Please wait a minute...
浙江大学学报(医学版)  2019, Vol. 48 Issue (5): 552-559    DOI: 10.3785/j.issn.1008-9292.2019.10.14
综述     
自噬调控血管平滑肌细胞功能在颅内动脉瘤形成和破裂中的作用
张军浩(),金静华,杨巍*()
浙江大学医学院神经科学研究所, 浙江 杭州 310058
Autophagy regulates the function of vascular smooth muscle cells in the formation and rupture of intracranial aneurysms
ZHANG Junhao(),JIN Jinghua,YANG Wei*()
Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou 310058, China
 全文: PDF(2080 KB)   HTML( 8 )
摘要:

血管平滑肌细胞作为血管壁的主要细胞成分,其功能(表型转化、凋亡等)调节在颅内动脉瘤发病中发挥了重要作用。自噬可通过参与细胞功能调控进而参与血管功能的调节。在颅内动脉瘤起始阶段,自噬的激活促使血管平滑肌细胞发生表型转化,并抑制其凋亡;随着颅内动脉瘤的发展,自噬的激活与细胞凋亡由最先的对抗关系转化为协同或推动关系,血管平滑肌细胞大量凋亡导致颅内动脉瘤破裂。本文对自噬调控血管平滑肌细胞功能在颅内动脉瘤发生、发展以及破裂过程中的作用进行了系统阐述,以期为深入理解颅内动脉瘤的发病机制及寻找阻止颅内动脉瘤形成和破裂的分子靶点提供理论基础。

关键词: 颅内动脉瘤/病理学血管平滑肌/细胞:血管平滑肌/病理学:自噬表型生物转化细胞凋亡综述    
Abstract:

Vascular smooth muscle cells (VSMC) are the main cellular component of vessel wall. The changes of VSMC functions including phenotypic transformation and apoptosis play a critical role in the pathogenesis of intracranial aneurysm (IA). Autophagy can participate in the regulation of vascular function by regulating cell function. In the initial stage of IA, the activation of autophagy can accelerate the phenotypic transformation of VSMC and inhibit VSMC apoptosis. With the progress of IA, the relationship between autophagy and apoptosis changes from antagonism to synergy or promotion, and a large number of apoptotic VSMC lead to the rupture of IA. In this review, we describe the role of autophagy regulating the function of VSMC in the occurrence, development and rupture of IA, for further understanding the pathogenesis of IA and finding molecular targets to prevent the formation and rupture of IA.

Key words: Intracranial aneurysm/pathology    Muscle, smooth, vascular/cytology    Muscle, smooth, vascular/pathology    Autophagy    Phenotype    Biotransformation    Apoptosis    Review
收稿日期: 2019-05-05 出版日期: 2020-01-04
:  R363  
基金资助: 国家自然科学基金(81671131, 81171199);浙江省自然科学基金(LY19H090022)
通讯作者: 杨巍     E-mail: 21718595@zju.edu.cn;yangwei@zju.edu.cn
作者简介: 张军浩(1994-), 男, 硕士研究生, 主要从事药理学研究; E-mail:21718595@zju.edu.cn; https://orcid.org/0000-0002-7793-7585
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张军浩
金静华
杨巍

引用本文:

张军浩,金静华,杨巍. 自噬调控血管平滑肌细胞功能在颅内动脉瘤形成和破裂中的作用[J]. 浙江大学学报(医学版), 2019, 48(5): 552-559.

