Please wait a minute...
浙江大学学报(医学版)  2019, Vol. 48 Issue (5): 560-566    DOI: 10.3785/j.issn.1008-9292.2019.10.15
综述     
单亲二体及其在癌症中的作用研究进展
陈钿雨1,2(),祁鸣1,2,3,*()
1. 浙江大学医学院遗传学系, 浙江 杭州 310058
2. 浙江加州国际纳米技术研究院国际精准医学研究中心, 浙江 杭州 310058
3. 迪安诊断, 浙江 杭州 310030
Research progress on uniparental disomy in cancer
CHEN Dianyu1,2(),QI Ming1,2,3,*()
1. Department of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
2. International Precision Medicine Research Center, Zhejiang-California International Nanosystems Institute, Hangzhou 310058, China
3. Di'an Diagnostics, Hangzhou 310030, China
 全文: PDF(764 KB)   HTML( 3 )
摘要:

单亲二体(UPD)是指个体的同源染色体或其上的一部分均来自于双亲中一方的一种染色体缺陷,能够造成基因印记障碍或基因纯合突变,从而导致各类疾病,包括癌症。UPD的形成机制多样,主要由细胞分裂时染色体未正确分离所致。UPD不改变基因拷贝数,导致传统的细胞遗传学检测手段难以对其进行有效鉴定。近年来,随着单核苷酸多态性阵列等技术的出现,越来越多的UPD相关病例被检出,并发现其以非随机的形式出现在不同类型的癌症中,在癌症的发生、发展以及转移等过程中发挥重要作用。本文从UPD的形成机制、检测方法、影响区域、涉及基因、临床预后价值等方面,综述UPD在癌症中的作用研究进展,并讨论其发展趋势。

关键词: 肿瘤单亲二体性多态性, 单核苷酸染色体畸变癌基因基因, 肿瘤抑制综述    
Abstract:

Uniparental disomy (UPD) refers to a chromosome defect that an individual's homologous chromosome or segments are inherited from one parent. UPD can cause either aberrant patterns of genomic imprinting or homozygosity of mutations, leading to various diseases, including cancer. The mechanisms of UPD formation are diverse but largely due to the incorrect chromosome separation during cell division. UPD does not alter the number of gene copies, thus is difficult to be detected by conventional cytogenetic techniques effectively. Assisted by the new techniques such as single nucleotide polymorphism arrays, more and more UPD-related cases have been reported recently. UPD events are non-randomly distributed across cancer types, which play important role in the occurrence, development and metastasis of cancer. Here we review the research progress on the formation mechanisms, detection methods, the involved chromosomal regions and genes, and clinical significance of UPD; and also discuss the directions for future studies in this field.

Key words: Neoplasms    Uniparental disomy    Polymorphism, single nucleotide    Chromosome aberrations    Oncogenes    Genes, tumor suppressor    Review
收稿日期: 2019-03-12 出版日期: 2020-01-04
:  R394.3  
通讯作者: 祁鸣     E-mail: 21618578@zju.edu.cn;mingqi@zju.edu.cn
作者简介: 陈钿雨(1994-), 男, 硕士研究生, 主要从事遗传与基因组医学研究; E-mail:21618578@zju.edu.cn; https://orcid.org/0000-0002-4217-2279
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈钿雨
祁鸣

引用本文:

陈钿雨,祁鸣. 单亲二体及其在癌症中的作用研究进展[J]. 浙江大学学报(医学版), 2019, 48(5): 560-566.

CHEN Dianyu,QI Ming. Research progress on uniparental disomy in cancer. J Zhejiang Univ (Med Sci), 2019, 48(5): 560-566.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2019.10.15        http://www.zjujournals.com/med/CN/Y2019/V48/I5/560

