Please wait a minute...
浙江大学学报(医学版)  2019, Vol. 48 Issue (2): 204-213    DOI: 10.3785/j.issn.1008-9292.2019.04.13
综述     
巨噬细胞在颅内动脉瘤发生发展中的作用研究进展
王雅琪(),金静华*()
浙江大学医学院神经生物学系, 浙江 杭州 310058
Roles of macrophages in formation and progression of intracranial aneurysms
WANG Yaqi(),JIN Jinghua*()
Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China
 全文: PDF(995 KB)   HTML( 22 )
摘要:

大量研究表明慢性炎性反应是颅内动脉瘤(IA)形成和破裂的核心环节,作为IA病变中最多见的炎症细胞,巨噬细胞通过多种途径调控IA的发生、发展。骨髓来源单核细胞分化而来的巨噬细胞及组织固有巨噬细胞浸润血管壁;浸润后的巨噬细胞受不同刺激极化为以M1型和M2型巨噬细胞为主的各类极化表型;各种极化表型的巨噬细胞既能通过释放细胞因子和调控其他免疫细胞调控炎性反应,也能释放不同细胞因子作用于细胞外基质重塑过程,从而调控颅内动脉瘤的发生、发展。临床上,以巨噬细胞为靶点的检测和治疗手段已取得一定进展。本文为深入理解IA发病机制和寻找阻止颅内动脉瘤形成和破裂的药物治疗提供理论依据。

关键词: 巨噬细胞/病理学颅内动脉瘤/病理学炎症肿瘤坏死因子α/分泌基质金属蛋白酶类免疫, 细胞核因子κB    
Abstract:

Studies have shown that chronic inflammatory response plays a key role in intracranial aneurysms (IA) formation and progression, and macrophages regulate the formation and progression of IA through a variety of pathways. Bone marrow monocyte-derived macrophages and resident-tissue macrophages infiltrate the vessel wall, after infiltration macrophages are polarized into various polarization phenotypes dominated by M1-like and M2-like cells. Polarized phenotypes of macrophages can regulate the formation and progression of intracranial aneurysms by releasing cytokines and regulating the inflammatory response of other immune cells, as well as release different cytokines to regulate the process of extracellular matrix remodeling. Some important progresses have been made in the clinical detection and treatment in targeting macrophages. This review provides a summary on the pathogenesis of IA and potential drug targets to prevent the formation and rupture of intracranial aneurysms.

Key words: Macrophages/pathology    Intracranial aneurysm/pathology    Inflammation    Tumor necrosis factor-alpha/secretion    Matrix metalloproteinases    Immunity, cellular    Nuclear factor-kappa B
收稿日期: 2018-11-20 出版日期: 2019-07-24
CLC:  R363  
基金资助: 国家自然科学基金(81671131, 81171199);浙江省自然科学基金(LY19H090022)
通讯作者: 金静华     E-mail: 21618530@zju.edu.cn;jhjin@zju.edu.cn
作者简介: 王雅琪(1993-), 女, 硕士研究生, 主要从事脑血管疾病的发病机制研究; E-mail:21618530@zju.edu.cn; https://orcid.org/0000-0002-0811-4438
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王雅琪
金静华

引用本文:

王雅琪,金静华. 巨噬细胞在颅内动脉瘤发生发展中的作用研究进展[J]. 浙江大学学报(医学版), 2019, 48(2): 204-213.