ZHANG Junhao,JIN Jinghua,YANG Wei. Autophagy regulates the function of vascular smooth muscle cells in the formation and rupture of intracranial aneurysms. J Zhejiang Univ (Med Sci), 2019, 48(5): 552-559.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2019.10.14        http://www.zjujournals.com/med/CN/Y2019/V48/I5/552

图 1  自噬相关信号通路对VSMC功能的调控
1 LI X G , WANG Y B . SRPK1 gene silencing promotes vascular smooth muscle cell proliferation and vascular remodeling via inhibition of the PI3K/Akt signaling pathway in a rat model of intracranial aneurysms[J]. CNS Neurosci Ther, 2019, 25 (2): 233- 244
doi: 10.1111/cns.13043
2 PETRIDIS A K , KAMP M A , CORNELIUS J F et al. Aneurysmal subarachnoid hemorrhage[J]. Dtsch Arztebl Int, 2017, 114 (13): 226- 236
3 KAMIO Y , MIYAMOTO T , KIMURA T et al. Roles of nicotine in the development of intracranial aneurysm rupture[J]. Stroke, 2018, 49 (10): 2445- 2452
doi: 10.1161/STROKEAHA.118.021706
4 LIU P , SONG Y , ZHOU Y et al. Cyclic mechanical stretch induced smooth muscle cell changes in cerebral aneurysm progress by reducing collagen type iv and collagen type vi levels[J]. Cell Physiol Biochem, 2018, 45 (3): 1051- 1060
5 STARKE R M , CHALOUHI N , DING D et al. Vascular smooth muscle cells in cerebral aneurysm pathogenesis[J]. Transl Stroke Res, 2014, 5 (3): 338- 346
doi: 10.1007/s12975-013-0290-1
6 SUN L , ZHAO M , LIU A et al. Shear stress induces phenotypic modulation of vascular smooth muscle cells via ampk/mtor/ulk1-mediated autophagy[J]. Cell Mol Neurobiol, 2018, 38 (2): 541- 548
7 SUN L , ZHAO M , ZHANG J et al. MiR-29b downregulation induces phenotypic modulation of vascular smooth muscle cells: implication for intracranial aneurysm formation and progression to rupture[J]. Cell Physiol Biochem, 2017, 41 (2): 510- 518
8 PAWLOWSKA E , SZCZEPANSKA J , WISNIEWSKI K et al. NF-kappaB-mediated inflammation in the pathogenesis of intracranial aneurysm and subarachnoid hemorrhage. Does autophagy play a role?[J]. Int J Mol Sci, 2018, 19 (4):
9 WANG L , ZHANG J , FU W et al. Association of smooth muscle cell phenotypes with extracellular matrix disorders in thoracic aortic dissection[J]. J Vasc Surg, 2012, 56 (6): 1698- 1709, 1709.e1
doi: 10.1016/j.jvs.2012.05.084
10 ALEXANDER M R , OWENS G K . Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease[J]. Annu Rev Physiol, 2012, 74 13- 40
doi: 10.1146/annurev-physiol-012110-142315
11 CHALOUHI N , ALI M S , JABBOUR P M et al. Biology of intracranial aneurysms: role of inflammation[J]. J Cereb Blood Flow Metab, 2012, 32 (9): 1659- 1676
doi: 10.1038/jcbfm.2012.84
12 SIBON I , MERCIER N , DARRET D et al. Association between semicarbazide-sensitive amine oxidase, a regulator of the glucose transporter, and elastic lamellae thinning during experimental cerebral aneurysm development: laboratory investigation[J]. J Neurosurg, 2008, 108 (3): 558- 566
doi: 10.3171/JNS/2008/108/3/0558
13 KOSIERKIEWICZ T A , FACTOR S M , DICKSON D W . Immunocytochemical studies of atherosclerotic lesions of cerebral berry aneurysms[J]. J Neuropathol Exp Neurol, 1994, 53 (4): 399- 406
doi: 10.1097/00005072-199407000-00012
14 FR?SEN J , PIIPPO A , PAETAU A et al. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture: histological analysis of 24 unruptured and 42 ruptured cases[J]. Stroke, 2004, 35 (10): 2287- 2293
doi: 10.1161/01.STR.0000140636.30204.da
15 FR?SEN J , MARJAMAA J , MYLL?RNIEMI M et al. Contribution of mural and bone marrow-derived neointimal cells to thrombus organization and wall remodeling in a microsurgical murine saccular aneurysm model[J]. Neurosurgery, 2006, 58 (5): 936- 944
doi: 10.1227/01.NEU.0000210260.55124.A4
16 KILIC T , SOHRABIFAR M , KURTKAYA O et al. Expression of structural proteins and angiogenic factors in normal arterial and unruptured and ruptured aneurysm walls[J]. Neurosurgery, 2005, 57 (5): 997- 1007
doi: 10.1227/01.NEU.0000180812.77621.6C
17 NAKAJIMA N , NAGAHIRO S , SANO T et al. Phenotypic modulation of smooth muscle cells in human cerebral aneurysmal walls[J]. Acta Neuropathol, 2000, 100 (5): 475- 480
doi: 10.1007/s004010000220
18 GUO F , LI Z , SONG L et al. Increased apoptosis and cysteinyl aspartate specific protease-3 gene expression in human intracranial aneurysm[J]. J Clin Neurosci, 2007, 14 (6): 550- 555