1 ENGEL E . A new genetic concept: uniparental disomy and its potential effect, isodisomy[J]. Am J Med Genet, 1980, 6 (2): 137- 143
2 SPENCE J E , PERCIACCANTE R G , GREIG G M et al. Uniparental disomy as a mechanism for human genetic disease[J]. Am J Hum Genet, 1988, 42 (2): 217- 226
3 MATSUBARA K , KAGAMI M , FUKAMI M . Uniparental disomy as a cause of pediatric endocrine disorders[J]. Clin Pediatr Endocrinol, 2018, 27 (3): 113- 121
4 SONG Q , CHU Y , YAO Y et al. Identify latent chromosomal aberrations relevant to myelodysplastic syndromes[J]. Sci Rep, 2017, 7 (1): 10354
5 DINIZ M G , DUARTE A P , VILLACISR A et al. Rare copy number alterations and copy-neutral loss of heterozygosity revealed in ameloblastomas by high-density whole-genome microarray analysis[J]. J Oral Pathol Med, 2017, 46 (5): 371- 376
doi: 10.1111/jop.12505
6 SANTORO S L , HASHIMOTO S , MCKINNEY A et al. Assessing the clinical utility of SNP microarray for Prader-Willi syndrome due to uniparental disomy[J]. Cytogenet Genome Res, 2017, 152 (2): 105- 109
doi: 10.1159/000478921
7 EROLA P , TORABI K , MIRó R et al. The non-random landscape of somatically-acquired uniparental disomy in cancer[J]. Oncotarget, 2019, 10 (40): 3982- 3984
8 TUCCI V , ISLES A R , KELSEY G et al. Genomic imprinting and physiological processes in mammals[J]. Cell, 2019, 176 (5): 952- 965
doi: 10.1016/j.cell.2019.01.043
9 YAMAZAWA K , OGATA T , FERGUSON-SMITH A C . Uniparental disomy and human disease: an overview[J]. Am J Med Genet C Semin Med Genet, 2010, 154C (3): 329- 334
doi: 10.1002/ajmg.c.30270
10 BRIOUDE F , KALISH J M , MUSSA A et al. Expert consensus document: Clinical and molecular diagnosis, screening and management of Beckwith-Wiedemann syndrome: an international consensus statement[J]. Nat Rev Endocrinol, 2018, 14 (4): 229- 249
doi: 10.1038/nrendo.2017.166
11 SU L , LU Z , LI F et al. Two homozygous mutations in the exon 5 of BCKDHB gene that may cause the classic form of maple syrup urine disease[J]. Metab Brain Dis, 2017, 32 (3): 765- 772
doi: 10.1007/s11011-017-9959-6
12 BIS D M , SCHVLE R , REICHBAUER J et al. Uniparental disomy determined by whole-exome sequencing in a spectrum of rare motoneuron diseases and ataxias[J]. Mol Genet Genomic Med, 2017, 5 (3): 280- 286
doi: 10.1002/mgg3.285
13 MAKISHIMA H , MACIEJEWSKI J P . Pathogenesis and consequences of uniparental disomy in cancer[J]. Clin Cancer Res, 2011, 17 (12): 3913- 3923
doi: 10.1158/1078-0432.CCR-10-2900
14 LALOU I , GKROZOU F , MERIDIS E et al. Molecular investigation of uniparental disomy (UPD) in spontaneous abortions[J]. Eur J Obstet Gynecol Reprod Biol, 2019, 236 116- 120
doi: 10.1016/j.ejogrb.2019.03.004
15 JOSHI R S , GARG P , ZAITLEN N et al. DNA methylation profiling of uniparental disomy subjects provides a map of parental epigenetic bias in the human genome[J]. Am J Hum Genet, 2016, 99 (3): 555- 566
doi: 10.1016/j.ajhg.2016.06.032
16 KING D A , FITZGERALD T W , MILLER R et al. A novel method for detecting uniparental disomy from trio genotypes identifies a significant excess in children with developmental disorders[J]. Genome Res, 2014, 24 (4): 673- 687
17 TUNA M , KNUUTILA S , MILLS G B . Uniparental disomy in cancer[J]. Trends Mol Med, 2009, 15 (3): 120- 128
doi: 10.1016/j.molmed.2009.01.005
18 WANG L , WHEELER D A , PRCHAL J T . Acquired uniparental disomy of chromosome 9p in hematologic malignancies[J]. Exp Hematol, 2016, 44 (8): 644- 652
doi: 10.1016/j.exphem.2015.11.005
