofabrication and Translation. Academic Press, 2015: 351-370.
53 MURPHY S V , ATALA A . 3D bioprinting of tissues and organs[J]. Nat Biotechnol, 2014, 32 (8): 773- 785
doi: 10.1038/nbt.2958
54 HONG N , YANG G H , LEE J et al. 3D bioprinting and its in vivo applications[J]. J Biomed Mater Res B Appl Biomater, 2018, 106 (1): 444- 459
doi: 10.1002/jbm.b.33826
[1] 张军浩,金静华,杨巍. 自噬调控血管平滑肌细胞功能在颅内动脉瘤形成和破裂中的作用[J]. 浙江大学学报(医学版), 2019, 48(5): 552-559.
[2] 陈钿雨,祁鸣. 单亲二体及其在癌症中的作用研究进展[J]. 浙江大学学报(医学版), 2019, 48(5): 560-566.
[3] 林静,陈志敏. 儿童重症腺病毒肺炎早期识别的研究进展[J]. 浙江大学学报(医学版), 2019, 48(5): 567-572.
[4] 黄淑敏,赵正言. 重症联合免疫缺陷病新生儿筛查及免疫系统重建研究进展[J]. 浙江大学学报(医学版), 2019, 48(4): 351-357.
[5] 陈光杰,王晓豪,唐达星. 性别发育异常的评估、诊断和治疗研究进展[J]. 浙江大学学报(医学版), 2019, 48(4): 358-366.
[6] 朱紫菱, 谈静, 邓红. 肿瘤细胞膜/质蛋白转位入核研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 318-325.
[7] 张建民. 缺血性脑血管疾病手术治疗新进展[J]. 浙江大学学报(医学版), 2019, 48(3): 233-240.
[8] 吴雨星, 张世红, 陈忠. 缰核及其神经环路在神经精神疾病中的作用研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 310-317.
[9] 张韵竹, 朱春鹏, 陆新良. 胃癌早期诊断的血清生物学标志物研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 326-333.
[10] BabooKalianee Devi,陈正云,张信美. 子宫腺肌病患者药物治疗进展[J]. 浙江大学学报(医学版), 2019, 48(2): 142-147.
[11] 吴彬彬,杨毅. 心脏手术相关急性肾损伤早期生物学标志物研究进展[J]. 浙江大学学报(医学版), 2019, 48(2): 224-229.
[12] 杨坤,胡晓晟. 微小RNA-21在心脏疾病中的研究进展[J]. 浙江大学学报(医学版), 2019, 48(2): 214-218.
[13] 徐力,许鸣,童向民. 有氧糖酵解在非霍奇金淋巴瘤发病及耐药机制中的作用[J]. 浙江大学学报(医学版), 2019, 48(2): 219-223.
[14] 赵世浩,张雪,柯越海. 细胞衰老与特发性肺纤维化的相关性研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 111-115.
[15] 宋方俊,郭江涛. 电压门控离子通道结构生物学研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 25-33.