Please wait a minute...
浙江大学学报(医学版)  2019, Vol. 48 Issue (2): 214-218    DOI: 10.3785/j.issn.1008-9292.2019.04.14
综述     
微小RNA-21在心脏疾病中的研究进展
杨坤(),胡晓晟*()
浙江大学医学院附属第一医院心血管内科, 浙江 杭州 310003
Research progress on miR-21 in heart diseases
YANG Kun(),HU Xiaosheng*()
Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
 全文: PDF(884 KB)   HTML( 14 )
摘要:

心肌凋亡、心脏肥大、心肌纤维化和心房电重构等病理过程参与了绝大部分心脏疾病的发生和发展,阐明其中病理机制有助于心脏疾病的诊断和治疗。近年研究发现,微小RNA-21(miR-21)作为一类新型内源性调节因子,具有抑制心肌细胞凋亡、改善高血压和心脏肥大、促进心肌纤维化进展、促进心房电重构等作用。本文就miR-21在心脏疾病中的作用和机制研究进展进行综述,并初步探讨miRNA作为心脏疾病临床诊断标志物和治疗靶点的应用前景。

关键词: 微RNA基因表达心脏扩大肌细胞, 心脏细胞凋亡心脏病/治疗心脏病/诊断综述    
Abstract:

Pathological processes such as myocardial apoptosis, cardiac hypertrophy, myocardial fibrosis, and cardiac electrical remodeling are involved in the development and progression of most cardiac diseases. MicroRNA-21 (miR-21) has been found to play an important role in heart diseases as a novel type of endogenous regulators, which can inhibit cardiomyocyte apoptosis, improve hypertension and cardiac hypertrophy, promote myocardial fibrosis and atrial electrical remodeling. In this review, we summarize the research progress on the function of miR-21 in heart diseases and its mechanism, and discuss its potential application in diagnosis and treatment of heart diseases.

Key words: MicroRNAs    Gene expression    Cardiomegaly    Myocytes, cardiac    Apoptosis    Heart diseases/therapy    Heart diseases/diagnosis    Review
收稿日期: 2019-01-10 出版日期: 2019-07-24
CLC:  R363  
基金资助: 浙江省医药卫生科技计划(2018KY047)
通讯作者: 胡晓晟     E-mail: 21618023@zju.edu.cn;1196017@zju.edu.cn
作者简介: 杨坤(1993-), 男, 硕士研究生, 主要从事心肌纤维化研究; E-mail:21618023@zju.edu.cn; https://orcid.org/0000-0003-1786-3446
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
杨坤
胡晓晟

引用本文:

杨坤,胡晓晟. 微小RNA-21在心脏疾病中的研究进展[J]. 浙江大学学报(医学版), 2019, 48(2): 214-218.

YANG Kun,HU Xiaosheng. Research progress on miR-21 in heart diseases. J Zhejiang Univ (Med Sci), 2019, 48(2): 214-218.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2019.04.14        http://www.zjujournals.com/med/CN/Y2019/V48/I2/214

