综述 |
|
|
|
|
心脏手术相关急性肾损伤早期生物学标志物研究进展 |
吴彬彬( ),杨毅*( ) |
浙江大学医学院附属第一医院肾脏病中心, 浙江 杭州 310003 |
|
Biomarkers of cardiac surgery-associated acute kidney injury: a narrative review |
WU Binbin( ),YANG Yi*( ) |
Department of Nephrology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China |
1 |
WANG Y , BELLOMO R . Cardiac surgery-associated acute kidney injury:risk factors, pathophysiology and treatment[J]. Nat Rev Nephrol, 2017, 13 (11): 697- 711
doi: 10.1038/nrneph.2017.119
|
2 |
FUHRMAN D Y , KELLUM J A . Epidemiology and pathophysiology of cardiac surgery-associated acute kidney injury[J]. Curr Opin Anaesthesiol, 2017, 30 (1): 60- 65
|
3 |
XU X , NIE S , LIU Z et al. Epidemiology and clinical correlates of AKI in Chinese hospitalized adults[J]. Clin J Am Soc Nephrol, 2015, 10 (9): 1510- 1518
doi: 10.2215/CJN.02140215
|
4 |
LEWINGTON A J , CERDá J , MEHTA R L . Raising awareness of acute kidney injury:a global perspective of a silent killer[J]. Kidney Int, 2013, 84 (3): 457- 467
doi: 10.1038/ki.2013.153
|
5 |
VANMASSENHOVE J , KIELSTEIN J , J?RRES A et al. Management of patients at risk of acute kidney injury[J]. Lancet, 2017, 389 (10084): 2139- 2151
doi: 10.1016/S0140-6736(17)31329-6
|
6 |
BELLOMO R , RONCO C , KELLUMJ A et al. Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs:the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) group[J]. Crit Care, 2004, 8 (4): R204- R212
doi: 10.1186/cc2872
|
7 |
MEHTA R L , KELLUM J A , SHAH S V et al. Acute Kidney Injury Network:report of an initiative to improve outcomes in acute kidney injury[J]. Crit Care, 2007, 11 (2): R31
doi: 10.1186/cc5713
|
8 |
KHWAJA A . KDIGO clinical practice guidelines for acute kidney injury[J]. Nephron Clin Pract, 2012, 120 (4): c179- c184
|
9 |
O'NEAL J B , SHAW A D , BILLINGS F T . Acute kidney injury following cardiac surgery:current understanding and future directions[J]. Crit Care, 2016, 20 (1): 187
doi: 10.1186/s13054-016-1352-z
|
10 |
ZHOU F , LUO Q , WANG L et al. Diagnostic value of neutrophil gelatinase-associated lipocalin for early diagnosis of cardiac surgery-associated acute kidney injury:a meta-analysis[J]. Eur J Cardiothorac Surg, 2016, 49 (3): 746- 755
doi: 10.1093/ejcts/ezv199
|
11 |
KRAWCZESKI C D , GOLDSTEIN S L , WOO J G et al. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass[J]. J Am Coll Cardiol, 2011, 58 (22): 2301- 2309
doi: 10.1016/j.jacc.2011.08.017
|
12 |
PARIKH C R , DEVARAJAN P , ZAPPITELLI M et al. Postoperative biomarkers predict acute kidney injury and poor outcomes after pediatric cardiac surgery[J]. J Am Soc Nephrol, 2011, 22 (9): 1737- 1747
doi: 10.1681/ASN.2010111163
|
13 |
DE GEUS H R , RONCO C , HAASE M et al. The cardiac surgery-associated neutrophil gelatinase-associated lipocalin (CSA-NGAL) score:A potential tool to monitor acute tubular damage[J]. J Thorac Cardiovasc Surg, 2016, 151 (6): 1476- 1481
doi: 10.1016/j.jtcvs.2016.01.037
|
14 |
XU Y , XIE Y , SHAO X et al. L-FABP:A novel biomarker of kidney disease[J]. Clin Chim Acta, 2015, 445:85- 90
doi: 10.1016/j.cca.2015.03.017
|
15 |
KASHANI K , CHEUNGPASITPORN W , RONCO C . Biomarkers of acute kidney injury:the pathway from discovery to clinical adoption[J]. Clin Chem Lab Med, 2017, 55 (8): 1074- 1089
doi: 10.1515/cclm-2016-0973
|
16 |
SUSANTITAPHONG P , SIRIBAMRUNGWONG M , DOI K et al. Performance of urinary liver-type fatty acid-binding protein in acute kidney injury:a meta-analysis[J]. Am J Kidney Dis, 2013, 61 (3): 430- 439
doi: 10.1053/j.ajkd.2012.10.016
|
17 |
HO J , TANGRI N , KOMENDA P et al. Urinary, plasma, and serum biomarkers' utility for predicting acute kidney injury associated with cardiac surgery in adults:a meta-analysis[J]. Am J Kidney Dis, 2015, 66 (6): 993- 1005
doi: 10.1053/j.ajkd.2015.06.018
|
18 |
ZENG X F , LI J M , TAN Y et al. Performance of urinary NGAL and L-FABP in predicting acute kidney injury and subsequent renal recovery:a cohort study based on major surgeries[J]. Clin Chem Lab Med, 2014, 52 (5): 671- 678
|
19 |
PARIKH C R , THIESSEN-PHILBROOK H , GARG A X et al. Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery[J]. Clin J Am Soc Nephrol, 2013, 8 (7): 1079- 1088
doi: 10.2215/CJN.10971012
|
20 |
LI Y F , JING Y , HAO J et al. MicroRNA-21 in the pathogenesis of acute kidney injury[J]. Protein Cell, 2013, 4 (11): 813- 819
doi: 10.1007/s13238-013-3085-y
|
21 |
DU J, CAO X, ZOU L, et al. MicroRNA-21 and risk of severe acute kidney injury and poor outcomes after adult cardiac surgery[J/OL]. PLoS One, 2013, 8(5): e63390.
