综述 |
|
|
|
|
肿瘤细胞膜/质蛋白转位入核研究进展 |
朱紫菱( ),谈静,邓红*( ) |
浙江大学医学院病理与病理生理学系 浙江省蛋白质组学重点实验室, 浙江 杭州 310058 |
|
Nucleus translocation of membrane/cytoplasm proteins in tumor cells |
ZHU Ziling( ),TAN Jing,DENG Hong*( ) |
Zhejiang Key Laboratory for Disease Proteomics, Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, China |
1 |
FERLAY J , COLOMBET M , SOERJOMATARAM I et al. Estimating the global cancer incidence and mortality in 2018:GLOBOCAN sources and methods[J]. Int J Cancer, 2019, 144 (8): 1941- 1953
|
2 |
GODBOLE A , LYGA S , LOHSE M J et al. Internalized TSH receptors en route to the TGN induce local Gs-protein signaling and gene transcription[J]. Nat Commun, 2017, 8 (1): 443
doi: 10.1038/s41467-017-00357-2
|
3 |
FRESIA C , VIGLIAROLO T , GUIDA L et al. G-protein coupling and nuclear translocation of the human abscisic acid receptor LANCL2[J]. Sci Rep, 2016, 6:26658
doi: 10.1038/srep26658
|
4 |
LU P, HONTECILLAS R, HORNE W T, et al. Computational modeling-based discovery of novel classes of anti-inflammatory drugs that target lanthionine synthetase C-like protein 2[J/OL]. PLoS One, 2012, 7(4): e34643.
|
5 |
DURSUN E, GEZEN-AK D. Vitamin D receptor is present on the neuronal plasma membrane and is co-localized with amyloid precursor protein, ADAM10 or Nicastrin[J/OL]. PLoS One, 2017, 12(11): e0188605.
|
6 |
FOLLIS A V , LLAMBI F , MERRITT P et al. Pin1-induced proline isomerization in cytosolic p53 mediates BAX activation and apoptosis[J]. Mol Cell, 2015, 59 (4): 677- 684
doi: 10.1016/j.molcel.2015.06.029
|
7 |
LEVINE A J , OREN M . The first 30 years of p53:growing ever more complex[J]. Nat Rev Cancer, 2009, 9 (10): 749- 758
doi: 10.1038/nrc2723
|
8 |
DUFFY M J , SYNNOTT N C , MCGOWANP M et al. p53 as a target for the treatment of cancer[J]. Cancer Treat Rev, 2014, 40 (10): 1153- 1160
doi: 10.1016/j.ctrv.2014.10.004
|
9 |
ZHANG M Y , HARHAJ E W , BELL L et al. Bcl-3 expression and nuclear translocation are induced by granulocyte-macrophage colony-stimulating factor and erythropoietin in proliferating human erythroid precursors[J]. Blood, 1998, 92 (4): 1225- 1234
|
10 |
MASSOUMI R , CHMIELARSKA K , HENNECKE K et al. Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-kappaB signaling[J]. Cell, 2006, 125 (4): 665- 677
doi: 10.1016/j.cell.2006.03.041
|
11 |
WANG V Y , LI Y , KIM D et al. Bcl3 phosphorylation by Akt, Erk2, and IKK is required for its transcriptional activity[J]. Mol Cell, 2017, 67 (3): 484- 497.e5
doi: 10.1016/j.molcel.2017.06.011
|
12 |
SONG L , W?RMANN S , AI J et al. BCL3 reduces the sterile inflammatory response in pancreatic and biliary tissues[J]. Gastroenterology, 2016, 150 (2): 499- 512.e20
doi: 10.1053/j.gastro.2015.10.017
|
13 |
BRASIER A R , LU M , HAI T et al. NF-kappa B-inducible BCL-3 expression is an autoregulatory loop controlling nuclear p50/NF-kappa B1 residence[J]. J Biol Chem, 2001, 276 (34): 32080- 32093
doi: 10.1074/jbc.M102949200
|
14 |
CANEL M , BYRON A , SIMS A H et al. Nuclear FAK and Runx1 cooperate to regulate IGFBP3, cell-cycle progression, and tumor growth[J]. Cancer Res, 2017, 77 (19): 5301- 5312
doi: 10.1158/0008-5472.CAN-17-0418
|
15 |
WAN Q , TRUONGVO T , STEELE H E et al. Subcellular domain-dependent molecular hierarchy of SFK and FAK in mechanotransduction and cytokine signaling[J]. Sci Rep, 2017, 7 (1): 9033
doi: 10.1038/s41598-017-09495-5
|
16 |
