Please wait a minute...
浙江大学学报(医学版)  2019, Vol. 48 Issue (3): 310-317    DOI: 10.3785/j.issn.1008-9292.2019.06.12
综述     
缰核及其神经环路在神经精神疾病中的作用研究进展
吴雨星(),张世红,陈忠*()
浙江大学医学院神经科学研究所, 杭州 浙江 310058
The roles of habenula and related neural circuits in neuropsychiatric diseases
WU Yuxing(),ZHANG Shihong,CHEN Zhong*()
Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou 310058, China
 全文: PDF(951 KB)   HTML( 37 )
摘要:

缰核是位于丘脑背侧的一个体积较小的双侧核团,含多种不同类型的神经元,与前额叶、隔核、中脑和脑干的单胺类核团有广泛的纤维联系。缰核是一个"反奖赏"核团,能被厌恶刺激和奖赏缺失激活,在多种对生存至关重要的行为中发挥作用。近年来,缰核在神经精神疾病中的作用越来越受到关注。本文综述了缰核在神经病理性疼痛、抑郁症、药物成瘾和精神分裂症中的作用及其环路机制,并讨论了缰核作为临床治疗靶点的可能性。

关键词: 缰核/生理学缰核/药物作用神经元/生理学神经元/药物作用疼痛抑郁症/遗传学物质相关性障碍精神分裂症综述    
Abstract:

The habenula is a small and bilateral nucleus above dorsal thalamus, which contains several different types of neurons. The habenula has extensive connections with the forebrain, septum and monoaminergic nuclei in the midbrain and brainstem. Habenula is known as an 'anti-reward' nucleus, which can be activated by aversive stimulus and negative reward prediction errors. Accumulating researchs have implicated that the habenula is involved in several behaviors crucial to survival. Meanwhile, the roles of the habenula in neuropsychiatric diseases have received increasing attention. This review summaries the studies regarding the roles of habenula and the related circuits in neuropathic pain, depression, drug addiction and schizophrenia, and discusses the possibility to use the habenula as a treatment target.

Key words: Habenula/physiology    Habenula/drug effects    Neurons/physiology    Neurons/drug effects    Pain    Depressive disorder/genetics    Substance-related disorders    Schizophrenia    Review
收稿日期: 2019-01-25 出版日期: 2019-09-04
CLC:  R74  
基金资助: 国家自然科学基金(81673404)
通讯作者: 陈忠     E-mail: wuyuxing@hrglobe.cn;chenzhong@zju.edu.cn
作者简介: 吴雨星(1993-), 女, 硕士研究生, 主要从事缰核在神经精神疾病中的作用研究; E-mail: wuyuxing@hrglobe.cn; https://orcid.org/0000-0002-3917-2454
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴雨星
张世红
陈忠

引用本文:

吴雨星, 张世红, 陈忠. 缰核及其神经环路在神经精神疾病中的作用研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 310-317.