|
22 |
GAEDE L , LIEBETRAU C , BLUMENSTEIN J et al. Plasma microRNA-21 for the early prediction of acute kidney injury in patients undergoing major cardiac surgery[J]. Nephrol Dial Transplant, 2016, 31 (5): 760- 766
doi: 10.1093/ndt/gfw007
|
23 |
ARVIN P , SAMIMAGHAM H R , MONTAZERGHAEM H et al. Early detection of cardiac surgery associated acute kidney injury by microRNA-21[J]. Bratisl Lek Listy, 2017, 118:626- 631
|
24 |
RODIER F , CAMPISI J , BHAUMIK D . Two faces of p53:aging and tumor suppression[J]. Nucleic Acids Res, 2007, 35 (22): 7475- 7484
doi: 10.1093/nar/gkm744
|
25 |
MEKONTSO D A , WARE L B , BAGSHAW S M . How could biomarkers of ARDS and AKI drive clinical strategies?[J]. Intensive Care Med, 2016, 42 (5): 800- 802
doi: 10.1007/s00134-016-4231-9
|
26 |
HOSTE E A , MCCULLOUGH P A , KASHANI K et al. Derivation and validation of cutoffs for clinical use of cell cycle arrest biomarkers[J]. Nephrol Dial Transplant, 2014, 29 (11): 2054- 2061
doi: 10.1093/ndt/gfu292
|
27 |
GUNNERSON K J , SHAW A D , CHAWLA L S et al. TIMP2·IGFBP7 biomarker panel accurately predicts acute kidney injury in high-risk surgical patients[J]. J Trauma Acute Care Surg, 2016, 80:243- 249
doi: 10.1097/TA.0000000000000912
|
28 |
WESTHOFF J H, T?NSHOFF B, WALDHERR S, et al. Urinary tissue inhibitor of metalloproteinase-2(TIMP-2)·insulin-like growth factor-binding protein 7(IGFBP7) predicts adverse outcome in pediatric acute kidney injury[J/OL]. PLoS ONE, 2015, 10: e0143628.
|
29 |
HEUNG M , ORTEGA L M , CHAWLA L S et al. Common chronic conditions do not affect performance of cell cycle arrest biomarkers for risk stratification of acute kidney injury[J]. Nephrol Dial Transplant, 2016, 31 (10): 1633- 1640
doi: 10.1093/ndt/gfw241
|
30 |
WANG Y , ZOU Z , JIN J et al. Urinary TIMP-2 and IGFBP7 for the prediction of acute kidney injury following cardiac surgery[J]. BMC Nephrol, 2017, 18 (1): 177
doi: 10.1186/s12882-017-0592-8
|
31 |
JIA H M , HUANG L F , ZHENG Y et al. Prognostic value of cell cycle arrest biomarkers in patients at high risk for acute kidney injury:A systematic review and meta-analysis[J]. Nephrology(Carlton), 2017, 22 (11): 831- 837
|
32 |
BASU R K , WONG H R , KRAWCZESKI C D et al. Combining functional and tubular damage biomarkers improves diagnostic precision for acute kidney injury after cardiac surgery[J]. J Am Coll Cardiol, 2014, 64 (25): 2753- 2762
doi: 10.1016/j.jacc.2014.09.066
|
33 |
ARUN O , CELIK G , OC B et al. Renal effects of coronary artery bypass graft surgery in diabetic and non-diabetic patients:a study with urinary neutrophil gelatinase-associated lipocalin and serum cystatin C[J]. Kidney Blood Press Res, 2015, 40 (2): 141- 152
doi: 10.1159/000368490
|
34 |
ELMEDANY S M , NAGA S S , ELSHARKAWY R et al. Novel urinary biomarkers and the early detection of acute kidney injury after open cardiac surgeries[J]. J Crit Care, 2017, 40:171- 177
doi: 10.1016/j.jcrc.2017.03.029
|
35 |
MCILROY D R , FARKAS D , PAN K et al. Combining novel renal injury markers with delta serum creatinine early after cardiac surgery and risk-stratification for serious adverse outcomes:an exploratory analysis[J]. J Cardiothorac Vasc Anesth, 2018, 32 (5): 2190- 2200
doi: 10.1053/j.jvca.2017.12.052
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|