WANG Yaqi,JIN Jinghua. Roles of macrophages in formation and progression of intracranial aneurysms. J Zhejiang Univ (Med Sci), 2019, 48(2): 204-213.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2019.04.13        http://www.zjujournals.com/med/CN/Y2019/V48/I2/204

图 1  巨噬细胞在颅内动脉瘤形成和破裂过程中可能的作用机制
图 2  巨噬细胞在颅内动脉瘤中以NF-κB信号通路为中心的极化机制
1 VLAK M H , ALGRA A , BRANDENBURG R et al. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period:a systematic review and meta-analysis[J]. Lancet Neurol, 2011, 10 (7): 626- 636
doi: 10.1016/S1474-4422(11)70109-0
2 DE ROOIJ N K , LINN F H , VAN DER PLAS J A et al. Incidence of subarachnoid haemorrhage:a systematic review with emphasis on region, age, gender and time trends[J]. J Neurol Neurosurg Psychiatry, 2007, 78 (12): 1365- 1372
doi: 10.1136/jnnp.2007.117655
3 WIEBERS D O , WHISNANT J P , HUSTON J et al. Unruptured intracranial aneurysms:natural history, clinical outcome, and risks of surgical and endovascular treatment[J]. Lancet, 2003, 362 (9378): 103- 110
doi: 10.1016/S0140-6736(03)13860-3
4 FR?SEN J , PⅡPPO A , PAETAU A et al. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture:histological analysis of 24 unruptured and 42 ruptured cases[J]. Stroke, 2004, 35 (10): 2287- 2293
doi: 10.1161/01.STR.0000140636.30204.da
5 AOKI T , KATAOKA H , MORIMOTO M et al. Macrophage-derived matrix metalloproteinase-2 and -9 promote the progression of cerebral aneurysms in rats[J]. Stroke, 2007, 38 (1): 162- 169
6 KANEMATSU Y , KANEMATSU M , KURIHARA C et al. Critical roles of macrophages in the formation of intracranial aneurysm[J]. Stroke, 2011, 42 (1): 173- 178
7 SHIMADA K , FURUKAWA H , WADA K et al. Protective role of peroxisome proliferator-activated receptor-γ in the development of intracranial aneurysm rupture[J]. Stroke, 2015, 46 (6): 1664- 1672
doi: 10.1161/STROKEAHA.114.007722
8 SHAKUR S F , ALARAJ A , MENDOZA-ELIAS N et al. Hemodynamic characteristics associated with cerebral aneurysm formation in patients with carotid occlusion[J]. J Neurosurg, 2018, 1- 6
9 ZHANG X , YAO Z Q , KARUNA T et al. The role of wall shear stress in the parent artery as an independent variable in the formation status of anterior communicating artery aneurysms[J]. Eur Radiol, 2019, 29 (2): 689- 698
doi: 10.1007/s00330-018-5624-7
10 EPELMAN S , LAVINE K J , RANDOLPH G J . Origin and functions of tissue macrophages[J]. Immunity, 2014, 41 (1): 21- 35
doi: 10.1016/j.immuni.2014.06.013
11 DAVIES L C , JENKINS S J , ALLEN J E et al. Tissue-resident macrophages[J]. Nat Immunol, 2013, 14 (10): 986- 995
doi: 10.1038/ni.2705
12 GAUTIER E L , SHAY T , MILLER J et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages[J]. Nat Immunol, 2012, 13 (11): 1118- 1128
doi: 10.1038/ni.2419
13 SCHULZ C , GOMEZ P E , CHORRO L et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells[J]. Science, 2012, 336 (6077): 86- 90
doi: 10.1126/science.1219179
14 HASHIMOTO D , CHOW A , NOIZAT C et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes[J]. Immunity, 2013, 38 (4): 792- 804
doi: 10.1016/j.immuni.2013.04.004
15 FANG P , LI X , DAI J et al. Immune cell subset differentiation and tissue inflammation[J]. J Hematol Oncol, 2018, 11 (1): 97
16 XUE J , SCHMIDT S V , SANDER J et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation[J]. Immunity, 2014, 40 (2): 274- 288
doi: 10.1016/j.immuni.2014.01.006
17 HASAN D , CHALOUHI N , JABBOUR P et al. Macrophage imbalance (M1 vs. M2) and upregulation of mast cells in wall of ruptured human cerebral aneurysms:preliminary results[J]. J Neuroinflammation, 2012, 9:222
18 ZHANG H F , ZHAO M G , LIANG G B et al. Dysregulation of CD4(+) T cell subsets in intracranial aneurysm[J]. DNA Cell Biol, 2016, 35 (2): 96- 103
doi: 10.1089/dna.2015.3105
19 THOMAS A J , OGILVY C S , GRIESSENAUER C J et al. Macrophage CD163 expression in cerebrospinal fluid:association with subarachnoid hemorrhage outcome[J]. J Neurosurg, 2018, 1- 7
20 NOWICKI K W , HOSAKA K , WALCH F J et al. M1 macrophages are required for murine cerebral aneurysm formation[J]. J Neurointerv Surg, 2018, 10 (1): 93- 97
doi: 10.1136/neurintsurg-2016-012911
