Please wait a minute...
浙江大学学报(医学版)  2019, Vol. 48 Issue (2): 219-223    DOI: 10.3785/j.issn.1008-9292.2019.04.15
综述     
有氧糖酵解在非霍奇金淋巴瘤发病及耐药机制中的作用
徐力1(),许鸣2,童向民3,*()
1. 桐乡市第一人民医院肿瘤内科, 浙江 桐乡 314500
2. 桐乡市第一人民医院中医科, 浙江 桐乡 314500
3. 浙江省人民医院血液科, 浙江 杭州 310014
Effects of aerobic glycolysis on pathogenesis and drug resistance of non-Hodgkin lymphoma
XU Li1(),XU Ming2,TONG Xiangmin3,*()
1. Department of Oncology, the First People's Hospital of Tongxiang, Tongxiang 314500, Zhejiang Province, China
2. Department of Traditional Chinese Medicine, the First People's Hospital of Tongxiang, Tongxiang 314500, Zhejiang Province, China
3. Department of Hematology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
 全文: PDF(884 KB)   HTML( 11 )
摘要:

近年来肿瘤代谢研究日益得到重视,大量研究显示有氧糖酵解在非霍奇金淋巴瘤发病及耐药机制中扮演了重要角色。有氧糖酵解相关信号通路的异常激活可增加淋巴造血细胞的有氧糖酵解水平,而有氧糖酵解相关酶的活性与非霍奇金淋巴瘤(NHL)的发病和预后相关。抑制有氧糖酵解的药物对体外培养的NHL细胞具有杀伤作用,联合常规化疗药物可增加化疗药物的敏感性和预防耐药。本文综述了有氧糖酵解相关信号通路蛋白和调控基因在NHL发病以及耐药中的作用,揭示了有氧糖酵解的深入研究在NHL临床诊断和治疗中的价值。

关键词: 淋巴瘤, 非霍奇金/病因学药物耐受性糖酵解综述    
Abstract:

It has been shown that aerobic glycolysis (AG) plays an important role in the pathogenesis and resistance mechanism of non-Hodgkin lymphoma (NHL) in recent years. Signaling pathway related to abnormal activation of AG can increase the level of AG in lymphatic and hematopoietic cells, while the enzymes related to the activity of AG are involved in the pathogenesis and prognosis of NHL. Drugs that inhibit AG can also inhibit NHL cells in vitro. Drugs inhibiting AG may increase the sensitivity of chemotherapeutic agents and prevent drug resistance. In this article, the role of signaling pathway proteins and regulatory genes related to AG in the pathogenesis and drug resistance of NHL are reviewed, and the AG as a target in the clinical diagnosis and treatment of NHL is discussed.

Key words: Lymphoma, non-hodgkin/etiology    Drug tolerance    Glycolysis    Oxygen    Review
收稿日期: 2018-12-16 出版日期: 2019-07-24
CLC:  R364  
通讯作者: 童向民     E-mail: Laraky@sina.com;xiangmintong@126.com
作者简介: 徐力(1981-), 女, 硕士, 主治医师, 主要从事肿瘤临床治疗及机制研究; E-mail:Laraky@sina.com; https://orcid.org/0000-0003-3386-393X
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
徐力
许鸣
童向民

引用本文:

徐力,许鸣,童向民. 有氧糖酵解在非霍奇金淋巴瘤发病及耐药机制中的作用[J]. 浙江大学学报(医学版), 2019, 48(2): 219-223.

XU Li,XU Ming,TONG Xiangmin. Effects of aerobic glycolysis on pathogenesis and drug resistance of non-Hodgkin lymphoma. J Zhejiang Univ (Med Sci), 2019, 48(2): 219-223.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2019.04.15        http://www.zjujournals.com/med/CN/Y2019/V48/I2/219