WU Yuxing, ZHANG Shihong, CHEN Zhong. The roles of habenula and related neural circuits in neuropsychiatric diseases. J Zhejiang Univ (Med Sci), 2019, 48(3): 310-317.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2019.06.12        http://www.zjujournals.com/med/CN/Y2019/V48/I3/310

图 1  缰核的神经纤维联系
1 AIZAWA H , KOBAYASHI M , TANAKA S et al. Molecular characterization of the subnuclei in rat habenula[J]. J Comp Neurol, 2012, 520 (18): 4051- 4066
doi: 10.1002/cne.23167
2 PANDEY S , SHEKHAR K , REGEV A et al. Comprehensive identification and spatial mapping of habenular neuronal types using single-cell RNA-seq[J]. Curr Biol, 2018, 28 (7): 1052- 1065.e7
doi: 10.1016/j.cub.2018.02.040
3 YAMAGUCHI T , DANJO T , PASTAN I et al. Distinct roles of segregated transmission of the septo-habenular pathway in anxiety and fear[J]. Neuron, 2013, 78 (3): 537- 544
doi: 10.1016/j.neuron.2013.02.035
4 HERKENHAM M , NAUTA W J . Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber-of-passage problem[J]. J Comp Neurol, 1977, 173 (1): 123- 146
5 KIM U , CHANG S Y . Dendritic morphology, local circuitry, and intrinsic electrophysiology of neurons in the rat medial and lateral habenular nuclei of the epithalamus[J]. J Comp Neurol, 2005, 483 (2): 236- 250
6 GREATREX R M , PHILLIPSON O T . Demonstration of synaptic input from prefrontal cortex to the habenula i the rat[J]. Brain Res, 1982, 238 (1): 192- 197
doi: 10.1016/0006-8993(82)90782-X
7 BUIJS R M . Intra-and extrahypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord[J]. Cell Tissue Res, 1978, 192 (3): 423- 435
8 HATTAR S , KUMAR M , PARK A et al. Central projections of melanopsin-expressing retinal ganglion cells in the mouse[J]. J Comp Neurol, 2006, 497 (3): 326- 349
9 CRAIG A D . Distribution of trigeminothalamic and spinothalamic lamina I terminations in the cat[J]. Somatosens Mot Res, 2003, 20 (3-4): 209- 222
doi: 10.1080/08990220310001623013
10 KIM U . Topographic commissural and descending projections of the habenula in the rat[J]. J Comp Neurol, 2009, 513 (2): 173- 187
11 BAKER P M , JHOU T , LI B et al. The lateral habenula circuitry:reward processing and cognitive control[J]. J Neurosci, 2016, 36 (45): 11482- 11488
doi: 10.1523/JNEUROSCI.2350-16.2016
12 BENABID A L , JEAUGEY L . Cells of the rat lateral habenula respond to high-threshold somatosensory inputs[J]. Neurosci Lett, 1989, 96 (3): 289- 294
doi: 10.1016/0304-3940(89)90393-5
13 SHELTON L , PENDSE G , MALEKI N et al. Mapping pain activation and connectivity of the human habenula[J]. J Neurophysiol, 2012, 107 (10): 2633- 2648
doi: 10.1152/jn.00012.2012
14 KHALILZADEH E , SAIAH G V . The possible mechanisms of analgesia produced by microinjection of morphine into the lateral habenula in the acute model of trigeminal pain in rats[J]. Res Pharm Sci, 2017, 12 (3): 241- 248
doi: 10.4103/1735-5362.207205
15 MARGOLIS E B, FIELDS H L. Mu opioid receptor actions in the lateral habenula[J/OL]. PLoS One, 2016, 11(7): e0159097.
16 MA Q P , SHI Y S , HAN J S . Further studies on interactions between periaqueductal gray, nucleus accumbens and habenula in antinociception[J]. Brain Res, 1992, 583 (1-2): 292- 295
doi: 10.1016/S0006-8993(10)80036-8
17 PAULSON P E , GORMAN A L , YEZIERSKI R P et al. Differences in forebrain activation in two strains of rat at rest and after spinal cord injury[J]. Exp Neurol, 2005, 196 (2): 413- 421
doi: 10.1016/j.expneurol.2005.08.015
18 LI Y , WANG Y , XUAN C et al. Role of the lateral habenula in pain-associated depression[J]. Front Behav Neurosci, 2017, 11:31