21 AOKI T , KATAOKA H , SHIMAMURA M et al. NF-kappaB is a key mediator of cerebral aneurysm formation[J]. Circulation, 2007, 116 (24): 2830- 2840
doi: 10.1161/CIRCULATIONAHA.107.728303
22 THEUS M H , BRICKLER T , MEZA A L et al. Loss of NLRX1 exacerbates neural tissue damage and NF-κB signaling following brain injury[J]. J Immunol, 2017, 199 (10): 3547- 3558
doi: 10.4049/jimmunol.1700251
23 AOKI T , FRO`` SEN J , FUKUDA M et al. Prostaglandin E2-EP2-NF-κB signaling in macrophages as a potential therapeutic target for intracranial aneurysms[J]. Sci Signal, 2017, 10 (465): pii:eaah6037
doi: 10.1126/scisignal.aah6037
24 LUO D , GUO Y , CHENG Y et al. Natural product celastrol suppressed macrophage M1 polarization against inflammation in diet-induced obese mice via regulating Nrf2/HO-1, MAP kinase and NF-κB pathways[J]. Aging(Albany NY), 2017, 9 (10): 2069- 2082
25 HUANG F , ZHAO J L , WANG L et al. miR-148a-3p mediates notch signaling to promote the differentiation and M1 activation of macrophages[J]. Front Immunol, 2017, 8:1327
doi: 10.3389/fimmu.2017.01327
26 YANG Q W , MOU L , LV F L et al. Role of Toll-like receptor 4/NF-kappaB pathway in monocyte-endothelial adhesion induced by low shear stress and ox-LDL[J]. Biorheology, 2005, 42 (3): 225- 236
27 NISHIMURA M . Toll-like receptor 4 expression during cerebral aneurysm formation[J]. J Neurosurg, 2013, 119 (3): 825- 827
doi: 10.3171/2013.6.JNS09329a
28 KURKI M I , HAKKINEN S K , FROSEN J et al. Upregulated signaling pathways in ruptured human saccular intracranial aneurysm wall:an emerging regulative role of Toll-like receptor signaling and nuclear factor-κB, hypoxia-inducible factor-1A, and ETS transcription factors[J]. Neurosurgery, 2011, 68 (6): 1667- 1676
doi: 10.1227/NEU.0b013e318210f001
29 BUCHANAN M M , HUTCHINSON M , WATKINS L R et al. Toll-like receptor 4 in CNS pathologies[J]. J Neurochem, 2010, 114 (1): 13- 27
30 AOKI T , NISHIMURA M , MATSUOKA T et al. PGE(2)-EP(2) signalling in endothelium is activated by haemodynamic stress and induces cerebral aneurysm through an amplifying loop via NF-κB[J]. Br J Pharmacol, 2011, 163 (3): 1237- 1249
31 IKEDO T, MINAMI M, KATAOKA H, et al. Dipeptidyl peptidase-4 inhibitor anagliptin prevents intracranial aneurysm growth by suppressing macrophage infiltration and activation[J/OL]. J Am Heart Assoc, 2017, 6(6): pii: e004777.
32 NAHRENDORF M , SWIRSKI F K . Abandoning M1/M2 for a network model of macrophage function[J]. Circ Res, 2016, 119 (3): 414- 417
doi: 10.1161/CIRCRESAHA.116.309194
33 GOSSELIN D , LINK V M , ROMANOSKI C E et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities[J]. Cell, 2014, 159 (6): 1327- 1340
doi: 10.1016/j.cell.2014.11.023
34 JAYARAMAN T , BERENSTEIN V , LI X et al. Tumor necrosis factor alpha is a key modulator of inflammation in cerebral aneurysms[J]. Neurosurgery, 2005, 57 (3): 558- 564
doi: 10.1227/01.NEU.0000170439.89041.D6
35 ZHANG H F , ZHAO M G , LIANG G B et al. Expression of pro-inflammatory cytokines and the risk of intracranial aneurysm[J]. Inflammation, 2013, 36 (6): 1195- 1200
doi: 10.1007/s10753-013-9655-6
36 STARKE R M , CHALOUHI N , JABBOUR P M et al. Critical role of TNF-α in cerebral aneurysm formation and progression to rupture[J]. J Neuroinflammation, 2014, 11:77
doi: 10.1186/1742-2094-11-77
37 AOKI T , FUKUDA M , NISHIMURA M et al. Critical role of TNF-alpha-TNFR1 signaling in intracranial aneurysm formation[J]. Acta Neuropathol Commun, 2014, 2:34
doi: 10.1186/2051-5960-2-34
38 ALI M S , STARKE R M , JABBOUR P M et al. TNF-α induces phenotypic modulation in cerebral vascular smooth muscle cells:implications for cerebral aneurysm pathology[J]. J Cereb Blood Flow Metab, 2013, 33 (10): 1564- 1573
doi: 10.1038/jcbfm.2013.109
39 MORIWAKI T , TAKAGI Y , SADAMASA N et al. Impaired progression of cerebral aneurysms in interleukin-1beta-deficient mice[J]. Stroke, 2006, 37 (3): 900- 905
doi: 10.1161/01.STR.0000204028.39783.d9
40 AOKI T , KATAOKA H , ISHIBASHI R et al. Reduced collagen biosynthesis is the hallmark of cerebral aneurysm:contribution of interleukin-1beta and nuclear factor-kappaB[J]. Arterioscler Thromb Vasc Biol, 2009, 29 (7): 1080- 1086
