综述 |
|
|
|
|
巨噬细胞在颅内动脉瘤发生发展中的作用研究进展 |
王雅琪( ),金静华*( ) |
浙江大学医学院神经生物学系, 浙江 杭州 310058 |
|
Roles of macrophages in formation and progression of intracranial aneurysms |
WANG Yaqi( ),JIN Jinghua*( ) |
Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, China |
1 |
VLAK M H , ALGRA A , BRANDENBURG R et al. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period:a systematic review and meta-analysis[J]. Lancet Neurol, 2011, 10 (7): 626- 636
doi: 10.1016/S1474-4422(11)70109-0
|
2 |
DE ROOIJ N K , LINN F H , VAN DER PLAS J A et al. Incidence of subarachnoid haemorrhage:a systematic review with emphasis on region, age, gender and time trends[J]. J Neurol Neurosurg Psychiatry, 2007, 78 (12): 1365- 1372
doi: 10.1136/jnnp.2007.117655
|
3 |
WIEBERS D O , WHISNANT J P , HUSTON J et al. Unruptured intracranial aneurysms:natural history, clinical outcome, and risks of surgical and endovascular treatment[J]. Lancet, 2003, 362 (9378): 103- 110
doi: 10.1016/S0140-6736(03)13860-3
|
4 |
FR?SEN J , PⅡPPO A , PAETAU A et al. Remodeling of saccular cerebral artery aneurysm wall is associated with rupture:histological analysis of 24 unruptured and 42 ruptured cases[J]. Stroke, 2004, 35 (10): 2287- 2293
doi: 10.1161/01.STR.0000140636.30204.da
|
5 |
AOKI T , KATAOKA H , MORIMOTO M et al. Macrophage-derived matrix metalloproteinase-2 and -9 promote the progression of cerebral aneurysms in rats[J]. Stroke, 2007, 38 (1): 162- 169
|
6 |
KANEMATSU Y , KANEMATSU M , KURIHARA C et al. Critical roles of macrophages in the formation of intracranial aneurysm[J]. Stroke, 2011, 42 (1): 173- 178
|
7 |
SHIMADA K , FURUKAWA H , WADA K et al. Protective role of peroxisome proliferator-activated receptor-γ in the development of intracranial aneurysm rupture[J]. Stroke, 2015, 46 (6): 1664- 1672
doi: 10.1161/STROKEAHA.114.007722
|
8 |
SHAKUR S F , ALARAJ A , MENDOZA-ELIAS N et al. Hemodynamic characteristics associated with cerebral aneurysm formation in patients with carotid occlusion[J]. J Neurosurg, 2018, 1- 6
|
9 |
ZHANG X , YAO Z Q , KARUNA T et al. The role of wall shear stress in the parent artery as an independent variable in the formation status of anterior communicating artery aneurysms[J]. Eur Radiol, 2019, 29 (2): 689- 698
doi: 10.1007/s00330-018-5624-7
|
10 |
EPELMAN S , LAVINE K J , RANDOLPH G J . Origin and functions of tissue macrophages[J]. Immunity, 2014, 41 (1): 21- 35
doi: 10.1016/j.immuni.2014.06.013
|
11 |
DAVIES L C , JENKINS S J , ALLEN J E et al. Tissue-resident macrophages[J]. Nat Immunol, 2013, 14 (10): 986- 995
doi: 10.1038/ni.2705
|
12 |
GAUTIER E L , SHAY T , MILLER J et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages[J]. Nat Immunol, 2012, 13 (11): 1118- 1128
doi: 10.1038/ni.2419
|
13 |
SCHULZ C , GOMEZ P E , CHORRO L et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells[J]. Science, 2012, 336 (6077): 86- 90
doi: 10.1126/science.1219179
|
14 |
HASHIMOTO D , CHOW A , NOIZAT C et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes[J]. Immunity, 2013, 38 (4): 792- 804
doi: 10.1016/j.immuni.2013.04.004
|
15 |
FANG P , LI X , DAI J et al. Immune cell subset differentiation and tissue inflammation[J]. J Hematol Oncol, 2018, 11 (1): 97
|
16 |
XUE J , SCHMIDT S V , SANDER J et al. Transcriptome-based network analysis reveals a spectrum model of human macrophage activation[J]. Immunity, 2014, 40 (2): 274- 288