19 OZAKI S , NARITA M , NARITA M et al. Suppression of the morphine-induced rewarding effect in the rat with neuropathic pain:implication of the reduction in mu-opioid receptor functions in the ventral tegmental area[J]. J Neurochem, 2002, 82 (5): 1192- 1198
20 BORSOOK D , LINNMAN C , FARIA V et al. Reward deficiency and anti-reward in pain chronification[J]. Neurosci Biobehav Rev, 2016, 68:282- 297
doi: 10.1016/j.neubiorev.2016.05.033
21 MAHIEUX G , BENABID A L . Naloxone-reversible analgesia induced by electrical stimulation of the habenula in the rat[J]. Brain Res, 1987, 406 (1-2): 118- 129
doi: 10.1016/0006-8993(87)90776-1
22 FU L B , WANG Y , SUN X X et al. Antinociceptive effects induced by intra-lateral habenula complex injection of the galanin receptor 1 agonist M617 in rats[J]. Exp Brain Res, 2016, 234 (2): 493- 497
doi: 10.1007/s00221-015-4480-9
23 PROULX C D , HIKOSAKA O , MALINOW R . Reward processing by the lateral habenula in normal and depressive behaviors[J]. Nat Neurosci, 2014, 17 (9): 1146- 1152
doi: 10.1038/nn.3779
24 YANG L M , HU B , XIA Y H et al. Lateral habenula lesions improve the behavioral response in depressed rats via increasing the serotonin level in dorsal raphe nucleus[J]. Behav Brain Res, 2008, 188 (1): 84- 90
doi: 10.1016/j.bbr.2007.10.022
25 LI B , PIRIZ J , MIRRIONE M et al. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression[J]. Nature, 2011, 470 (7335): 535- 539
doi: 10.1038/nature09742
26 XU C , SUN Y , CAI X et al. Medial habenula-interpeduncular nucleus circuit contributes to anhedonia-like behavior in a rat model of depression[J]. Front Behav Neurosci, 2018, 12:238
27 LAWSON R P , NORD C L , SEYMOUR B et al. Disrupted habenula function in major depression[J]. Mol Psychiatry, 2017, 22 (2): 202- 208
doi: 10.1038/mp.2016.81
28 LI K , ZHOU T , LIAO L et al. βCaMKⅡ in lateral habenula mediates core symptoms of depression[J]. Science, 2013, 341 (6149): 1016- 1020
doi: 10.1126/science.1240729
29 YANG Y , CUI Y , SANG K et al. Ketamine blocks bursting in the lateral habenula to rapidly relieve depression[J]. Nature, 2018, 554 (7692): 317- 322
doi: 10.1038/nature25509
30 CUI Y , YANG Y , NI Z et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression[J]. Nature, 2018, 554 (7692): 323- 327
doi: 10.1038/nature25752
31 SHABEL S J , PROULX C D , PIRIZ J et al. Mood regulation. GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment[J]. Science, 2014, 345 (6203): 1494- 1498
doi: 10.1126/science.1250469
32 SARTORIUS A, KIENING K L, KIRSCH P, et al. Remission of major depression under deep brain stimulation of the lateral habenula in a therapy-refractory patient[J/OL]. Biol Psychiatry, 2010, 67(2): e9-e11.
33 ZHANG C , LUEPTOW L M , ZHANG H T et al. The role of phosphodiesterase-2 in psychiatric and neurodegenerative disorders[J]. Adv Neurobiol, 2017, 17:307- 347
34 LVSCHER C , MALENKA R C . Drug-evoked synaptic plasticity in addiction:from molecular changes to circuit remodeling[J]. Neuron, 2011, 69 (4): 650- 663
doi: 10.1016/j.neuron.2011.01.017
35 ELLISON G . Neural degeneration following chronic stimulant abuse reveals a weak link in brain, fasciculus retroflexus, implying the loss of forebrain control circuitry[J]. Eur Neuropsychopharmacol, 2002, 12 (4): 287- 297
doi: 10.1016/S0924-977X(02)00020-2
36 MAROTEAUX M , MAMELI M . Cocaine evokes projection-specific synaptic plasticity of lateral habenula neurons[J]. J Neurosci, 2012, 32 (36): 12641- 12646
doi: 10.1523/JNEUROSCI.2405-12.2012