doi: 10.1161/ATVBAHA.108.180760
41 WKE I , HOSHI N , SHOUVAL D S et al. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages[J]. Science, 2017, 356 (6337): 513- 519
doi: 10.1126/science.aal3535
42 CHEN J , YANG L , CHEN Y et al. Controlled release of osteopontin and interleukin-10 from modified endovascular coil promote cerebral aneurysm healing[J]. J Neurol Sci, 2016, 360:13- 17
doi: 10.1016/j.jns.2015.11.037
43 MARTINEZ F O , GORDON S . The M1 and M2 paradigm of macrophage activation:time for reassessment[J]. F1000Prime Rep, 2014, 6:13
44 ITALIANI P , BORASCHI D . From monocytes to M1/M2 macrophages:phenotypical vs. functional differentiation[J]. Front Immunol, 2014, 5:514
45 ISHIBASHI R , AOKI T , NISHIMURA M et al. Contribution of mast cells to cerebral aneurysm formation[J]. Curr Neurovasc Res, 2010, 7 (2): 113- 124
doi: 10.2174/156720210791184916
46 SHI J , JOHANSSON J , WOODLING N S et al. The prostaglandin E2 E-prostanoid 4 receptor exerts anti-inflammatory effects in brain innate immunity[J]. J Immunol, 2010, 184 (12): 7207- 7218
doi: 10.4049/jimmunol.0903487
47 LIU J , KUWABARA A , KAMIO Y et al. Human mesenchymal stem cell-derived microvesicles prevent the rupture of intracranial aneurysm in part by suppression of mast cell activation via a PGE2-dependent mechanism[J]. Stem Cells, 2016, 34 (12): 2943- 2955
doi: 10.1002/stem.v34.12
48 XU J , MA F , YAN W et al. Identification of the soluble form of tyrosine kinase receptor Axl as a potential biomarker for intracranial aneurysm rupture[J]. BMC Neurol, 2015, 15:23
doi: 10.1186/s12883-015-0282-8
49 ETMINAN N , DREIER R , BUCHHOLZB A et al. Age of collagen in intracranial saccular aneurysms[J]. Stroke, 2014, 45 (6): 1757- 1763
doi: 10.1161/STROKEAHA.114.005461
50 CAIRD J , NAPOLI C , TAGGART C et al. Matrix metalloproteinases 2 and 9 in human atherosclerotic and non-atherosclerotic cerebral aneurysms[J]. Eur J Neurol, 2006, 13 (10): 1098- 1105
doi: 10.1111/ene.2006.13.issue-10
51 JIN D , SHENG J , YANG X et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases expression in human cerebral ruptured and unruptured aneurysm[J]. Surg Neurol, 2007, 68 Suppl 2:S11- S16
52 NUKI Y , TSOU T L , KURIHARA C et al. Elastase-induced intracranial aneurysms in hypertensive mice[J]. Hypertension, 2009, 54 (6): 1337- 1344
doi: 10.1161/HYPERTENSIONAHA.109.138297
53 AOKI T , KATAOKA H , MORIWAKI T et al. Role of TIMP-1 and TIMP-2 in the progression of cerebral aneurysms[J]. Stroke, 2007, 38 (8): 2337- 2345
doi: 10.1161/STROKEAHA.107.481838
54 KILIC T , SOHRABIFAR M , KURTKAYA O et al. Expression of structural proteins and angiogenic factors in normal arterial and unruptured and ruptured aneurysm walls[J]. Neurosurgery, 2005, 57 (5): 997- 1007
doi: 10.1227/01.NEU.0000180812.77621.6C
55 MOREL S , DIAGBOUGA M R , DUPUY N et al. Correlating clinical risk factors and histological features in ruptured and unruptured human intracranial aneurysms:the Swiss AneuX Study[J]. J Neuropathol Exp Neurol, 2018, 77 (7): 555- 566
doi: 10.1093/jnen/nly031
56 AOKI T , KATAOKA H , NISHIMURA M et al. Regression of intracranial aneurysms by simultaneous inhibition of nuclear factor-kappaB and Ets with chimeric decoy oligodeoxynucleotide treatment[J]. Neurosurgery, 2012, 70 (6): 1534- 1543
doi: 10.1227/NEU.0b013e318246a390
57 TURJMAN A S , TURJMAN F , EDELMAN E R . Role of fluid dynamics and inflammation in intracranial aneurysm formation[J]. Circulation, 2014, 129 (3): 373- 382
doi: 10.1161/CIRCULATIONAHA.113.001444
58 CHALOUHI N , HOH B L , HASAN D . Review of cerebral aneurysm formation, growth, and rupture[J]. Stroke, 2013, 44 (12): 3613- 3622
doi: 10.1161/STROKEAHA.113.002390
59 HASAN D M , MAHANEY K B , BROWN R D et al. Aspirin as a promising agent for decreasing incidence of cerebral aneurysm rupture[J]. Stroke, 2011, 42 (11): 3156- 3162
doi: 10.1161/STROKEAHA.111.619411
60 HASAN D M, CHALOUHI N, JABBOUR P, et al. Evidence that acetylsalicylic acid attenuates inflammation in the walls of human cerebral aneurysms: preliminary results[J/OL]. J Am Heart Assoc, 2013, 2(1): e000019.
