综述 |
|
|
|
|
自噬调控血管平滑肌细胞功能在颅内动脉瘤形成和破裂中的作用 |
张军浩( ),金静华,杨巍*( ) |
浙江大学医学院神经科学研究所, 浙江 杭州 310058 |
|
Autophagy regulates the function of vascular smooth muscle cells in the formation and rupture of intracranial aneurysms |
ZHANG Junhao( ),JIN Jinghua,YANG Wei*( ) |
Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou 310058, China |
1 |
LI X G , WANG Y B . SRPK1 gene silencing promotes vascular smooth muscle cell proliferation and vascular remodeling via inhibition of the PI3K/Akt signaling pathway in a rat model of intracranial aneurysms[J]. CNS Neurosci Ther, 2019, 25 (2): 233- 244
doi: 10.1111/cns.13043
|
2 |
PETRIDIS A K , KAMP M A , CORNELIUS J F et al. Aneurysmal subarachnoid hemorrhage[J]. Dtsch Arztebl Int, 2017, 114 (13): 226- 236
|
3 |
KAMIO Y , MIYAMOTO T , KIMURA T et al. Roles of nicotine in the development of intracranial aneurysm rupture[J]. Stroke, 2018, 49 (10): 2445- 2452
doi: 10.1161/STROKEAHA.118.021706
|
4 |
LIU P , SONG Y , ZHOU Y et al. Cyclic mechanical stretch induced smooth muscle cell changes in cerebral aneurysm progress by reducing collagen type iv and collagen type vi levels[J]. Cell Physiol Biochem, 2018, 45 (3): 1051- 1060
|
5 |
STARKE R M , CHALOUHI N , DING D et al. Vascular smooth muscle cells in cerebral aneurysm pathogenesis[J]. Transl Stroke Res, 2014, 5 (3): 338- 346
doi: 10.1007/s12975-013-0290-1
|
6 |
SUN L , ZHAO M , LIU A et al. Shear stress induces phenotypic modulation of vascular smooth muscle cells via ampk/mtor/ulk1-mediated autophagy[J]. Cell Mol Neurobiol, 2018, 38 (2): 541- 548
|
7 |
SUN L , ZHAO M , ZHANG J et al. MiR-29b downregulation induces phenotypic modulation of vascular smooth muscle cells: implication for intracranial aneurysm formation and progression to rupture[J]. Cell Physiol Biochem, 2017, 41 (2): 510- 518
|
8 |
PAWLOWSKA E , SZCZEPANSKA J , WISNIEWSKI K et al. NF-kappaB-mediated inflammation in the pathogenesis of intracranial aneurysm and subarachnoid hemorrhage. Does autophagy play a role?[J]. Int J Mol Sci, 2018, 19 (4):
|
9 |
WANG L , ZHANG J , FU W et al. Association of smooth muscle cell phenotypes with extracellular matrix disorders in thoracic aortic dissection[J]. J Vasc Surg, 2012, 56 (6): 1698- 1709, 1709.e1
doi: 10.1016/j.jvs.2012.05.084
|
10 |
ALEXANDER M R , OWENS G K . Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease[J]. Annu Rev Physiol, 2012, 74 13- 40
doi: 10.1146/annurev-physiol-012110-142315
|
11 |
CHALOUHI N , ALI M S , JABBOUR P M et al. Biology of intracranial aneurysms: role of inflammation[J]. J Cereb Blood Flow Metab, 2012, 32 (9): 1659- 1676
doi: 10.1038/jcbfm.2012.84
|
12 |
SIBON I , MERCIER N , DARRET D et al. Association between semicarbazide-sensitive amine oxidase, a regulator of the glucose transporter, and elastic lamellae thinning during experimental cerebral aneurysm development: laboratory investigation[J]. J Neurosurg, 2008, 108 (3): 558- 566
doi: 10.3171/JNS/2008/108/3/0558
|
13 |
KOSIERKIEWICZ T A , FACTOR S M , DICKSON D W . Immunocytochemical studies of atherosclerotic lesions of cerebral berry aneurysms[J]. J Neuropathol Exp Neurol, 1994, 53 (4): 399- 406
doi: 10.1097/00005072-199407000-00012
|
14 |
FR?SEN J , PIIPPO A , PAETAU A et al. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases[J]. Stroke, 2004, 35 (10): 2287- 2293