37 MEYE F J , SOIZA-REILLY M , SMIT T et al. Shifted pallidal co-release of GABA and glutamate in habenula drives cocaine withdrawal and relapse[J]. Nat Neurosci, 2016, 19 (8): 1019- 1024
doi: 10.1038/nn.4334
38 ZAPATA A , HWANG E K , LUPICA C R . Lateral habenula involvement in impulsive cocaine seeking[J]. Neuropsychopharmacology, 2017, 42 (5): 1103- 1112
doi: 10.1038/npp.2016.286
39 KANG S , LI J , BEKKER A et al. Rescue of glutamate transport in the lateral habenula alleviates depression-and anxiety-like behaviors in ethanol-withdrawn rats[J]. Neuropharmacology, 2018, 129:47- 56
doi: 10.1016/j.neuropharm.2017.11.013
40 KANG S , LI J , ZUO W et al. Ethanol withdrawal drives anxiety-related behaviors by reducing m-type potassium channel activity in the lateral habenula[J]. Neuropsychopharmacology, 2017, 42 (9): 1813- 1824
doi: 10.1038/npp.2017.68
41 SHEFFIELD E B , QUICK M W , LESTER R A . Nicotinic acetylcholine receptor subunit mRNA expression and channel function in medial habenula neurons[J]. Neuropharmacology, 2000, 39 (13): 2591- 2603
doi: 10.1016/S0028-3908(00)00138-6
42 DAO D Q , PEREZ E E , TENG Y et al. Nicotine enhances excitability of medial habenular neurons via facilitation of neurokinin signaling[J]. J Neurosci, 2014, 34 (12): 4273- 4284
doi: 10.1523/JNEUROSCI.2736-13.2014
43 FOWLER C D , LU Q , JOHNSON P M et al. Habenular α5 nicotinic receptor subunit signalling controls nicotine intake[J]. Nature, 2011, 471 (7340): 597- 601
doi: 10.1038/nature09797
44 PEREZ E , QUIJANO-CARDé N , DE BIASI M . Nicotinic mechanisms modulate ethanol withdrawal and modify time course and symptoms severity of simultaneous withdrawal from alcohol and nicotine[J]. Neuropsychopharmacology, 2015, 40 (10): 2327- 2336
doi: 10.1038/npp.2015.80
45 GLICK S D , RAMIREZ R L , LIVI J M et al. 18-Methoxycoronaridine acts in the medial habenula and/or interpeduncular nucleus to decrease morphine self-administration in rats[J]. Eur J Pharmacol, 2006, 537 (1-3): 94- 98
doi: 10.1016/j.ejphar.2006.03.045
46 NEUGEBAUER N M , EINSTEIN E B , LOPEZ M B et al. Morphine dependence and withdrawal induced changes in cholinergic signaling[J]. Pharmacol Biochem Behav, 2013, 109:77- 83
doi: 10.1016/j.pbb.2013.04.015
47 FRAHM S, ANTOLIN-FONTES B, G?RLICH A, et al. An essential role of acetylcholine-glutamate synergy at habenular synapses in nicotine dependence[J/OL]. Elife, 2015, 4: e11396.
48 PEREZ E E , DE BIASI M . Assessment of affective and somatic signs of ethanol withdrawal in C57BL/6J mice using a short-term ethanol treatment[J]. Alcohol, 2015, 49 (3): 237- 243
doi: 10.1016/j.alcohol.2015.02.003
49 FRIEDMAN A , LAX E , DIKSHTEIN Y et al. Electrical stimulation of the lateral habenula produces enduring inhibitory effect on cocaine seeking behavior[J]. Neuropharmacology, 2010, 59 (6): 452- 459
doi: 10.1016/j.neuropharm.2010.06.008
50 CRUNELLE C L , MILLER M L , BOOIJ J et al. The nicotinic acetylcholine receptor partial agonist varenicline and the treatment of drug dependence:a review[J]. Eur Neuropsychopharmacol, 2010, 20 (2): 69- 79
doi: 10.1016/j.euroneuro.2009.11.001
51 EGGAN B L , MCCALLUM S E . 18-Methoxycoronaridine acts in the medial habenula to attenuate behavioral and neurochemical sensitization to nicotine[J]. Behav Brain Res, 2016, 307:186- 193
doi: 10.1016/j.bbr.2016.04.008
52 KONONOFF J, KALLUPI M, KIMBROUGH A, et al. Systemic and intra-habenular activation of the orphan G protein-coupled receptor GPR139 decreases compulsive-like alcohol drinking and hyperalgesia in alcohol-dependent rats[J]. eNeuro, 2018, 5(3). pii: ENEURO.0153-18.2018.