19 KANAGAL-SHAMANNA R , HODGE J C , TUCKER T et al. Assessing copy number aberrations and copy neutral loss of heterozygosity across the genome as best practice: An evidence based review of clinical utility from the cancer genomics consortium (CGC) working group for myelodysplastic syndrome, myelodysplastic/myeloproliferative and myelo-proliferative neoplasms[J]. Cancer Genet, 2018, 228-229 197- 217
doi: 10.1016/j.cancergen.2018.07.003
20 GAYMES T J , MOHAMEDALI A , EILIAZADEH A L et al. FLT3 and JAK2 mutations in acute myeloid leukemia promote interchromosomal homologous recombination and the potential for copy neutral loss of heterozygosity[J]. Cancer Res, 2017, 77 (7): 1697- 1708
doi: 10.1158/0008-5472.CAN-16-1678
21 KIMURA S , HASEGAWA D , YOSHIMOTO Y et al. Duplication of ALK F1245 missense mutation due to acquired uniparental disomy associated with aggressive progression in a patient with relapsed neuroblastoma[J]. Oncol Lett, 2019, 17 (3): 3323- 3329
22 TAKADA M , NAGAI S , HARUTA M et al. BRCA1 alterations with additional defects in DNA damage response genes may confer chemoresistance to BRCA-like breast cancers treated with neoadjuvant chemotherapy[J]. Genes Chromosomes Cancer, 2017, 56 (5): 405- 420
23 RICHARDSON A L , WANG Z C , DE NICOLO A et al. X chromosomal abnormalities in basal-like human breast cancer[J]. Cancer Cell, 2006, 9 (2): 121- 132
doi: 10.1016/j.ccr.2006.01.013
24 WALSH C S , OGAWA S , SCOLES D R et al. Genome-wide loss of heterozygosity and uniparental disomy in BRCA1/2-associated ovarian carcinomas[J]. Clin Cancer Res, 2008, 14 (23): 7645- 7651
doi: 10.1158/1078-0432.CCR-08-1291
25 TUNA M , AMOS C I , MILLSG B . Genome-wide analysis of head and neck squamous cell carcinomas reveals HPV, TP53, smoking and alcohol-related allele-based acquired uniparental disomy genomic alterations[J]. Neoplasia, 2019, 21 (2): 197- 205
doi: 10.1016/j.neo.2018.12.002
26 TORABI K , EROLA P , ALVAREZ-MORAM I et al. Quantitative analysis of somatically acquired and constitutive uniparental disomy in gastrointestinal cancers[J]. Int J Cancer, 2019, 144 (3): 513- 524
27 ALEKSEEVA E A , KUZNETSOVA E B , TANAS A S et al. Loss of heterozygosity and uniparental disomy of chromosome region 10q23.3-26.3 in glioblastoma[J]. Genes Chromosomes Cancer, 2018, 57 (1): 42- 47
28 TORABI K , MIRó R , FERNáNDEZ-JIMéNEZ N et al. Patterns of somatic uniparental disomy identify novel tumor suppressor genes in colorectal cancer[J]. Carcinogenesis, 2015, 36 (10): 1103- 1110
doi: 10.1093/carcin/bgv115
29 KRALOVICS R , GUAN Y , PRCHAL J T . Acquired uniparental disomy of chromosome 9p is a frequent stem cell defect in polycythemia vera[J]. Exp Hematol, 2002, 30 (3): 229- 236
doi: 10.1016/S0301-472X(01)00789-5
30 KRALOVICS R , BUSER A S , TEO S S et al. Comparison of molecular markers in a cohort of patients with chronic myeloproliferative disorders[J]. Blood, 2003, 102 (5): 1869- 1871
doi: 10.1182/blood-2003-03-0744
31 KRALOVICS R , PASSAMONTI F , BUSERA S et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders[J]. N Engl J Med, 2005, 352 (17): 1779- 1790
doi: 10.1056/NEJMoa051113
32 RAGHAVAN M , LILLINGTON D M , SKOULAKIS S et al. Genome-wide single nucleotide polymorphism analysis reveals frequent partial uniparental disomy due to somatic recombination in acute myeloid leukemias[J]. Cancer Res, 2005, 65 (2): 375- 378
33 SERRANO E , CARNICER M J , ORANTES V et al. Uniparental disomy may be associated with microsatellite instability in acute myeloid leukemia (AML) with a normal karyotype[J]. Leuk Lymphoma, 2008, 49 (6): 1178- 1183
34 GUPTA M , RAGHAVAN M , GALER E et al. Novel regions of acquired uniparental disomy discovered in acute myeloid leukemia[J]. Genes Chromosomes Cancer, 2008, 47 (9): 729- 739
doi: 10.1002/gcc.20573
