Please wait a minute...
浙江大学学报(医学版)  2019, Vol. 48 Issue (2): 224-229    DOI: 10.3785/j.issn.1008-9292.2019.04.16
综述     
心脏手术相关急性肾损伤早期生物学标志物研究进展
吴彬彬(),杨毅*()
浙江大学医学院附属第一医院肾脏病中心, 浙江 杭州 310003
Biomarkers of cardiac surgery-associated acute kidney injury: a narrative review
WU Binbin(),YANG Yi*()
Department of Nephrology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
 全文: PDF(892 KB)   HTML( 19 )
摘要:

心脏手术相关急性肾损伤(CSA-AKI)是成人心脏外科术后常见的严重并发症,目前缺乏特异性检查方式,依赖血清肌酐及尿量变化的诊断存在滞后性。近年来早期诊断CSA-AKI的生物学标志物成为研究焦点。临床研究表明,中性粒细胞凝胶酶相关脂质运载蛋白及细胞周期抑制剂诊断价值高;肝脏脂肪酸结合蛋白可用于辅助诊断CSA-AKI;微小核糖核酸有助于评估患者不良预后;生物学标志物的联合应用对CSA-AKI的发生有提示意义。CSA-AKI新型生物学标志物为临床早期诊断和及时干预提供可能,有望成为CSA-AKI诊疗新的突破口。

关键词: 心脏外科手术/副作用急性肾损伤/病因学生物标记/血液生物标记/分析综述    
Abstract:

Cardiac surgery-related acute kidney injury (CSA-AKI) is a common and serious complication after cardiac surgery in adults. Currently, there is no specific examination method, and the diagnosis relying on serum creatinine and urine volume changes is of hysteresis. Biomarkers with the potential to predict CSA-AKI have become the focus in recent years. Clinical studies have shown that neutrophil gelatinase related lipid transporters and cell cycle inhibitors are of high diagnostic value; liver fatty acid binding protein can be used to assist in the diagnosis of CSA-AKI; microRNAs help to assess the poor prognosis of patients; the combined application of biomarkers may be used to predict the occurrence of CSA-AKI. CSA-AKI biomarkers provide the possibility for early clinical diagnosis and timely intervention, and are expected to become a new breakthrough in the diagnosis and treatment of CSA-AKI.

Key words: Cardiac surgical procedures/adverse effects    Acute kidney injury/etiology    Biomarkers/blood    Biomarkers/analysis    Review
收稿日期: 2018-07-03 出版日期: 2019-07-24
CLC:  R654.2  
基金资助: 国家自然科学基金(81670621);浙江省自然科学基金(LY16H050001);浙江省医药卫生科技计划(2019313917)
通讯作者: 杨毅     E-mail: 21718058@zju.edu.cn;yangyixk@zju.edu.cn
作者简介: 吴彬彬(1993-), 女, 硕士研究生, 主要从事急性肾损伤研究; E-mail:21718058@zju.edu.cn; https://orcid.org/0000-0002-8730-1302
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴彬彬
杨毅

引用本文:

吴彬彬,杨毅. 心脏手术相关急性肾损伤早期生物学标志物研究进展[J]. 浙江大学学报(医学版), 2019, 48(2): 224-229.

WU Binbin,YANG Yi. Biomarkers of cardiac surgery-associated acute kidney injury: a narrative review. J Zhejiang Univ (Med Sci), 2019, 48(2): 224-229.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2019.04.16        http://www.zjujournals.com/med/CN/Y2019/V48/I2/224