doi: 10.1016/j.jocn.2005.11.018
19 GARCIA-HUERTA P , TRONCOSO-ESCUDERO P , JEREZ C et al. The intersection between growth factors, autophagy and ER stress: A new target to treat neurodegenerative diseases?[J]. Brain Res, 2016, 1649 (Pt B): 173- 180
20 RYTER S W , MIZUMURA K , CHOI A M . The impact of autophagy on cell death modalities[J]. Int J Cell Biol, 2014, 2014 502676
21 GUMP J M , THORBURN A . Autophagy and apoptosis: what is the connection?[J]. Trends Cell Biol, 2011, 21 (7): 387- 392
doi: 10.1016/j.tcb.2011.03.007
22 MARINO G , NISO-SANTANO M , BAEHRECKE E H et al. Self-consumption: the interplay of autophagy and apoptosis[J]. Nat Rev Mol Cell Biol, 2014, 15 (2): 81- 94
23 MIZUSHIMA N , KOMATSU M . Autophagy: renovation of cells and tissues[J]. Cell, 2011, 147 (4): 728- 741
doi: 10.1016/j.cell.2011.10.026
24 LAAKSAMO E , RAMACHANDRAN M , FROSEN J et al. Intracellular signaling pathways and size, shape, and rupture history of human intracranial aneurysms[J]. Neurosurgery, 2012, 70 (6): 1565- 1573
doi: 10.1227/NEU.0b013e31824c057e
25 WANG C , QU B , WANG Z et al. Proteomic identification of differentially expressed proteins in vascular wall of patients with ruptured intracranial aneurysms[J]. Atherosclerosis, 2015, 238 (2): 201- 206
doi: 10.1016/j.atherosclerosis.2014.11.027
26 SALABEI J K , CUMMINS T D , SINGH M et al. PDGF-mediated autophagy regulates vascular smooth muscle cell phenotype and resistance to oxidative stress[J]. Biochem J, 2013, 451 (3): 375- 388
doi: 10.1042/BJ20121344
27 WEN J , WANG J , GUO L et al. Chemerin stimulates aortic smooth muscle cell proliferation and migration via activation of autophagy in VSMCs of metabolic hypertension rats[J]. Am J Transl Res, 2019, 11 (3): 1327- 1342
28 LI H , LI J , LI Y et al. Sonic hedgehog promotes autophagy of vascular smooth muscle cells[J]. Am J Physiol Heart Circ Physiol, 2012, 303 (11): H1319- H1331
doi: 10.1152/ajpheart.00160.2012
29 YAO Y , LI H , DA X et al. SUMOylation of Vps34 by SUMO1 promotes phenotypic switching of vascular smooth muscle cells by activating autophagy in pulmonary arterial hypertension[J]. Pulm Pharmacol Ther, 2019, 55 38- 49
doi: 10.1016/j.pupt.2019.01.007
30 DE NIGRIS F , RIENZO M , SESSA M et al. Glycoxydation promotes vascular damage via MAPK-ERK/JNK pathways[J]. J Cell Physiol, 2012, 227 (11): 3639- 3647
doi: 10.1002/jcp.24070
31 GWINN D M , SHACKELFORD D B , EGAN D F et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint[J]. Mol Cell, 2008, 30 (2): 214- 226
doi: 10.1016/j.molcel.2008.03.003
32 KIM J , KUNDU M , VIOLLET B et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1[J]. Nat Cell Biol, 2011, 13 (2): 132- 141
doi: 10.1038/ncb2152
33 BERGE J , BLANCO P , ROORYCK C et al. Understanding flow patterns and inflammatory status in intracranial aneurysms: Towards a personalized medicine[J]. J Neuroradiol, 2016, 43 (2): 141- 147
34 SONG L , HUANG Y , HOU X et al. PINK1/parkin-mediated mitophagy promotes resistance to sonodynamic therapy[J]. Cell Physiol Biochem, 2018, 49 (5): 1825- 1839
doi: 10.1159/000493629
35 HE L , ZHOU Q , HUANG Z et al. PINK1/Parkin-mediated mitophagy promotes apelin-13-induced vascular smooth muscle cell proliferation by AMPKalpha and exacerbates atherosclerotic lesions[J]. J Cell Physiol, 2019, 234 (6): 8668- 8682
doi: 10.1002/jcp.27527
36 MARTIN K A , RZUCIDLO E M , MERENICK B L et al. The mTOR/p70 S6K1 pathway regulates vascular smooth muscle cell differentiation[J]. Am J Physiol Cell Physiol, 2004, 286 (3): C507- C517
doi: 10.1152/ajpcell.00201.2003
37 HOSAKA K , HOH B L . Inflammation and cerebral aneurysms[J]. Transl Stroke Res, 2014, 5 (2): 190- 198
doi: 10.1007/s12975-013-0313-y
38 CEBRAL J , OLLIKAINEN E , CHUNG B J et al. Flow conditions in the intracranial aneurysm lumen are associated with inflammation and degenerative changes of the aneurysm wall[J]. AJNR Am J Neuroradiol, 2017, 38 (1): 119- 126
doi: 10.3174/ajnr.A4951
39 CHALOUHI N , HOH B L , HASAN D . Review of cerebral aneurysm formation, growth, and rupture[J]. Stroke, 2013, 44 (12): 3613- 3622
doi: 10.1161/STROKEAHA.113.002390
40 GARCIA-MIGUEL M, RIQUELME J A, NORAMBUENA-SOTO I, et al. Autophagy mediates tumor necrosis factor-alpha-induced phenotype switching in vascular smooth muscle A7r5 cell line[J/OL]. PLoS One, 2018, 13(5): e0197210.
