综述 |
|
|
|
|
微小RNA-21在心脏疾病中的研究进展 |
杨坤( ),胡晓晟*( ) |
浙江大学医学院附属第一医院心血管内科, 浙江 杭州 310003 |
|
Research progress on miR-21 in heart diseases |
YANG Kun( ),HU Xiaosheng*( ) |
Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China |
1 |
LI C J, CHEN C S, YIANG G T, et al. Advanced evolution of pathogenesis concepts in cardiomyopathies[J/OL]. J Clin Med, 2019, 8(4): pii: E520.
|
2 |
MARTINEZ S R , GAY M S , ZHANG L . Epigenetic mechanisms in heart development and disease[J]. Drug Discov Today, 2015, 20 (7): 799- 811
doi: 10.1016/j.drudis.2014.12.018
|
3 |
WANG F , JIA J , RODRIGUES B . Autophagy, metabolic disease, and pathogenesis of heart dysfunction[J]. Can J Cardiol, 2017, 33 (7): 850- 859
doi: 10.1016/j.cjca.2017.01.002
|
4 |
CHISTIAKOV D A , OREKHOV A N , BOBRYSHEV Y V . Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction)[J]. J Mol Cell Cardiol, 2016, 94:107- 121
doi: 10.1016/j.yjmcc.2016.03.015
|
5 |
VACANTE F , DENBY L , SLUIMER J C et al. The function of miR-143, miR-145 and the MiR-143 host gene in cardiovascular development and disease[J]. Vascul Pharmacol, 2019, 112:24- 30
doi: 10.1016/j.vph.2018.11.006
|
6 |
GANDHI S, RUEHLE F, STOLL M. Evolutionary patterns of non-coding RNA in cardiovascular biology[J/OL]. Noncoding RNA, 2019, 5(1): pii: E15.
|
7 |
CAI X , HAGEDORN C H , CULLEN B R . Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs[J]. RNA, 2004, 10 (12): 1957- 1966
doi: 10.1261/rna.7135204
|
8 |
LORENZEN J M , SCHAUERTE C , HVBNER A et al. Osteopontin is indispensible for AP1-mediated angiotensin Ⅱ-related miR-21 transcription during cardiac fibrosis[J]. Eur Heart J, 2015, 36 (32): 2184- 2196
doi: 10.1093/eurheartj/ehv109
|
9 |
LIU Y , NIE H , ZHANG K et al. A feedback regulatory loop between HIF-1α and miR-21 in response to hypoxia in cardiomyocytes[J]. FEBS Lett, 2014, 588 (17): 3137- 3146
doi: 10.1016/j.febslet.2014.05.067
|
10 |
GRYSHKOVA V , FLEMING A , MCGHAN P et al. miR-21-5p as a potential biomarker of inflammatory infiltration in the heart upon acute drug-induced cardiac injury in rats[J]. Toxicol Lett, 2018, 286:31- 38
doi: 10.1016/j.toxlet.2018.01.013
|
11 |
TERINGOVA E , TOUSEK P . Apoptosis in ischemic heart disease[J]. J Transl Med, 2017, 15:87
doi: 10.1186/s12967-017-1191-y
|
12 |
DONG S , CHENG Y , YANG J et al. MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction[J]. J Biol Chem, 2009, 284 (43): 29514- 29525
doi: 10.1074/jbc.M109.027896
|
13 |
CHENG Y , LIU X , ZHANG S et al. MicroRNA-21 protects against the H2O2-induced injury on cardiac myocytes via its target gene PDCD4[J]. J Mol Cell Cardiol, 2009, 47 (1): 5- 14
doi: 10.1016/j.yjmcc.2009.01.008
|
14 |
CHENG Y , ZHU P , YANG J et al. Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4[J]. Cardiovasc Res, 2010, 87 (3): 431- 439
doi: 10.1093/cvr/cvq082
|
15 |
SCHWARTZBAUER G , ROBBINS J . The tumor suppressor gene PTEN can regulate cardiac hypertrophy and survival[J]. J Biol Chem, 2001, 276 (38): 35786- 35793
doi: 10.1074/jbc.M102479200
|
16 |
CAI Z , SEMENZA G L . PTEN activity is modulated during ischemia and reperfusion:involvement in the induction and decay of preconditioning[J]. Circ Res, 2005, 97 (12): 1351- 1359
doi: 10.1161/01.RES.0000195656.52760.30
|
17 |
OUDIT G Y , SUN H , KERFANT B G et al. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease[J]. J Mol Cell Cardiol, 2004, 37 (2): 449- 471
doi: 10.1016/j.yjmcc.2004.05.015
|
18 |
RANA A , GOYAL N , AHLAWAT A et al. Mechanisms involved in attenuated cardio-protective role of ischemic preconditioning in metabolic disorders[J]. Perfusion, 2015, 30 (2): 94- 105
doi: 10.1177/0267659114536760
|
19 |
JUNG C H , RO S H , CAO J et al. mTOR regulation of autophagy[J]. FEBS Lett, 2010, 584 (7): 1287- 1295
doi: 10.1016/j.febslet.2010.01.017
|
20 |
LOPICCOLO J , BLUMENTHAL G M , BERNSTEIN W B et al. Targeting the PI3K/Akt/mTOR pathway:effective combinations and clinical considerations[J]. Drug Resist Updat, 2008, 11 (1-2): 32- 50