1 WANG Y , BELLOMO R . Cardiac surgery-associated acute kidney injury:risk factors, pathophysiology and treatment[J]. Nat Rev Nephrol, 2017, 13 (11): 697- 711
doi: 10.1038/nrneph.2017.119
2 FUHRMAN D Y , KELLUM J A . Epidemiology and pathophysiology of cardiac surgery-associated acute kidney injury[J]. Curr Opin Anaesthesiol, 2017, 30 (1): 60- 65
3 XU X , NIE S , LIU Z et al. Epidemiology and clinical correlates of AKI in Chinese hospitalized adults[J]. Clin J Am Soc Nephrol, 2015, 10 (9): 1510- 1518
doi: 10.2215/CJN.02140215
4 LEWINGTON A J , CERDá J , MEHTA R L . Raising awareness of acute kidney injury:a global perspective of a silent killer[J]. Kidney Int, 2013, 84 (3): 457- 467
doi: 10.1038/ki.2013.153
5 VANMASSENHOVE J , KIELSTEIN J , J?RRES A et al. Management of patients at risk of acute kidney injury[J]. Lancet, 2017, 389 (10084): 2139- 2151
doi: 10.1016/S0140-6736(17)31329-6
6 BELLOMO R , RONCO C , KELLUMJ A et al. Acute renal failure-definition, outcome measures, animal models, fluid therapy and information technology needs:the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) group[J]. Crit Care, 2004, 8 (4): R204- R212
doi: 10.1186/cc2872
7 MEHTA R L , KELLUM J A , SHAH S V et al. Acute Kidney Injury Network:report of an initiative to improve outcomes in acute kidney injury[J]. Crit Care, 2007, 11 (2): R31
doi: 10.1186/cc5713
8 KHWAJA A . KDIGO clinical practice guidelines for acute kidney injury[J]. Nephron Clin Pract, 2012, 120 (4): c179- c184
9 O'NEAL J B , SHAW A D , BILLINGS F T . Acute kidney injury following cardiac surgery:current understanding and future directions[J]. Crit Care, 2016, 20 (1): 187
doi: 10.1186/s13054-016-1352-z
10 ZHOU F , LUO Q , WANG L et al. Diagnostic value of neutrophil gelatinase-associated lipocalin for early diagnosis of cardiac surgery-associated acute kidney injury:a meta-analysis[J]. Eur J Cardiothorac Surg, 2016, 49 (3): 746- 755
doi: 10.1093/ejcts/ezv199
11 KRAWCZESKI C D , GOLDSTEIN S L , WOO J G et al. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass[J]. J Am Coll Cardiol, 2011, 58 (22): 2301- 2309
doi: 10.1016/j.jacc.2011.08.017
12 PARIKH C R , DEVARAJAN P , ZAPPITELLI M et al. Postoperative biomarkers predict acute kidney injury and poor outcomes after pediatric cardiac surgery[J]. J Am Soc Nephrol, 2011, 22 (9): 1737- 1747
doi: 10.1681/ASN.2010111163
13 DE GEUS H R , RONCO C , HAASE M et al. The cardiac surgery-associated neutrophil gelatinase-associated lipocalin (CSA-NGAL) score:A potential tool to monitor acute tubular damage[J]. J Thorac Cardiovasc Surg, 2016, 151 (6): 1476- 1481
doi: 10.1016/j.jtcvs.2016.01.037
14 XU Y , XIE Y , SHAO X et al. L-FABP:A novel biomarker of kidney disease[J]. Clin Chim Acta, 2015, 445:85- 90
doi: 10.1016/j.cca.2015.03.017
15 KASHANI K , CHEUNGPASITPORN W , RONCO C . Biomarkers of acute kidney injury:the pathway from discovery to clinical adoption[J]. Clin Chem Lab Med, 2017, 55 (8): 1074- 1089
doi: 10.1515/cclm-2016-0973
16 SUSANTITAPHONG P , SIRIBAMRUNGWONG M , DOI K et al. Performance of urinary liver-type fatty acid-binding protein in acute kidney injury:a meta-analysis[J]. Am J Kidney Dis, 2013, 61 (3): 430- 439
doi: 10.1053/j.ajkd.2012.10.016
17 HO J , TANGRI N , KOMENDA P et al. Urinary, plasma, and serum biomarkers' utility for predicting acute kidney injury associated with cardiac surgery in adults:a meta-analysis[J]. Am J Kidney Dis, 2015, 66 (6): 993- 1005
doi: 10.1053/j.ajkd.2015.06.018
18 ZENG X F , LI J M , TAN Y et al. Performance of urinary NGAL and L-FABP in predicting acute kidney injury and subsequent renal recovery:a cohort study based on major surgeries[J]. Clin Chem Lab Med, 2014, 52 (5): 671- 678
19 PARIKH C R , THIESSEN-PHILBROOK H , GARG A X et al. Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery[J]. Clin J Am Soc Nephrol, 2013, 8 (7): 1079- 1088
doi: 10.2215/CJN.10971012
20 LI Y F , JING Y , HAO J et al. MicroRNA-21 in the pathogenesis of acute kidney injury[J]. Protein Cell, 2013, 4 (11): 813- 819
doi: 10.1007/s13238-013-3085-y
21 DU J, CAO X, ZOU L, et al. MicroRNA-21 and risk of severe acute kidney injury and poor outcomes after adult cardiac surgery[J/OL]. PLoS One, 2013, 8(5): e63390.
22 GAEDE L , LIEBETRAU C , BLUMENSTEIN J et al. Plasma microRNA-21 for the early prediction of acute kidney injury in patients undergoing major cardiac surgery[J]. Nephrol Dial Transplant, 2016, 31 (5): 760- 766