1 ARMITAGE J O , GASCOYNE R D , LUNNING M A et al. Non-hodgkin lymphoma[J]. The Lancet, 2017, 390 (10091): 298- 310
doi: 10.1016/S0140-6736(16)32407-2
2 GIATROMANOLAKI A , KOUKOURAKIS M I , PEZZELLA F et al. Lactate dehydrogenase 5 expression in non-Hodgkin B-cell lymphomas is associated with hypoxia regulated proteins[J]. Leuk Lymphoma, 2008, 49 (11): 2181- 2186
doi: 10.1080/10428190802450629
3 WANG T , SHAO X , XU B et al. Role of the abnormal HIF-1α-glycolysis-aerobic oxidation pathway in non-Hodgkin lymphoma and the intervention study[J]. Hematol Oncol, 2017, 35 (S2): 294- 295
4 FALLANCA F , ALONGI P , INCERTI E et al. Diagnostic accuracy of FDG PET/CT for clinical evaluation at the end of treatment of HL and NHL:a comparison of the Deauville Criteria(DC) and the International Harmonization Project Criteria (IHPC)[J]. Eur J Nucl Med Mol Imaging, 2016, 43 (10): 1837- 1848
doi: 10.1007/s00259-016-3390-9
5 PANG Y Y , WANG T , CHEN F Y et al. Glycolytic inhibitor 2-deoxy-d-glucose suppresses cell proliferation and enhances methylprednisolone sensitivity in non-Hodgkin lymphoma cells through down-regulation of HIF-1α and c-MYC[J]. Leukemia Lymphoma, 2015, 56 (6): 1821- 1830
doi: 10.3109/10428194.2014.963575
6 SRIKANTH L , SUNITHA M M , VENKATESH K et al. Anaerobic glycolysis and HIFα expression in haematopoietic stem cells explains its quiescence nature[J]. J Stem Cells, 2015, 10 (2): 97- 106
7 WANG Y H . Differential dependence on aerobic glycolysis in normal and malignant hematopoietic stem and progenitor cells to sustain daughter cell production[J]. Blood, 2013, 122 (21): 793
8 TAKUBO K , NAGAMATSU G , KOBAYASHIC I et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells[J]. Cell Stem Cell, 2013, 12 (1): 49- 61
doi: 10.1016/j.stem.2012.10.011
9 CHANG C H , CURTIS J D , MAGGI L B et al. Posttranscriptional control of T cell effector function by aerobic glycolysis[J]. Cell, 2013, 153 (6): 1239- 1251
doi: 10.1016/j.cell.2013.05.016
10 ELEFTHERIADIS T , PISSAS G , KARIOTI A et al. The indoleamine 2, 3-dioxygenase inhibitor 1-methyl-tryptophan suppresses mitochondrial function, induces aerobic glycolysis and decreases interleukin-10 production in human lymphocytes[J]. Immunol Invest, 2012, 41 (5): 507- 520
doi: 10.3109/08820139.2012.682244
11 MUSHTAQ M, DAREKAR S, KLEIN G, et al. Different mechanisms of regulation of the Warburg effect in lymphoblastoid and burkitt lymphoma cells[J/OL]. PLoS One, 2015, 10(8): e0136142.
12 PANG Y Y , WANG T , CHEN F Y et al. Glycolytic inhibitor 2-deoxy-d-glucose suppresses cell proliferation and enhances methylprednisolone sensitivity in non-Hodgkin lymphoma cells through down-regulation of HIF-1α and c-MYC[J]. Leuk Lymphoma, 2015, 56 (6): 1821- 1830
doi: 10.3109/10428194.2014.963575
13 POORE B , ORTEGAMOLINA A , NGUYUN C et al. Metabolic characterization of follicular lymphoma transformation[J]. Cancer Res, 2015, 75 (15 Supplement): 1183- 1183