LONG W , YI P , AMAZIT L et al. SRC-3Delta4 mediates the interaction of EGFR with FAK to promote cell migration[J]. Mol Cell, 2010, 37 (3): 321- 332
doi: 10.1016/j.molcel.2010.01.004
|
17 |
IZDEBSKA M , ZIELIN'SKA W , GRZANKA D et al. The role of actin dynamics and actin-binding proteins expression in epithelial-to-mesenchymal transition and its association with cancer progression and evaluation of possible therapeutic targets[J]. Biomed Res Int, 2018, 2018:4578373
|
18 |
CARIDI C P , D'AGOSTINO C , RYU T et al. Nuclear F-actin and myosins drive relocalization of heterochromatic breaks[J]. Nature, 2018, 559 (7712): 54- 60
doi: 10.1038/s41586-018-0242-8
|
19 |
GLOERICH M , BIANCHINI J M , SIEMERS K A et al. Cell division orientation is coupled to cell-cell adhesion by the E-cadherin/LGN complex[J]. Nat Commun, 2017, 8:13996
doi: 10.1038/ncomms13996
|
20 |
DU W , LIU X , FAN G et al. From cell membrane to the nucleus:an emerging role of E-cadherin in gene transcriptional regulation[J]. J Cell Mol Med, 2014, 18 (9): 1712- 1719
doi: 10.1111/jcmm.12340
|
21 |
CéSPEDES M V , LARRIBA M J , PAVóNM A et al. Site-dependent E-cadherin cleavage and nuclear translocation in a metastatic colorectal cancer model[J]. Am J Pathol, 2010, 177 (4): 2067- 2079
doi: 10.2353/ajpath.2010.100079
|
22 |
ELSTON M S , GILL A J , CONAGLENJ V et al. Nuclear accumulation of e-cadherin correlates with loss of cytoplasmic membrane staining and invasion in pituitary adenomas[J]. J Clin Endocrinol Metab, 2009, 94 (4): 1436- 1442
doi: 10.1210/jc.2008-2075
|
23 |
OHISHI Y , ODA Y , KURIHARA S et al. Nuclear localization of E-cadherin but not beta-catenin in human ovarian granulosa cell tumours and normal ovarian follicles and ovarian stroma[J]. Histopathology, 2011, 58 (3): 423- 432
doi: 10.1111/j.1365-2559.2011.03761.x
|
24 |
ZHAO Y , YU T , ZHANG N et al. Nuclear E-cadherin acetylation promotes colorectal tumorigenesis via enhancing beta-catenin activity[J]. Mol Cancer Res, 2019, 17 (2): 655- 665
doi: 10.1158/1541-7786.MCR-18-0637
|
25 |
FERBER E C , KAJITA M , WADLOW A et al. A role for the cleaved cytoplasmic domain of E-cadherin in the nucleus[J]. J Biol Chem, 2008, 283 (19): 12691- 12700
doi: 10.1074/jbc.M708887200
|
26 |
YANCEY S B , JOHN S A , LAL R et al. The 43-kD polypeptide of heart gap junctions:immunolocalization, topology, and functional domains[J]. J Cell Biol, 1989, 108 (6): 2241- 2254
doi: 10.1083/jcb.108.6.2241
|
27 |
SIRNES S , LIND G E , BRUUN J et al. Connexins in colorectal cancer pathogenesis[J]. Int J Cancer, 2015, 137 (1): 1- 11
doi: 10.1002/ijc.28911
|
28 |
MOORER M C , HEBERT C , TOMLINSONR E et al. Defective signaling, osteoblastogenesis and bone remodeling in a mouse model of connexin 43 C-terminal truncation[J]. J Cell Sci, 2017, 130 (3): 531- 540
doi: 10.1242/jcs.197285
|
29 |
DANG X , DOBLE B W , KARDAMI E . The carboxy-tail of connexin-43 localizes to the nucleus and inhibits cell growth[J]. Mol Cell Biochem, 2003, 242 (1-2): 35- 38
|
30 |
LAITMAN B M, ASP L, MARIANI J N, et al. The transcriptional activator Krüppel-like factor-6 is required for CNS myelination[J/OL]. PLoS Biol, 2016, 14(5): e1002467.
|
31 |
RODRíGUEZ E, ABURJANIA N, PRIEDIGKEITN M, et al. Nucleo-cytoplasmic localization domains regulate Krüppel-like factor 6(KLF6) protein stability and tumor suppressor function[J/OL]. PLoS One, 2010, 5(9). pii: e12639.