doi: 10.1093/ndt/gfw007
23 ARVIN P , SAMIMAGHAM H R , MONTAZERGHAEM H et al. Early detection of cardiac surgery associated acute kidney injury by microRNA-21[J]. Bratisl Lek Listy, 2017, 118:626- 631
24 RODIER F , CAMPISI J , BHAUMIK D . Two faces of p53:aging and tumor suppression[J]. Nucleic Acids Res, 2007, 35 (22): 7475- 7484
doi: 10.1093/nar/gkm744
25 MEKONTSO D A , WARE L B , BAGSHAW S M . How could biomarkers of ARDS and AKI drive clinical strategies?[J]. Intensive Care Med, 2016, 42 (5): 800- 802
doi: 10.1007/s00134-016-4231-9
26 HOSTE E A , MCCULLOUGH P A , KASHANI K et al. Derivation and validation of cutoffs for clinical use of cell cycle arrest biomarkers[J]. Nephrol Dial Transplant, 2014, 29 (11): 2054- 2061
doi: 10.1093/ndt/gfu292
27 GUNNERSON K J , SHAW A D , CHAWLA L S et al. TIMP2·IGFBP7 biomarker panel accurately predicts acute kidney injury in high-risk surgical patients[J]. J Trauma Acute Care Surg, 2016, 80:243- 249
doi: 10.1097/TA.0000000000000912
28 WESTHOFF J H, T?NSHOFF B, WALDHERR S, et al. Urinary tissue inhibitor of metalloproteinase-2(TIMP-2)·insulin-like growth factor-binding protein 7(IGFBP7) predicts adverse outcome in pediatric acute kidney injury[J/OL]. PLoS ONE, 2015, 10: e0143628.
29 HEUNG M , ORTEGA L M , CHAWLA L S et al. Common chronic conditions do not affect performance of cell cycle arrest biomarkers for risk stratification of acute kidney injury[J]. Nephrol Dial Transplant, 2016, 31 (10): 1633- 1640
doi: 10.1093/ndt/gfw241
30 WANG Y , ZOU Z , JIN J et al. Urinary TIMP-2 and IGFBP7 for the prediction of acute kidney injury following cardiac surgery[J]. BMC Nephrol, 2017, 18 (1): 177
doi: 10.1186/s12882-017-0592-8
31 JIA H M , HUANG L F , ZHENG Y et al. Prognostic value of cell cycle arrest biomarkers in patients at high risk for acute kidney injury:A systematic review and meta-analysis[J]. Nephrology(Carlton), 2017, 22 (11): 831- 837
32 BASU R K , WONG H R , KRAWCZESKI C D et al. Combining functional and tubular damage biomarkers improves diagnostic precision for acute kidney injury after cardiac surgery[J]. J Am Coll Cardiol, 2014, 64 (25): 2753- 2762
doi: 10.1016/j.jacc.2014.09.066
33 ARUN O , CELIK G , OC B et al. Renal effects of coronary artery bypass graft surgery in diabetic and non-diabetic patients:a study with urinary neutrophil gelatinase-associated lipocalin and serum cystatin C[J]. Kidney Blood Press Res, 2015, 40 (2): 141- 152
doi: 10.1159/000368490
34 ELMEDANY S M , NAGA S S , ELSHARKAWY R et al. Novel urinary biomarkers and the early detection of acute kidney injury after open cardiac surgeries[J]. J Crit Care, 2017, 40:171- 177
doi: 10.1016/j.jcrc.2017.03.029
35 MCILROY D R , FARKAS D , PAN K et al. Combining novel renal injury markers with delta serum creatinine early after cardiac surgery and risk-stratification for serious adverse outcomes:an exploratory analysis[J]. J Cardiothorac Vasc Anesth, 2018, 32 (5): 2190- 2200
doi: 10.1053/j.jvca.2017.12.052
[1] 朱紫菱, 谈静, 邓红. 肿瘤细胞膜/质蛋白转位入核研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 318-325.
[2] 张建民. 缺血性脑血管疾病手术治疗新进展[J]. 浙江大学学报(医学版), 2019, 48(3): 233-240.
[3] 吴雨星, 张世红, 陈忠. 缰核及其神经环路在神经精神疾病中的作用研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 310-317.
[4] 张韵竹, 朱春鹏, 陆新良. 胃癌早期诊断的血清生物学标志物研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 326-333.
[5] BabooKalianee Devi,陈正云,张信美. 子宫腺肌病患者药物治疗进展[J]. 浙江大学学报(医学版), 2019, 48(2): 142-147.
[6] 杨坤,胡晓晟. 微小RNA-21在心脏疾病中的研究进展[J]. 浙江大学学报(医学版), 2019, 48(2): 214-218.
[7] 徐力,许鸣,童向民. 有氧糖酵解在非霍奇金淋巴瘤发病及耐药机制中的作用[J]. 浙江大学学报(医学版), 2019, 48(2): 219-223.
[8] 赵世浩,张雪,柯越海. 细胞衰老与特发性肺纤维化的相关性研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 111-115.
[9] 宋方俊,郭江涛. 电压门控离子通道结构生物学研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 25-33.
[10] 洪非凡,李月舟. 超声遗传学技术中的机械敏感性离子通道[J]. 浙江大学学报(医学版), 2019, 48(1): 34-38.
[11] 肖梨,佟晓永. 肺动脉高压形成中的血管重构分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 102-110.
[12] 史婧,冯钰. 细菌RNA聚合酶抑制剂的分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 44-49.
[13] 孙博强,王琼艳,潘冬立. 单纯疱疹病毒潜伏和激活机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 89-101.
[14] 沈夏梦,吕卫国. 外泌体参与卵巢癌患者对化疗耐药的研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 116-120.
[15] 曹丽芹,施继敏. 异基因造血干细胞移植植入失败研究进展[J]. 浙江大学学报(医学版), 2018, 47(6): 651-658.