14 PAVLIDES S , WHITAKER-MENEZES D , CASTELLO-CROS R et al. The reverse Warburg effect:aerobic glycolysis in cancer associated fibroblasts and the tumor stroma[J]. Cell Cycle, 2009, 8 (23): 3984- 4001
doi: 10.4161/cc.8.23.10238
15 GUILLOTON F , CARON G , MéNARD C et al. Mesenchymal stromal cells orchestrate follicular lymphoma cell niche through the CCL2-dependent recruitment and polarization of monocytes[J]. Blood, 2012, 119 (11): 2556- 2567
doi: 10.1182/blood-2011-08-370908
16 CHIAVARINA B , MARTINEZOUTSCHOORN U E , WHITAKERMENEZES D et al. Metabolic reprogramming and two-compartment tumor metabolism:opposing role(s) of HIF1α and HIF2α in tumor-associated fibroblasts and human breast cancer cells[J]. Cell Cycle, 2012, 11 (17): 3280- 3289
doi: 10.4161/cc.21643
17 LIU Y , ZHAO Y , GUO L . Effects of orexin A on glucose metabolism in human hepatocellular carcinoma in vitro via PI3K/Akt/mTOR-dependent and -independent mechanism[J]. Mol Cell Endocrinol, 2016, 420:208- 216
doi: 10.1016/j.mce.2015.11.002
18 SUN Q , CHEN X , MA J et al. Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2 is critical for aerobic glycolysis and tumor growth[J]. Proc Natl Acad Sci U S A, 2011, 108 (10): 4129- 4134
doi: 10.1073/pnas.1014769108
19 XU Z Z , XIA Z G , WANG A H et al. Activation of the PI3K/AKT/mTOR pathway in diffuse large B cell lymphoma:clinical significance and inhibitory effect of rituximab[J]. Ann Hematol, 2013, 92 (10): 1351- 1358
doi: 10.1007/s00277-013-1770-9
20 BHATT A P , JACOBS S R , FREEMERMAN A J et al. Dysregulation of fatty acid synthesis and glycolysis in non-Hodgkin lymphoma[J]. Proc Natl Acad Sci U S A, 2012, 109 (29): 11818- 11823
doi: 10.1073/pnas.1205995109
21 IYENGAR S , CLEAR A , BODOR C et al. P110α-mediated constitutive PI3K signaling limits the efficacy of p110δ-selective inhibition in mantle cell lymphoma, particularly with multiple relapse[J]. Blood, 2013, 121 (12): 2274- 2284
doi: 10.1182/blood-2012-10-460832
22 ZENG L , MORINIBU A , KOBAYASHI M et al. Aberrant IDH3α expression promotes malignant tumor growth by inducing HIF-1-mediated metabolic reprogramming and angiogenesis[J]. Oncogene, 2015, 34 (36): 4758- 4766
doi: 10.1038/onc.2014.411
23 KIM J W , GAO P , LIU Y C et al. HIF-1 and dysregulated c-Myc cooperatively induces VEGF and metabolic switches, HK2 and PDK1[J]. Mol Cell Biol, 2007, 27 (21): 7381- 7393
doi: 10.1128/MCB.00440-07
24 EL M N , CARO-MALDONADO A , RAMíREZ-PEINADO S et al. Sugar-free approaches to cancer cell killing[J]. Oncogene, 2011, 30 (3): 253- 264
doi: 10.1038/onc.2010.466
25 庞淯阳, 王婷, 陈芳源 et al. 2-脱氧-D-葡萄糖对非霍奇金淋巴瘤细胞株Namalwa和SU-DHL-4糖酵解通路的干预研究[J]. 诊断学理论与实践, 2012, 11 (2): 116- 120
PANG Yuyang , WANG Ting , CHEN Fangyuan et al. The effect of 2-deoxy-D-glucose as a glycolysis pathway antagonist on non-Hodgkin's lymphoma cell lines in vitro[J]. Journal of Diagnostics Concepts & Practice, 2012, 11 (2): 116- 120