doi: 10.1161/01.STR.0000140636.30204.da
|
15 |
FR?SEN J , MARJAMAA J , MYLL?RNIEMI M et al. Contribution of mural and bone marrow-derived neointimal cells to thrombus organization and wall remodeling in a microsurgical murine saccular aneurysm model[J]. Neurosurgery, 2006, 58 (5): 936- 944
doi: 10.1227/01.NEU.0000210260.55124.A4
|
16 |
KILIC T , SOHRABIFAR M , KURTKAYA O et al. Expression of structural proteins and angiogenic factors in normal arterial and unruptured and ruptured aneurysm walls[J]. Neurosurgery, 2005, 57 (5): 997- 1007
doi: 10.1227/01.NEU.0000180812.77621.6C
|
17 |
NAKAJIMA N , NAGAHIRO S , SANO T et al. Phenotypic modulation of smooth muscle cells in human cerebral aneurysmal walls[J]. Acta Neuropathol, 2000, 100 (5): 475- 480
doi: 10.1007/s004010000220
|
18 |
GUO F , LI Z , SONG L et al. Increased apoptosis and cysteinyl aspartate specific protease-3 gene expression in human intracranial aneurysm[J]. J Clin Neurosci, 2007, 14 (6): 550- 555
doi: 10.1016/j.jocn.2005.11.018
|
19 |
GARCIA-HUERTA P , TRONCOSO-ESCUDERO P , JEREZ C et al. The intersection between growth factors, autophagy and ER stress: A new target to treat neurodegenerative diseases?[J]. Brain Res, 2016, 1649 (Pt B): 173- 180
|
20 |
RYTER S W , MIZUMURA K , CHOI A M . The impact of autophagy on cell death modalities[J]. Int J Cell Biol, 2014, 2014 502676
|
21 |
GUMP J M , THORBURN A . Autophagy and apoptosis: what is the connection?[J]. Trends Cell Biol, 2011, 21 (7): 387- 392
doi: 10.1016/j.tcb.2011.03.007
|
22 |
MARINO G , NISO-SANTANO M , BAEHRECKE E H et al. Self-consumption: the interplay of autophagy and apoptosis[J]. Nat Rev Mol Cell Biol, 2014, 15 (2): 81- 94
|
23 |
MIZUSHIMA N , KOMATSU M . Autophagy: renovation of cells and tissues[J]. Cell, 2011, 147 (4): 728- 741
doi: 10.1016/j.cell.2011.10.026
|
24 |
LAAKSAMO E , RAMACHANDRAN M , FROSEN J et al. Intracellular signaling pathways and size, shape, and rupture history of human intracranial aneurysms[J]. Neurosurgery, 2012, 70 (6): 1565- 1573
doi: 10.1227/NEU.0b013e31824c057e
|
25 |
WANG C , QU B , WANG Z et al. Proteomic identification of differentially expressed proteins in vascular wall of patients with ruptured intracranial aneurysms[J]. Atherosclerosis, 2015, 238 (2): 201- 206
doi: 10.1016/j.atherosclerosis.2014.11.027
|
26 |
SALABEI J K , CUMMINS T D , SINGH M et al. PDGF-mediated autophagy regulates vascular smooth muscle cell phenotype and resistance to oxidative stress[J]. Biochem J, 2013, 451 (3): 375- 388
doi: 10.1042/BJ20121344
|
27 |
WEN J , WANG J , GUO L et al. Chemerin stimulates aortic smooth muscle cell proliferation and migration via activation of autophagy in VSMCs of metabolic hypertension rats[J]. Am J Transl Res, 2019, 11 (3): 1327- 1342
|
28 |
LI H , LI J , LI Y et al. Sonic hedgehog promotes autophagy of vascular smooth muscle cells[J]. Am J Physiol Heart Circ Physiol, 2012, 303 (11): H1319- H1331
doi: 10.1152/ajpheart.00160.2012
|
29 |
YAO Y , LI H , DA X et al. SUMOylation of Vps34 by SUMO1 promotes phenotypic switching of vascular smooth muscle cells by activating autophagy in pulmonary arterial hypertension[J]. Pulm Pharmacol Ther, 2019, 55 38- 49