41 AN Z , QIAO F , LU Q et al. Interleukin-6 downregulated vascular smooth muscle cell contractile proteins via ATG4B-mediated autophagy in thoracic aortic dissection[J]. Heart Vessels, 2017, 32 (12): 1523- 1535
doi: 10.1007/s00380-017-1054-8
42 CHENG C I , LEE Y H , CHEN P H et al. Free fatty acids induce autophagy and lox-1 upregulation in cultured aortic vascular smooth muscle cells[J]. J Cell Biochem, 2017, 118 (5): 1249- 1261
doi: 10.1002/jcb.25784
43 WU Y , LIU G , CHEN W et al. 5-Aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside reduces intimal hyperplasia of tissue engineering blood vessel by inhibiting phenotype switch of vascular smooth muscle cell[J]. J Biomed Mater Res B Appl Biomater, 2017, 105 (4): 744- 752
doi: 10.1002/jbm.b.33585
44 WU H , SONG A , HU W et al. The anti-atherosclerotic effect of paeonol against vascular smooth muscle cell proliferation by up-regulation of autophagy via the AMPK/mTOR signaling pathway[J]. Front Pharmacol, 2017, 8 948
45 SHINTANI T , KLIONSKY D J . Autophagy in health and disease: a double-edged sword[J]. Science, 2004, 306 (5698): 990- 995
doi: 10.1126/science.1099993
46 AN X R , LI X , WEI W et al. Prostaglandin e1 inhibited diabetes-induced phenotypic switching of vascular smooth muscle cells through activating autophagy[J]. Cell Physiol Biochem, 2018, 50 (2): 745- 756
47 ZHENG Y H , TIAN C , MENG Y et al. Osteopontin stimulates autophagy via integrin/CD44 and p38 MAPK signaling pathways in vascular smooth muscle cells[J]. J Cell Physiol, 2012, 227 (1): 127- 135
doi: 10.1002/jcp.22709
48 MALLICK D J , KOROTKOV A , LI H et al. Nuphar alkaloids induce very rapid apoptosis through a novel caspase-dependent but BAX/BAK-independent pathway[J]. Cell Biol Toxicol, 2019,
49 MENG Y , LIN Z M , GE N et al. Ursolic acid induces apoptosis of prostate cancer cells via the PI3K/Akt/mTOR pathway[J]. Am J Chin Med, 2015, 43 (7): 1471- 1486
doi: 10.1142/S0192415X15500834
50 QIU C , ZHENG H , TAO H et al. Vitamin K2 inhibits rat vascular smooth muscle cell calcification by restoring the Gas6/Axl/Akt anti-apoptotic pathway[J]. Mol Cell Biochem, 2017, 433 (1-2): 149- 159
doi: 10.1007/s11010-017-3023-z
51 ROTLLAN N , WANSCHEL A C , FERNANDEZ-HERNANDO A et al. Genetic evidence supports a major role for akt1 in vsmcs during atherogenesis[J]. Circ Res, 2015, 116 (11): 1744- 1752
doi: 10.1161/CIRCRESAHA.116.305895
52 ALLARD D , FIGG N , BENNETT M R et al. Akt regulates the survival of vascular smooth muscle cells via inhibition of FoxO3a and GSK3[J]. J Biol Chem, 2008, 283 (28): 19739- 19747
doi: 10.1074/jbc.M710098200
53 P T , H W , J Z et al. Rapamycin-induced miR-30a downregulation inhibits senescence of VSMCs by targeting Beclin1[J]. Int J Mol Med, 2019, 43 (3): 1311- 1320