1 LI C J, CHEN C S, YIANG G T, et al. Advanced evolution of pathogenesis concepts in cardiomyopathies[J/OL]. J Clin Med, 2019, 8(4): pii: E520.
2 MARTINEZ S R , GAY M S , ZHANG L . Epigenetic mechanisms in heart development and disease[J]. Drug Discov Today, 2015, 20 (7): 799- 811
doi: 10.1016/j.drudis.2014.12.018
3 WANG F , JIA J , RODRIGUES B . Autophagy, metabolic disease, and pathogenesis of heart dysfunction[J]. Can J Cardiol, 2017, 33 (7): 850- 859
doi: 10.1016/j.cjca.2017.01.002
4 CHISTIAKOV D A , OREKHOV A N , BOBRYSHEV Y V . Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction)[J]. J Mol Cell Cardiol, 2016, 94:107- 121
doi: 10.1016/j.yjmcc.2016.03.015
5 VACANTE F , DENBY L , SLUIMER J C et al. The function of miR-143, miR-145 and the MiR-143 host gene in cardiovascular development and disease[J]. Vascul Pharmacol, 2019, 112:24- 30
doi: 10.1016/j.vph.2018.11.006
6 GANDHI S, RUEHLE F, STOLL M. Evolutionary patterns of non-coding RNA in cardiovascular biology[J/OL]. Noncoding RNA, 2019, 5(1): pii: E15.
7 CAI X , HAGEDORN C H , CULLEN B R . Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs[J]. RNA, 2004, 10 (12): 1957- 1966
doi: 10.1261/rna.7135204
8 LORENZEN J M , SCHAUERTE C , HVBNER A et al. Osteopontin is indispensible for AP1-mediated angiotensin Ⅱ-related miR-21 transcription during cardiac fibrosis[J]. Eur Heart J, 2015, 36 (32): 2184- 2196
doi: 10.1093/eurheartj/ehv109
9 LIU Y , NIE H , ZHANG K et al. A feedback regulatory loop between HIF-1α and miR-21 in response to hypoxia in cardiomyocytes[J]. FEBS Lett, 2014, 588 (17): 3137- 3146
doi: 10.1016/j.febslet.2014.05.067
10 GRYSHKOVA V , FLEMING A , MCGHAN P et al. miR-21-5p as a potential biomarker of inflammatory infiltration in the heart upon acute drug-induced cardiac injury in rats[J]. Toxicol Lett, 2018, 286:31- 38
doi: 10.1016/j.toxlet.2018.01.013
11 TERINGOVA E , TOUSEK P . Apoptosis in ischemic heart disease[J]. J Transl Med, 2017, 15:87
doi: 10.1186/s12967-017-1191-y
12 DONG S , CHENG Y , YANG J et al. MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction[J]. J Biol Chem, 2009, 284 (43): 29514- 29525
doi: 10.1074/jbc.M109.027896
13 CHENG Y , LIU X , ZHANG S et al. MicroRNA-21 protects against the H2O2-induced injury on cardiac myocytes via its target gene PDCD4[J]. J Mol Cell Cardiol, 2009, 47 (1): 5- 14
doi: 10.1016/j.yjmcc.2009.01.008
14 CHENG Y , ZHU P , YANG J et al. Ischaemic preconditioning-regulated miR-21 protects heart against ischaemia/reperfusion injury via anti-apoptosis through its target PDCD4[J]. Cardiovasc Res, 2010, 87 (3): 431- 439
doi: 10.1093/cvr/cvq082
15 SCHWARTZBAUER G , ROBBINS J . The tumor suppressor gene PTEN can regulate cardiac hypertrophy and survival[J]. J Biol Chem, 2001, 276 (38): 35786- 35793
doi: 10.1074/jbc.M102479200
16 CAI Z , SEMENZA G L . PTEN activity is modulated during ischemia and reperfusion:involvement in the induction and decay of preconditioning[J]. Circ Res, 2005, 97 (12): 1351- 1359
doi: 10.1161/01.RES.0000195656.52760.30
17 OUDIT G Y , SUN H , KERFANT B G et al. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease[J]. J Mol Cell Cardiol, 2004, 37 (2): 449- 471
doi: 10.1016/j.yjmcc.2004.05.015
18 RANA A , GOYAL N , AHLAWAT A et al. Mechanisms involved in attenuated cardio-protective role of ischemic preconditioning in metabolic disorders[J]. Perfusion, 2015, 30 (2): 94- 105
doi: 10.1177/0267659114536760
19 JUNG C H , RO S H , CAO J et al. mTOR regulation of autophagy[J]. FEBS Lett, 2010, 584 (7): 1287- 1295
doi: 10.1016/j.febslet.2010.01.017
20 LOPICCOLO J , BLUMENTHAL G M , BERNSTEIN W B et al. Targeting the PI3K/Akt/mTOR pathway:effective combinations and clinical considerations[J]. Drug Resist Updat, 2008, 11 (1-2): 32- 50
doi: 10.1016/j.drup.2007.11.003
21 HUANG Z , WU S , KONG F et al. MicroRNA-21 protects against cardiac hypoxia/reoxygenation injury by inhibiting excessive autophagy in H9c2 cells via the Akt/mTOR pathway[J]. J Cell Mol Med, 2017, 21 (3): 467- 474
doi: 10.1111/jcmm.2017.21.issue-3
22 KONTARAKI J E , MARKETOU M E , PARTHENAKIS F I et al. Hypertrophic and antihypertrophic microRNA levels in peripheral blood mononuclear cells and their relationship to left ventricular hypertrophy in patients with essential hypertension[J]. J Am Soc Hypertens, 2015, 9 (10): 802- 810
doi: 10.1016/j.jash.2015.07.013