doi: 10.1016/j.pupt.2019.01.007
|
30 |
DE NIGRIS F , RIENZO M , SESSA M et al. Glycoxydation promotes vascular damage via MAPK-ERK/JNK pathways[J]. J Cell Physiol, 2012, 227 (11): 3639- 3647
doi: 10.1002/jcp.24070
|
31 |
GWINN D M , SHACKELFORD D B , EGAN D F et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint[J]. Mol Cell, 2008, 30 (2): 214- 226
doi: 10.1016/j.molcel.2008.03.003
|
32 |
KIM J , KUNDU M , VIOLLET B et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nat Cell Biol, 2011, 13 (2): 132- 141
doi: 10.1038/ncb2152
|
33 |
BERGE J , BLANCO P , ROORYCK C et al. Understanding flow patterns and inflammatory status in intracranial aneurysms: Towards a personalized medicine[J]. J Neuroradiol, 2016, 43 (2): 141- 147
|
34 |
SONG L , HUANG Y , HOU X et al. PINK1/parkin-mediated mitophagy promotes resistance to sonodynamic therapy[J]. Cell Physiol Biochem, 2018, 49 (5): 1825- 1839
doi: 10.1159/000493629
|
35 |
HE L , ZHOU Q , HUANG Z et al. PINK1/Parkin-mediated mitophagy promotes apelin-13-induced vascular smooth muscle cell proliferation by AMPKalpha and exacerbates atherosclerotic lesions[J]. J Cell Physiol, 2019, 234 (6): 8668- 8682
doi: 10.1002/jcp.27527
|
36 |
MARTIN K A , RZUCIDLO E M , MERENICK B L et al. The mTOR/p70 S6K1 pathway regulates vascular smooth muscle cell differentiation[J]. Am J Physiol Cell Physiol, 2004, 286 (3): C507- C517
doi: 10.1152/ajpcell.00201.2003
|
37 |
HOSAKA K , HOH B L . Inflammation and cerebral aneurysms[J]. Transl Stroke Res, 2014, 5 (2): 190- 198
doi: 10.1007/s12975-013-0313-y
|
38 |
CEBRAL J , OLLIKAINEN E , CHUNG B J et al. Flow conditions in the intracranial aneurysm lumen are associated with inflammation and degenerative changes of the aneurysm wall[J]. AJNR Am J Neuroradiol, 2017, 38 (1): 119- 126
doi: 10.3174/ajnr.A4951
|
39 |
CHALOUHI N , HOH B L , HASAN D . Review of cerebral aneurysm formation, growth, and rupture[J]. Stroke, 2013, 44 (12): 3613- 3622
doi: 10.1161/STROKEAHA.113.002390
|
40 |
GARCIA-MIGUEL M, RIQUELME J A, NORAMBUENA-SOTO I, et al. Autophagy mediates tumor necrosis factor-alpha-induced phenotype switching in vascular smooth muscle A7r5 cell line[J/OL]. PLoS One, 2018, 13(5): e0197210.
|
41 |
AN Z , QIAO F , LU Q et al. Interleukin-6 downregulated vascular smooth muscle cell contractile proteins via ATG4B-mediated autophagy in thoracic aortic dissection[J]. Heart Vessels, 2017, 32 (12): 1523- 1535
doi: 10.1007/s00380-017-1054-8
|
42 |
CHENG C I , LEE Y H , CHEN P H et al. Free fatty acids induce autophagy and lox-1 upregulation in cultured aortic vascular smooth muscle cells[J]. J Cell Biochem, 2017, 118 (5): 1249- 1261
doi: 10.1002/jcb.25784
|
43 |
WU Y , LIU G , CHEN W et al. 5-Aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside reduces intimal hyperplasia of tissue engineering blood vessel by inhibiting phenotype switch of vascular smooth muscle cell[J]. J Biomed Mater Res B Appl Biomater, 2017, 105 (4): 744- 752
doi: 10.1002/jbm.b.33585
|
44 |
WU H , SONG A , HU W et al. The anti-atherosclerotic effect of paeonol against vascular smooth muscle cell proliferation by up-regulation of autophagy via the AMPK/mTOR signaling pathway[J]. Front Pharmacol, 2017, 8 948
|
45 |