54 GROSS A , KATZ S G . Non-apoptotic functions of BCL-2 family proteins[J]. Cell Death Differ, 2017, 24 (8): 1348- 1358
doi: 10.1038/cdd.2017.22
55 MAIURI M C , LE TOUMELIN G , CRIOLLO A et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1[J]. EMBO J, 2007, 26 (10): 2527- 2539
doi: 10.1038/sj.emboj.7601689
56 TULAMO R , FROSEN J , JUNNIKKALA S et al. Complement system becomes activated by the classical pathway in intracranial aneurysm walls[J]. Lab Invest, 2010, 90 (2): 168- 179
doi: 10.1038/labinvest.2009.133
57 DING Z , WANG X , SCHNACKENBERG L et al. Regulation of autophagy and apoptosis in response to ox-LDL in vascular smooth muscle cells, and the modulatory effects of the microRNA hsa-let-7 g[J]. Int J Cardiol, 2013, 168 (2): 1378- 1385
doi: 10.1016/j.ijcard.2012.12.045
58 TANG B , DONG X , WEI Z et al. Enhanced autophagy by everolimus contributes to the antirestenotic mechanisms in vascular smooth muscle cells[J]. J Vasc Res, 2014, 51 (4): 259- 268
doi: 10.1159/000365927
59 LA COLLA A , VASCONSUELO A , MILANESI L et al. 17beta-estradiol protects skeletal myoblasts from apoptosis through p53, Bcl-2, and FoxO families[J]. J Cell Biochem, 2017, 118 (1): 104- 115
doi: 10.1002/jcb.25616
60 LI D Y , BUSCH A , JIN H et al. H19 induces abdominal aortic aneurysm development and progression[J]. Circulation, 2018, 138 (15): 1551- 1568
doi: 10.1161/CIRCULATIONAHA.117.032184
[1] 陈钿雨,祁鸣. 单亲二体及其在癌症中的作用研究进展[J]. 浙江大学学报(医学版), 2019, 48(5): 560-566.
[2] 林静,陈志敏. 儿童重症腺病毒肺炎早期识别的研究进展[J]. 浙江大学学报(医学版), 2019, 48(5): 567-572.
[3] 徐佳俊,舒强. 三维打印技术在先天性心脏病中的应用[J]. 浙江大学学报(医学版), 2019, 48(5): 573-579.
[4] 黄淑敏,赵正言. 重症联合免疫缺陷病新生儿筛查及免疫系统重建研究进展[J]. 浙江大学学报(医学版), 2019, 48(4): 351-357.
[5] 叶青,张莹莹,王晶晶,毛建华. Ⅳ型胶原α5链基因突变致奥尔波特综合征两家系遗传学分析[J]. 浙江大学学报(医学版), 2019, 48(4): 384-389.
[6] 童凡,杨茹莱,刘畅,吴鼎文,张婷,黄新文,洪芳,钱古柃,黄晓磊,周雪莲,舒强,赵正言. 新生儿酪氨酸血症筛查及基因谱分析[J]. 浙江大学学报(医学版), 2019, 48(4): 459-464.
[7] 陈光杰,王晓豪,唐达星. 性别发育异常的评估、诊断和治疗研究进展[J]. 浙江大学学报(医学版), 2019, 48(4): 358-366.
[8] 张建民. 缺血性脑血管疾病手术治疗新进展[J]. 浙江大学学报(医学版), 2019, 48(3): 233-240.
[9] 吴雨星, 张世红, 陈忠. 缰核及其神经环路在神经精神疾病中的作用研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 310-317.
[10] 张韵竹, 朱春鹏, 陆新良. 胃癌早期诊断的血清生物学标志物研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 326-333.
[11] 马竞, 何文龙, 高重阳, 余瑞云, 薛鹏, 牛永超. 木瓜苷通过抑制NF-κB P65/TNF-α通路活性减轻小鼠脑缺血再灌注诱导的组织损伤[J]. 浙江大学学报(医学版), 2019, 48(3): 289-295.
[12] 朱紫菱, 谈静, 邓红. 肿瘤细胞膜/质蛋白转位入核研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 318-325.
[13] BabooKalianee Devi,陈正云,张信美. 子宫腺肌病患者药物治疗进展[J]. 浙江大学学报(医学版), 2019, 48(2): 142-147.
[14] 吴彬彬,杨毅. 心脏手术相关急性肾损伤早期生物学标志物研究进展[J]. 浙江大学学报(医学版), 2019, 48(2): 224-229.
[15] 王雅琪,金静华. 巨噬细胞在颅内动脉瘤发生发展中的作用研究进展[J]. 浙江大学学报(医学版), 2019, 48(2): 204-213.