doi: 10.1016/j.immuni.2014.01.006
|
17 |
HASAN D , CHALOUHI N , JABBOUR P et al. Macrophage imbalance (M1 vs. M2) and upregulation of mast cells in wall of ruptured human cerebral aneurysms:preliminary results[J]. J Neuroinflammation, 2012, 9:222
|
18 |
ZHANG H F , ZHAO M G , LIANG G B et al. Dysregulation of CD4(+) T cell subsets in intracranial aneurysm[J]. DNA Cell Biol, 2016, 35 (2): 96- 103
doi: 10.1089/dna.2015.3105
|
19 |
THOMAS A J , OGILVY C S , GRIESSENAUER C J et al. Macrophage CD163 expression in cerebrospinal fluid:association with subarachnoid hemorrhage outcome[J]. J Neurosurg, 2018, 1- 7
|
20 |
NOWICKI K W , HOSAKA K , WALCH F J et al. M1 macrophages are required for murine cerebral aneurysm formation[J]. J Neurointerv Surg, 2018, 10 (1): 93- 97
doi: 10.1136/neurintsurg-2016-012911
|
21 |
AOKI T , KATAOKA H , SHIMAMURA M et al. NF-kappaB is a key mediator of cerebral aneurysm formation[J]. Circulation, 2007, 116 (24): 2830- 2840
doi: 10.1161/CIRCULATIONAHA.107.728303
|
22 |
THEUS M H , BRICKLER T , MEZA A L et al. Loss of NLRX1 exacerbates neural tissue damage and NF-κB signaling following brain injury[J]. J Immunol, 2017, 199 (10): 3547- 3558
doi: 10.4049/jimmunol.1700251
|
23 |
AOKI T , FRO`` SEN J , FUKUDA M et al. Prostaglandin E2-EP2-NF-κB signaling in macrophages as a potential therapeutic target for intracranial aneurysms[J]. Sci Signal, 2017, 10 (465): pii:eaah6037
doi: 10.1126/scisignal.aah6037
|
24 |
LUO D , GUO Y , CHENG Y et al. Natural product celastrol suppressed macrophage M1 polarization against inflammation in diet-induced obese mice via regulating Nrf2/HO-1, MAP kinase and NF-κB pathways[J]. Aging(Albany NY), 2017, 9 (10): 2069- 2082
|
25 |
HUANG F , ZHAO J L , WANG L et al. miR-148a-3p mediates notch signaling to promote the differentiation and M1 activation of macrophages[J]. Front Immunol, 2017, 8:1327
doi: 10.3389/fimmu.2017.01327
|
26 |
YANG Q W , MOU L , LV F L et al. Role of Toll-like receptor 4/NF-kappaB pathway in monocyte-endothelial adhesion induced by low shear stress and ox-LDL[J]. Biorheology, 2005, 42 (3): 225- 236
|
27 |
NISHIMURA M . Toll-like receptor 4 expression during cerebral aneurysm formation[J]. J Neurosurg, 2013, 119 (3): 825- 827
doi: 10.3171/2013.6.JNS09329a
|
28 |
KURKI M I , HAKKINEN S K , FROSEN J et al. Upregulated signaling pathways in ruptured human saccular intracranial aneurysm wall:an emerging regulative role of Toll-like receptor signaling and nuclear factor-κB, hypoxia-inducible factor-1A, and ETS transcription factors[J]. Neurosurgery, 2011, 68 (6): 1667- 1676
doi: 10.1227/NEU.0b013e318210f001
|
29 |
BUCHANAN M M , HUTCHINSON M , WATKINS L R et al. Toll-like receptor 4 in CNS pathologies[J]. J Neurochem, 2010, 114 (1): 13- 27
|
30 |
AOKI T , NISHIMURA M , MATSUOKA T et al. PGE(2)-EP(2) signalling in endothelium is activated by haemodynamic stress and induces cerebral aneurysm through an amplifying loop via NF-κB[J]. Br J Pharmacol, 2011, 163 (3): 1237- 1249
|
31 |
IKEDO T, MINAMI M, KATAOKA H, et al. Dipeptidyl peptidase-4 inhibitor anagliptin prevents intracranial aneurysm growth by suppressing macrophage infiltration and activation[J/OL]. J Am Heart Assoc, 2017, 6(6): pii: e004777.