SHINTANI T , KLIONSKY D J . Autophagy in health and disease: a double-edged sword[J]. Science, 2004, 306 (5698): 990- 995
doi: 10.1126/science.1099993
|
46 |
AN X R , LI X , WEI W et al. Prostaglandin e1 inhibited diabetes-induced phenotypic switching of vascular smooth muscle cells through activating autophagy[J]. Cell Physiol Biochem, 2018, 50 (2): 745- 756
|
47 |
ZHENG Y H , TIAN C , MENG Y et al. Osteopontin stimulates autophagy via integrin/CD44 and p38 MAPK signaling pathways in vascular smooth muscle cells[J]. J Cell Physiol, 2012, 227 (1): 127- 135
doi: 10.1002/jcp.22709
|
48 |
MALLICK D J , KOROTKOV A , LI H et al. Nuphar alkaloids induce very rapid apoptosis through a novel caspase-dependent but BAX/BAK-independent pathway[J]. Cell Biol Toxicol, 2019,
|
49 |
MENG Y , LIN Z M , GE N et al. Ursolic acid induces apoptosis of prostate cancer cells via the PI3K/Akt/mTOR pathway[J]. Am J Chin Med, 2015, 43 (7): 1471- 1486
doi: 10.1142/S0192415X15500834
|
50 |
QIU C , ZHENG H , TAO H et al. Vitamin K2 inhibits rat vascular smooth muscle cell calcification by restoring the Gas6/Axl/Akt anti-apoptotic pathway[J]. Mol Cell Biochem, 2017, 433 (1-2): 149- 159
doi: 10.1007/s11010-017-3023-z
|
51 |
ROTLLAN N , WANSCHEL A C , FERNANDEZ-HERNANDO A et al. Genetic evidence supports a major role for akt1 in vsmcs during atherogenesis[J]. Circ Res, 2015, 116 (11): 1744- 1752
doi: 10.1161/CIRCRESAHA.116.305895
|
52 |
ALLARD D , FIGG N , BENNETT M R et al. Akt regulates the survival of vascular smooth muscle cells via inhibition of FoxO3a and GSK3[J]. J Biol Chem, 2008, 283 (28): 19739- 19747
doi: 10.1074/jbc.M710098200
|
53 |
P T , H W , J Z et al. Rapamycin-induced miR-30a downregulation inhibits senescence of VSMCs by targeting Beclin1[J]. Int J Mol Med, 2019, 43 (3): 1311- 1320
|
54 |
GROSS A , KATZ S G . Non-apoptotic functions of BCL-2 family proteins[J]. Cell Death Differ, 2017, 24 (8): 1348- 1358
doi: 10.1038/cdd.2017.22
|
55 |
MAIURI M C , LE TOUMELIN G , CRIOLLO A et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1[J]. EMBO J, 2007, 26 (10): 2527- 2539
doi: 10.1038/sj.emboj.7601689
|
56 |
TULAMO R , FROSEN J , JUNNIKKALA S et al. Complement system becomes activated by the classical pathway in intracranial aneurysm walls[J]. Lab Invest, 2010, 90 (2): 168- 179
doi: 10.1038/labinvest.2009.133
|
57 |
DING Z , WANG X , SCHNACKENBERG L et al. Regulation of autophagy and apoptosis in response to ox-LDL in vascular smooth muscle cells, and the modulatory effects of the microRNA hsa-let-7 g[J]. Int J Cardiol, 2013, 168 (2): 1378- 1385
doi: 10.1016/j.ijcard.2012.12.045
|
58 |
TANG B , DONG X , WEI Z et al. Enhanced autophagy by everolimus contributes to the antirestenotic mechanisms in vascular smooth muscle cells[J]. J Vasc Res, 2014, 51 (4): 259- 268
doi: 10.1159/000365927
|
59 |
LA COLLA A , VASCONSUELO A , MILANESI L et al. 17beta-estradiol protects skeletal myoblasts from apoptosis through p53, Bcl-2, and FoxO families[J]. J Cell Biochem, 2017, 118 (1): 104- 115
doi: 10.1002/jcb.25616
|
60 |
LI D Y , BUSCH A , JIN H et al. H19 induces abdominal aortic aneurysm development and progression[J]. Circulation, 2018, 138 (15): 1551- 1568
doi: 10.1161/CIRCULATIONAHA.117.032184
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|