23 LI H , ZHANG X , WANG F et al. MicroRNA-21 lowers blood pressure in spontaneous hypertensive rats by upregulating mitochondrial translation[J]. Circulation, 2016, 134 (10): 734- 751
doi: 10.1161/CIRCULATIONAHA.116.023926
24 WANG F , FANG Q , CHEN C et al. Recombinant adeno-associated virus-mediated delivery of microRNA-21-3p lowers hypertension[J]. Mol Ther Nucleic Acids, 2018, 11:354- 366
doi: 10.1016/j.omtn.2017.11.007
25 THUM T , GROSS C , FIEDLER J et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts[J]. Nature, 2008, 456 (7224): 980- 984
doi: 10.1038/nature07511
26 YUAN J , CHEN H , GE D et al. Mir-21 Promotes cardiac fibrosis after myocardial infarction via targeting smad7[J]. Cell Physiol Biochem, 2017, 42 (6): 2207- 2219
doi: 10.1159/000479995
27 GARCíA R , NISTAL J F , MERINO D et al. p-SMAD2/3 and DICER promote pre-miR-21 processing during pressure overload-associated myocardial remodeling[J]. Biochim Biophys Acta, 2015, 1852 (7): 1520- 1530
doi: 10.1016/j.bbadis.2015.04.006
28 ZHOU X L , XU H , LIU Z B et al. miR-21 promotes cardiac fibroblast-to-myofibroblast trans-formation and myocardial fibrosis by targeting Jagged1[J]. J Cell Mol Med, 2018, 22 (8): 3816- 3824
doi: 10.1111/jcmm.2018.22.issue-8
29 PATRICK D M , MONTGOMERY R L , QI X et al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice[J]. J Clin Invest, 2010, 120 (11): 3912- 3916
doi: 10.1172/JCI43604
30 BARANA A , MATAMOROS M , DOLZ-GAITóN P et al. Chronic atrial fibrillation increases microRNA-21 in human atrial myocytes decreasing L-type calcium current[J]. Circ Arrhythm Electrophysiol, 2014, 7 (5): 861- 868
doi: 10.1161/CIRCEP.114.001709
31 VIERECK J , THUM T . Circulating noncoding RNAs as biomarkers of cardiovascular disease and injury[J]. Circ Res, 2017, 120 (2): 381- 399
doi: 10.1161/CIRCRESAHA.116.308434
32 ZHANG J , XING Q , ZHOU X et al. Circulating miRNA-21 is a promising biomarker for heart failure[J]. Mol Med Rep, 2017, 16 (5): 7766- 7774
doi: 10.3892/mmr.2017.7575
33 VILLAR A V , GARCíA R , MERINO D et al. Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients[J]. Int J Cardiol, 2013, 167 (6): 2875- 2881
doi: 10.1016/j.ijcard.2012.07.021
34 FANG L , ELLIMS A H , MOORE X L et al. Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy[J]. J Transl Med, 2015, 13:314
doi: 10.1186/s12967-015-0672-0
35 WANG F, LONG G, ZHAO C, et al. Atherosclerosis-related circulating miRNAs as novel and sensitive predictors for acute myocardial infarction[J/OL]. PLoS One, 2014, 9(9): e105734.
36 NAIR N , GUPTA S , COLLIER I X et al. Can microRNAs emerge as biomarkers in distinguishing HFpEF versus HFrEF?[J]. Int J Cardiol, 2014, 175 (3): 395- 399
doi: 10.1016/j.ijcard.2014.06.027
37 LUTHER K M , HAAR L , MCGUINNESS M et al. Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells[J]. J Mol Cell Cardiol, 2018, 119:125- 137
doi: 10.1016/j.yjmcc.2018.04.012
38 CAI C L , MOLKENTIN J D . The elusive progenitor cell in cardiac regeneration:slip slidin' away[J]. Circ Res, 2017, 120 (2): 400- 406
doi: 10.1161/CIRCRESAHA.116.309710
39 XIAO J, PAN Y, LI X H, et al. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4[J/OL]. Cell Death Dis, 2016, 7(6): e2277.
[1] 马竞, 何文龙, 高重阳, 余瑞云, 薛鹏, 牛永超. 木瓜苷通过抑制NF-κB P65/TNF-α通路活性减轻小鼠脑缺血再灌注诱导的组织损伤[J]. 浙江大学学报(医学版), 2019, 48(3): 289-295.
[2] 朱紫菱, 谈静, 邓红. 肿瘤细胞膜/质蛋白转位入核研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 318-325.
[3] 张建民. 缺血性脑血管疾病手术治疗新进展[J]. 浙江大学学报(医学版), 2019, 48(3): 233-240.
[4] 吴雨星, 张世红, 陈忠. 缰核及其神经环路在神经精神疾病中的作用研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 310-317.
[5] 张韵竹, 朱春鹏, 陆新良. 胃癌早期诊断的血清生物学标志物研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 326-333.
[6] BabooKalianee Devi,陈正云,张信美. 子宫腺肌病患者药物治疗进展[J]. 浙江大学学报(医学版), 2019, 48(2): 142-147.
[7] 吴彬彬,杨毅. 心脏手术相关急性肾损伤早期生物学标志物研究进展[J]. 浙江大学学报(医学版), 2019, 48(2): 224-229.
[8] 伦永志,孙杰. 肝细胞癌患者外周血单个核细胞诊断候选基因的筛选及其调控网络分析[J]. 浙江大学学报(医学版), 2019, 48(2): 148-157.
[9] 徐力,许鸣,童向民. 有氧糖酵解在非霍奇金淋巴瘤发病及耐药机制中的作用[J]. 浙江大学学报(医学版), 2019, 48(2): 219-223.
[10] 赵世浩,张雪,柯越海. 细胞衰老与特发性肺纤维化的相关性研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 111-115.
[11] 宋方俊,郭江涛. 电压门控离子通道结构生物学研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 25-33.
[12] 洪非凡,李月舟. 超声遗传学技术中的机械敏感性离子通道[J]. 浙江大学学报(医学版), 2019, 48(1): 34-38.
[13] 肖梨,佟晓永. 肺动脉高压形成中的血管重构分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 102-110.
[14] 唐思阳,叶佳,李月舟. I1363T突变致人骨骼肌电压门控钠通道快失活受损的机制[J]. 浙江大学学报(医学版), 2019, 48(1): 12-18.
[15] 史婧,冯钰. 细菌RNA聚合酶抑制剂的分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 44-49.