doi: 10.1016/j.drup.2007.11.003
|
21 |
HUANG Z , WU S , KONG F et al. MicroRNA-21 protects against cardiac hypoxia/reoxygenation injury by inhibiting excessive autophagy in H9c2 cells via the Akt/mTOR pathway[J]. J Cell Mol Med, 2017, 21 (3): 467- 474
doi: 10.1111/jcmm.2017.21.issue-3
|
22 |
KONTARAKI J E , MARKETOU M E , PARTHENAKIS F I et al. Hypertrophic and antihypertrophic microRNA levels in peripheral blood mononuclear cells and their relationship to left ventricular hypertrophy in patients with essential hypertension[J]. J Am Soc Hypertens, 2015, 9 (10): 802- 810
doi: 10.1016/j.jash.2015.07.013
|
23 |
LI H , ZHANG X , WANG F et al. MicroRNA-21 lowers blood pressure in spontaneous hypertensive rats by upregulating mitochondrial translation[J]. Circulation, 2016, 134 (10): 734- 751
doi: 10.1161/CIRCULATIONAHA.116.023926
|
24 |
WANG F , FANG Q , CHEN C et al. Recombinant adeno-associated virus-mediated delivery of microRNA-21-3p lowers hypertension[J]. Mol Ther Nucleic Acids, 2018, 11:354- 366
doi: 10.1016/j.omtn.2017.11.007
|
25 |
THUM T , GROSS C , FIEDLER J et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts[J]. Nature, 2008, 456 (7224): 980- 984
doi: 10.1038/nature07511
|
26 |
YUAN J , CHEN H , GE D et al. Mir-21 Promotes cardiac fibrosis after myocardial infarction via targeting smad7[J]. Cell Physiol Biochem, 2017, 42 (6): 2207- 2219
doi: 10.1159/000479995
|
27 |
GARCíA R , NISTAL J F , MERINO D et al. p-SMAD2/3 and DICER promote pre-miR-21 processing during pressure overload-associated myocardial remodeling[J]. Biochim Biophys Acta, 2015, 1852 (7): 1520- 1530
doi: 10.1016/j.bbadis.2015.04.006
|
28 |
ZHOU X L , XU H , LIU Z B et al. miR-21 promotes cardiac fibroblast-to-myofibroblast trans-formation and myocardial fibrosis by targeting Jagged1[J]. J Cell Mol Med, 2018, 22 (8): 3816- 3824
doi: 10.1111/jcmm.2018.22.issue-8
|
29 |
PATRICK D M , MONTGOMERY R L , QI X et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice[J]. J Clin Invest, 2010, 120 (11): 3912- 3916
doi: 10.1172/JCI43604
|
30 |
BARANA A , MATAMOROS M , DOLZ-GAITóN P et al. Chronic atrial fibrillation increases microRNA-21 in human atrial myocytes decreasing L-type calcium current[J]. Circ Arrhythm Electrophysiol, 2014, 7 (5): 861- 868
doi: 10.1161/CIRCEP.114.001709
|
31 |
VIERECK J , THUM T . Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury[J]. Circ Res, 2017, 120 (2): 381- 399
doi: 10.1161/CIRCRESAHA.116.308434
|
32 |
ZHANG J , XING Q , ZHOU X et al. Circulating miRNA-21 is a promising biomarker for heart failure[J]. Mol Med Rep, 2017, 16 (5): 7766- 7774
doi: 10.3892/mmr.2017.7575
|
33 |
VILLAR A V , GARCíA R , MERINO D et al. Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients[J]. Int J Cardiol, 2013, 167 (6): 2875- 2881
doi: 10.1016/j.ijcard.2012.07.021
|
34 |
FANG L , ELLIMS A H , MOORE X L et al. Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy[J]. J Transl Med, 2015, 13:314
doi: 10.1186/s12967-015-0672-0
|
35 |
WANG F, LONG G, ZHAO C, et al. Atherosclerosis-related circulating miRNAs as novel and sensitive predictors for acute myocardial infarction[J/OL]. PLoS One, 2014, 9(9): e105734.
|
36 |
NAIR N , GUPTA S , COLLIER I X et al. Can microRNAs emerge as biomarkers in distinguishing HFpEF versus HFrEF?[J]. Int J Cardiol, 2014, 175 (3): 395- 399
doi: 10.1016/j.ijcard.2014.06.027
|
37 |
LUTHER K M , HAAR L , MCGUINNESS M et al. Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells[J]. J Mol Cell Cardiol, 2018, 119:125- 137
doi: 10.1016/j.yjmcc.2018.04.012
|
38 |
CAI C L , MOLKENTIN J D . The elusive progenitor cell in cardiac regeneration:slip slidin' away[J]. Circ Res, 2017, 120 (2): 400- 406
doi: 10.1161/CIRCRESAHA.116.309710
|
39 |
XIAO J, PAN Y, LI X H, et al. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4[J/OL]. Cell Death Dis, 2016, 7(6): e2277.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|