53 BERNSTEIN H G , HILDEBRANDT J , DOBROWOLNY H et al. Morphometric analysis of the cerebral expression of ATP-binding cassette transporter protein ABCB1 in chronic schizophrenia:Circumscribed deficits in the habenula[J]. Schizophr Res, 2016, 177 (1-3): 52- 58
doi: 10.1016/j.schres.2016.02.036
54 ZHANG L , WANG H , LUAN S et al. Altered volume and functional connectivity of the habenula in schizophrenia[J]. Front Hum Neurosci, 2017, 11:636
55 SCHAFER M , KIM J W , JOSEPH J et al. Imaging habenula volume in schizophrenia and bipolar disorder[J]. Front Psychiatry, 2018, 9:456
56 SHEPARD P D , HOLCOMB H H , GOLD J M . Schizophrenia in translation:the presence of absence:habenular regulation of dopamine neurons and the encoding of negative outcomes[J]. Schizophr Bull, 2006, 32 (3): 417- 421
57 HELDT S A , RESSLER K J . Lesions of the habenula produce stress-and dopamine-dependent alterations in prepulse inhibition and locomotion[J]. Brain Res, 2006, 1073-1074:229- 239
doi: 10.1016/j.brainres.2005.12.053
58 DEDEURWAERDERE S , WINTMOLDERS C , VANHOOF G et al. Patterns of brain glucose metabolism induced by phosphodiesterase 10A inhibitors in the mouse:a potential translational biomarker[J]. J Pharmacol Exp Ther, 2011, 339 (1): 210- 217
doi: 10.1124/jpet.111.182766
59 NAKAJIMA M , MORI H , NISHIKAWA C et al. Psychiatric disorder-related abnormal behavior and habenulointerpeduncular pathway defects in Wnt1-cre and Wnt1-GAL4 double transgenic mice[J]. J Neurochem, 2013, 124 (2): 241- 249
doi: 10.1111/jnc.12085
[1] 赵维霞,邹炜. 神经元树突形态建成分子机制的研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 90-99.
[2] 王毅,卢韵碧. 多腺苷二磷酸核糖基化修饰与神经退行性变性疾病[J]. 浙江大学学报(医学版), 2020, 49(1): 100-106.
[3] 陈峻逸,杨翔,方学贤,王福俤,闵军霞. 铁死亡与重大慢性疾病[J]. 浙江大学学报(医学版), 2020, 49(1): 44-57.
[4] 俞卿, 熊秀芳, 孙毅. 靶向Cullin-RING E3泛素连接酶的抗肿瘤策略及相关药物研发进展[J]. 浙江大学学报(医学版), 2020, 49(1): 1-19.
[5] 段玲艳,尹香菊,孟红恩,方学贤,闵军霞,王福俤. 铁稳态代谢表观遗传调控机制的研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 58-70.
[6] 李艾,张添源,高建青. 间充质干细胞的肿瘤归巢特性及其肿瘤靶向治疗应用研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 20-34.
[7] 黄耀凭,杨凤,周天华,谢珊珊. Hippo信号通路及其在消化系统肿瘤中的作用研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 35-43.
[8] 钟文,楼燕,邱宸阳,李栋林,张鸿坤. 髂静脉支架植入术后药物治疗策略研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 131-136.
[9] 徐亦鸣,应可净. 中性粒细胞胞外诱捕网与肿瘤相关研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 107-112.
[10] 刘晓晓,郭莉琼,梁成. 抗N-甲基-D-天冬氨酸受体脑炎患者脑电图特点的研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 118-123.
[11] 方娟,潘志成,郭晓纲. INK4基因座中反义非编码RNA调控细胞增殖与凋亡影响动脉粥样硬化的研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 113-117.
[12] 王诗莹,顾新华. 种植前辅助正畸治疗的临床应用研究进展[J]. 浙江大学学报(医学版), 2020, 49(1): 124-130.
[13] 王燚锋, 王志萍. 内源性信号通路在神经元轴突再生中的功能和机制研究[J]. 浙江大学学报(医学版), 2020, 49(1): 82-89.
[14] 丁怡丹,李文斌,王荣,张建春. 高原低氧对血脑屏障结构及其药物通透性影响的研究进展[J]. 浙江大学学报(医学版), 2019, 48(6): 668-673.
[15] 李雪,李文斌,封士兰,王荣. 血红蛋白在高原低氧适应中的机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(6): 674-681.