61 GARCíA-RODRíGUEZ L A , GAIST D , MORTON J et al. Antithrombotic drugs and risk of hemorrhagic stroke in the general population[J]. Neurology, 2013, 81 (6): 566- 574
doi: 10.1212/WNL.0b013e31829e6ffa
62 HASAN D , CHALOUHI N , JABBOUR P et al. Early change in ferumoxytol-enhanced magnetic resonance imaging signal suggests unstable human cerebral aneurysm:a pilot study[J]. Stroke, 2012, 43 (12): 3258- 3265
doi: 10.1161/STROKEAHA.112.673400
[1] 马竞, 何文龙, 高重阳, 余瑞云, 薛鹏, 牛永超. 木瓜苷通过抑制NF-κB P65/TNF-α通路活性减轻小鼠脑缺血再灌注诱导的组织损伤[J]. 浙江大学学报(医学版), 2019, 48(3): 289-295.
[2] 郑琪,卢美萍. 儿童风湿免疫性疾病研究热点[J]. 浙江大学学报(医学版), 2018, 47(2): 213-217.
[3] 丁京京,卢韵碧. 受体相互作用蛋白家族在炎症中的作用研究进展[J]. 浙江大学学报(医学版), 2018, 47(1): 89-96.
[4] 柳银兰,罗燕,杨文君,施军平,庄振杰. 甘草酸二铵肠溶胶囊对棕榈酸诱导的肝细胞炎症相关基因表达影响[J]. 浙江大学学报(医学版), 2017, 46(2): 192-197.
[5] 王程 等. 微RNA:一类新的椎间盘退变调控因子[J]. 浙江大学学报(医学版), 2016, 45(2): 170-178.
[6] 邹晓荣等. 缝隙连接与糖尿病足[J]. 浙江大学学报(医学版), 2015, 44(6): 684-688.
[7] 李兰娟. 埃博拉病毒病的发病机制[J]. 浙江大学学报(医学版), 2015, 44(1): 1-8.
[8] 吴联群, 卢敏. 表没食子儿茶素没食子酸酯对小鼠角膜碱烧伤的治疗作用[J]. 浙江大学学报(医学版), 2015, 44(1): 15-23.
[9] 张健,赵正言. 间充质干细胞的免疫调节功能及抗炎作用在肾脏疾病中的应用进展[J]. 浙江大学学报(医学版), 2014, 43(3): 372-378.
[10] 宋顺德,汤慧芳 . 环腺苷酸磷酸二酯酶4抑制剂靶向治疗炎症性疾病研究新进展[J]. 浙江大学学报(医学版), 2014, 43(3): 353-358.
[11] 黄静,魏尔清,卢韵碧. 烟酰胺磷酸核糖转移酶在炎症中的作用研究进展[J]. 浙江大学学报(医学版), 2014, 43(2): 234-239.
[12] . 癫痫大鼠海马小胶质细胞的激活特点[J]. 浙江大学学报(医学版), 2012, 41(3): 310-314.
[13] . α-Synuclein诱发的小胶质细胞激活在帕金森病发生发展中的作用[J]. 浙江大学学报(医学版), 2012, 41(2): 210-214.
[14] . 酵母多糖致全身炎症反应综合征大鼠模型的制备[J]. 浙江大学学报(医学版), 2011, 40(6): 641-646.
[15] . 高迁移率族蛋白-1在小鼠狼疮性肾炎中的表达[J]. 浙江大学学报(医学版), 2011, 40(2): 200-206.