|
32 |
ZHANG Y , LEI C Q , HU Y H et al. Kruppel-like factor 6 is a co-activator of NF-kappaB that mediates p65-dependent transcription of selected downstream genes[J]. J Biol Chem, 2014, 289 (18): 12876- 12885
doi: 10.1074/jbc.M113.535831
|
33 |
SHOVAL I , LUDWIG A , KALCHEIM C . Antagonistic roles of full-length N-cadherin and its soluble BMP cleavage product in neural crest delamination[J]. Development, 2007, 134 (3): 491- 501
|
34 |
HAMBSCH B , GRINEVICH V , SEEBURGP H et al. γ-Protocadherins, presenilin-mediated release of C-terminal fragment promotes locus expression[J]. J Biol Chem, 2005, 280 (16): 15888- 15897
doi: 10.1074/jbc.M414359200
|
35 |
BERS D M . Membrane receptor neighborhoods:snuggling up to the nucleus[J]. Circ Res, 2013, 112 (2): 224- 226
doi: 10.1161/CIRCRESAHA.112.300494
|
36 |
MALIK Z A , STEIN I S , NAVEDOM F et al. Mission CaMKⅡgamma:shuttle calmodulin from membrane to nucleus[J]. Cell, 2014, 159 (2): 235- 237
doi: 10.1016/j.cell.2014.09.023
|
37 |
BARSHISHAT M , POLAK-CHARCON S , SCHWARTZ B . Butyrate regulates E-cadherin transcription, isoform expression and intracellular position in colon cancer cells[J]. Br J Cancer, 2000, 82 (1): 195- 203
doi: 10.1054/bjoc.1999.0899
|
38 |
LECUIT T , YAP A S . E-cadherin junctions as active mechanical integrators in tissue dynamics[J]. Nat Cell Biol, 2015, 17 (5): 533- 539
doi: 10.1038/ncb3136
|
39 |
LABERNADIE A , KATO T , BRUGUéS A et al. A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion[J]. Nat Cell Biol, 2017, 19 (3): 224- 237
doi: 10.1038/ncb3478
|
40 |
MCCREA P D , GOTTARDI C J . Beyond beta-catenin:prospects for a larger catenin network in the nucleus[J]. Nat Rev Mol Cell Biol, 2016, 17 (1): 55- 64
|
41 |
CLEVERS H , NUSSE R . Wnt/beta-catenin signaling and disease[J]. Cell, 2012, 149 (6): 1192- 1205
doi: 10.1016/j.cell.2012.05.012
|
42 |
DEBRUINE Z J , XU H E , MELCHER K . Assembly and architecture of the Wnt/beta-catenin signalosome at the membrane[J]. Br J Pharmacol, 2017, 174 (24): 4564- 4574
doi: 10.1111/bph.14048
|
43 |
DIAMANTOPOULOU Z , WHITE G , MZH F et al. TIAM1 antagonizes TAZ/YAP both in the destruction complex in the cytoplasm and in the nucleus to inhibit invasion of intestinal epithelial cells[J]. Cancer Cell, 2017, 31 (5): 621- 634
doi: 10.1016/j.ccell.2017.03.007
|
44 |
AYLON Y , OFIR-ROSENFELD Y , YABUTA N et al. The Lats2 tumor suppressor augments p53-mediated apoptosis by promoting the nuclear proapoptotic function of ASPP1[J]. Genes Dev, 2010, 24 (21): 2420- 2429
doi: 10.1101/gad.1954410
|
45 |
VIGNERON A M , LUDWIG R L , VOUSDENK H . Cytoplasmic ASPP1 inhibits apoptosis through the control of YAP[J]. Genes Dev, 2010, 24 (21): 2430- 2439
doi: 10.1101/gad.1954310
|
46 |
GUO L , TENG L . YAP/TAZ for cancer therapy:opportunities and challenges (review)[J]. Int J Oncol, 2015, 46 (4): 1444- 1452
doi: 10.3892/ijo.2015.2877
|
47 |
LEE K W , COBB L J , PAHARKOVA-VATCHKOVA V et al. Contribution of the orphan nuclear receptor Nur77 to the apoptotic action of IGFBP-3[J]. Carcinogenesis, 2007, 28 (8): 1653- 1658
doi: 10.1093/carcin/bgm088
|
48 |
CAO Z , KOOCHEKPOUR S , STRUP S E et al. Reversion of epithelial-mesenchymal transition by a novel agent DZ-50 via IGF binding protein-3 in prostate cancer cells[J]. Oncotarget, 2017, 8 (45): 78507- 78519
|
49 |
SANTUCCI M , VIGNUDELLI T , FERRARI S et al. The hippo pathway and YAP/TAZ-TEAD protein-protein interaction as targets for regenerative medicine and cancer treatment[J]. J Med Chem, 2015, 58 (12): 4857- 4873
doi: 10.1021/jm501615v
|
50 |
SMITH J M , HEDMAN A C , SACKS D B . IQGAPs choreograph cellular signaling from the membrane to the nucleus[J]. Trends Cell Biol, 2015, 25 (3): 171- 184
doi: 10.1016/j.tcb.2014.12.005
|
51 |
CHAN S W , LIM C J , GUO K et al. A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells[J]. Cancer Res, 2008, 68 (8): 2592- 2598
doi: 10.1158/0008-5472.CAN-07-2696
|
52 |
VITALE M L, GARCIA C J, AKPOVI C D, et al. Distinctive actions of connexin 46 and connexin 50 in anterior pituitary folliculostellate cells[J/OL]. PLoS One, 2017, 12(7): e0182495.
|
53 |
MOORBY C , PATEL M . Dual functions for connexins:Cx43 regulates growth independently of gap junction formation[J]. Exp Cell Res, 2001, 271 (2): 238- 248
doi: 10.1006/excr.2001.5357
|
54 |
HAO F, XU Q, WANG J, et al. Lipophilic statins inhibit YAP nuclear localization, co-activator activity and colony formation in pancreatic cancer cells and prevent the initial stages of pancreatic ductal adenocarcinoma in KrasG12D mice[J/OL]. PLoS One, 2019, 14(5): e0216603.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|