35 FANG M , TOHER J , MORGAN M et al. Genomic differences between estrogen receptor (ER)-positive and ER-negative human breast carcinoma identified by single nucleotide polymorphism array comparative genome hybridization analysis[J]. Cancer, 2011, 117 (10): 2024- 2034
doi: 10.1002/cncr.25770
36 TUNA M, SMID M, ZHU D, et al. Association between acquired uniparental disomy and homozygous mutations and HER2/ER/PR status in breast cancer[J/OL]. PLoS One, 2010, 5(11): e15094.
37 TUNA M , JU Z , SMID M et al. Prognostic relevance of acquired uniparental disomy in serous ovarian cancer[J]. Mol Cancer, 2015, 14 29
doi: 10.1186/s12943-015-0289-1
38 HOLZMANN C , KOCZAN D , LOENING T et al. Case report: a low-grade uterine leiomyosarcoma showing multiple genetic aberrations including a bi-allelic loss of the retinoblastoma gene locus, as well as germ-line uniparental disomy for part of the long arm of chromosome 22[J]. Anticancer Res, 2017, 37 (5): 2233- 2237
doi: 10.21873/anticanres.11559
39 KANEKO Y , OKITA H , HARUTA M et al. A high incidence of WT1 abnormality in bilateral Wilms tumours in Japan, and the penetrance rates in children with WT1 germline mutation[J]. Br J Cancer, 2015, 112 (6): 1121- 1133
doi: 10.1038/bjc.2015.13
40 DE NORONHA T R , MITNE-NETO M , CHAUFFAILLEM L . Mutational profiling of acute myeloid leukemia with normal cytogenetics in Brazilian patients: the value of next-generation sequencing for genomic classification[J]. J Investig Med, 2017, 65 (8): 1155- 1158
doi: 10.1136/jim-2017-000566
41 LEHMANN S , OGAWA S , RAYNAUDS D et al. Molecular allelokaryotyping of early-stage, untreated chronic lymphocytic leukemia[J]. Cancer, 2008, 112 (6): 1296- 1305
doi: 10.1002/cncr.23270
42 TUNA M , SMID M , MARTENS J W et al. Prognostic value of acquired uniparental disomy (aUPD) in primary breast cancer[J]. Breast Cancer Res Treat, 2012, 132 (1): 189- 196
43 GRONSETH C M , MCELHONE S E , STORER B E et al. Prognostic significance of acquired copy-neutral loss of heterozygosity in acute myeloid leukemia[J]. Cancer, 2015, 121 (17): 2900- 2908
doi: 10.1002/cncr.29475
44 BULLINGER L , KR?NKE J , SCH?N C et al. Identification of acquired copy number alterations and uniparental disomies in cytogenetically normal acute myeloid leukemia using high-resolution single-nucleotide polymorphism analysis[J]. Leukemia, 2010, 24 (2): 438- 449
doi: 10.1038/leu.2009.263
[1] 张军浩,金静华,杨巍. 自噬调控血管平滑肌细胞功能在颅内动脉瘤形成和破裂中的作用[J]. 浙江大学学报(医学版), 2019, 48(5): 552-559.
[2] 林静,陈志敏. 儿童重症腺病毒肺炎早期识别的研究进展[J]. 浙江大学学报(医学版), 2019, 48(5): 567-572.
[3] 马盼盼,蔡利军,吕宾,乐敏. 探头式激光共聚焦显微内镜在胃癌及癌前病变临床诊断中的作用[J]. 浙江大学学报(医学版), 2019, 48(5): 504-510.
[4] 徐佳俊,舒强. 三维打印技术在先天性心脏病中的应用[J]. 浙江大学学报(医学版), 2019, 48(5): 573-579.
[5] 黄淑敏,赵正言. 重症联合免疫缺陷病新生儿筛查及免疫系统重建研究进展[J]. 浙江大学学报(医学版), 2019, 48(4): 351-357.
[6] 殷一旋,朱晖,钱叶青,金晶磊,梅瑾,董旻岳. 2057名双胎妊娠孕妇无创产前筛查结果分析[J]. 浙江大学学报(医学版), 2019, 48(4): 403-408.
[7] 陈光杰,王晓豪,唐达星. 性别发育异常的评估、诊断和治疗研究进展[J]. 浙江大学学报(医学版), 2019, 48(4): 358-366.
[8] 张丹丹,王军梅. 胎儿肝血管瘤的产前影像学诊断和管理[J]. 浙江大学学报(医学版), 2019, 48(4): 439-445.
[9] 王青梅, 徐千姿, 魏安怡, 陈世硕, 张翀, 曾玲晖. 大剂量维生素C通过减少糖酵解和蛋白质合成抑制乳腺癌细胞增殖[J]. 浙江大学学报(医学版), 2019, 48(3): 296-302.
[10] 张建民. 缺血性脑血管疾病手术治疗新进展[J]. 浙江大学学报(医学版), 2019, 48(3): 233-240.
[11] 吴雨星, 张世红, 陈忠. 缰核及其神经环路在神经精神疾病中的作用研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 310-317.
[12] 张韵竹, 朱春鹏, 陆新良. 胃癌早期诊断的血清生物学标志物研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 326-333.
[13] 马竞, 何文龙, 高重阳, 余瑞云, 薛鹏, 牛永超. 木瓜苷通过抑制NF-κB P65/TNF-α通路活性减轻小鼠脑缺血再灌注诱导的组织损伤[J]. 浙江大学学报(医学版), 2019, 48(3): 289-295.
[14] 朱紫菱, 谈静, 邓红. 肿瘤细胞膜/质蛋白转位入核研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 318-325.
[15] BabooKalianee Devi,陈正云,张信美. 子宫腺肌病患者药物治疗进展[J]. 浙江大学学报(医学版), 2019, 48(2): 142-147.