26 NOBLE R A , BELL N , BLAIR H et al. Inhibition of monocarboxyate transporter 1 by AZD3965 as a novel therapeutic approach for diffuse large B-cell lymphoma and Burkitt lymphoma[J]. Haematologica, 2017, 102 (7): 1247- 1257
doi: 10.3324/haematol.2016.163030
27 邵霞, 蔡佳翌, 许壁榆 et al. 硼替佐米联合有氧氧化抑制剂寡霉素靶向Burkitt淋巴瘤细胞Raji的杀伤作用及机制[J]. 肿瘤, 2016, 36 (2): 127- 139
SHAO Xia , CAI Jiayi , XU Biyu et al. Role of bortezomib combined with aerobic oxidation inhibitor oligomycin in suppressing proliferation of Burkitt lymphoma cell line Raji[J]. Tumor, 2016, 36 (2): 127- 139
28 ROBINSON G L , DINSDALE D , MACFARLANE M et al. Switching from aerobic glycolysis to oxidative phosphorylation modulates the sensitivity of mantle cell lymphoma cells to TRAIL[J]. Oncogene, 2012, 31 (48): 4996- 5006
doi: 10.1038/onc.2012.13
29 许壁榆, 邵霞, 张义炜 et al. shRNA干扰己糖激酶Ⅱ基因表达对人淋巴瘤细胞恶性生物学行为的影响[J]. 肿瘤, 2017, 37 (4): 313- 323
XU Biyu , SHAO Xia , ZHANG Yiwei et al. Effects of shRNA interfering hexokinaseⅡ gene expression on the malignant biological behaviors of human lymphoma cells[J]. Tumor, 2017, 37 (4): 313- 323
30 GU L , XIE L , ZUO C et al. Targeting mTOR/p70S6K/glycolysis signaling pathway restores glucocorticoid sensitivity to 4E-BP1 null Burkitt Lymphoma[J]. BMC Cancer, 2015, 15:529
doi: 10.1186/s12885-015-1535-z
31 RAEZ L E , PAPADOPOULOS K , RICART A D et al. A phase I dose-escalation trial of 2-Deoxy-d-glucose alone or combined with docetaxel in patients with advanced solid tumors[J]. Cancer Chemother Pharmacol, 2013, 71 (2): 523- 530
doi: 10.1007/s00280-012-2045-1
[1] 马竞, 何文龙, 高重阳, 余瑞云, 薛鹏, 牛永超. 木瓜苷通过抑制NF-κB P65/TNF-α通路活性减轻小鼠脑缺血再灌注诱导的组织损伤[J]. 浙江大学学报(医学版), 2019, 48(3): 289-295.
[2] 朱紫菱, 谈静, 邓红. 肿瘤细胞膜/质蛋白转位入核研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 318-325.
[3] 张建民. 缺血性脑血管疾病手术治疗新进展[J]. 浙江大学学报(医学版), 2019, 48(3): 233-240.
[4] 吴雨星, 张世红, 陈忠. 缰核及其神经环路在神经精神疾病中的作用研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 310-317.
[5] 张韵竹, 朱春鹏, 陆新良. 胃癌早期诊断的血清生物学标志物研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 326-333.
[6] 付涧兰,宋法寰,程爱萍. 脂肪肉瘤的18F-氟代脱氧葡萄糖PET-CT显像特征[J]. 浙江大学学报(医学版), 2019, 48(2): 193-199.
[7] BabooKalianee Devi,陈正云,张信美. 子宫腺肌病患者药物治疗进展[J]. 浙江大学学报(医学版), 2019, 48(2): 142-147.
[8] 吴彬彬,杨毅. 心脏手术相关急性肾损伤早期生物学标志物研究进展[J]. 浙江大学学报(医学版), 2019, 48(2): 224-229.
[9] 杨坤,胡晓晟. 微小RNA-21在心脏疾病中的研究进展[J]. 浙江大学学报(医学版), 2019, 48(2): 214-218.
[10] 赵世浩,张雪,柯越海. 细胞衰老与特发性肺纤维化的相关性研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 111-115.
[11] 宋方俊,郭江涛. 电压门控离子通道结构生物学研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 25-33.
[12] 洪非凡,李月舟. 超声遗传学技术中的机械敏感性离子通道[J]. 浙江大学学报(医学版), 2019, 48(1): 34-38.
[13] 肖梨,佟晓永. 肺动脉高压形成中的血管重构分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 102-110.
[14] 史婧,冯钰. 细菌RNA聚合酶抑制剂的分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 44-49.
[15] 孙博强,王琼艳,潘冬立. 单纯疱疹病毒潜伏和激活机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 89-101.