|
32 |
NAHRENDORF M , SWIRSKI F K . Abandoning M1/M2 for a network model of macrophage function[J]. Circ Res, 2016, 119 (3): 414- 417
doi: 10.1161/CIRCRESAHA.116.309194
|
33 |
GOSSELIN D , LINK V M , ROMANOSKI C E et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities[J]. Cell, 2014, 159 (6): 1327- 1340
doi: 10.1016/j.cell.2014.11.023
|
34 |
JAYARAMAN T , BERENSTEIN V , LI X et al. Tumor necrosis factor alpha is a key modulator of inflammation in cerebral aneurysms[J]. Neurosurgery, 2005, 57 (3): 558- 564
doi: 10.1227/01.NEU.0000170439.89041.D6
|
35 |
ZHANG H F , ZHAO M G , LIANG G B et al. Expression of pro-inflammatory cytokines and the risk of intracranial aneurysm[J]. Inflammation, 2013, 36 (6): 1195- 1200
doi: 10.1007/s10753-013-9655-6
|
36 |
STARKE R M , CHALOUHI N , JABBOUR P M et al. Critical role of TNF-α in cerebral aneurysm formation and progression to rupture[J]. J Neuroinflammation, 2014, 11:77
doi: 10.1186/1742-2094-11-77
|
37 |
AOKI T , FUKUDA M , NISHIMURA M et al. Critical role of TNF-alpha-TNFR1 signaling in intracranial aneurysm formation[J]. Acta Neuropathol Commun, 2014, 2:34
doi: 10.1186/2051-5960-2-34
|
38 |
ALI M S , STARKE R M , JABBOUR P M et al. TNF-α induces phenotypic modulation in cerebral vascular smooth muscle cells:implications for cerebral aneurysm pathology[J]. J Cereb Blood Flow Metab, 2013, 33 (10): 1564- 1573
doi: 10.1038/jcbfm.2013.109
|
39 |
MORIWAKI T , TAKAGI Y , SADAMASA N et al. Impaired progression of cerebral aneurysms in interleukin-1beta-deficient mice[J]. Stroke, 2006, 37 (3): 900- 905
doi: 10.1161/01.STR.0000204028.39783.d9
|
40 |
AOKI T , KATAOKA H , ISHIBASHI R et al. Reduced collagen biosynthesis is the hallmark of cerebral aneurysm:contribution of interleukin-1beta and nuclear factor-kappaB[J]. Arterioscler Thromb Vasc Biol, 2009, 29 (7): 1080- 1086
doi: 10.1161/ATVBAHA.108.180760
|
41 |
WKE I , HOSHI N , SHOUVAL D S et al. Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages[J]. Science, 2017, 356 (6337): 513- 519
doi: 10.1126/science.aal3535
|
42 |
CHEN J , YANG L , CHEN Y et al. Controlled release of osteopontin and interleukin-10 from modified endovascular coil promote cerebral aneurysm healing[J]. J Neurol Sci, 2016, 360:13- 17
doi: 10.1016/j.jns.2015.11.037
|
43 |
MARTINEZ F O , GORDON S . The M1 and M2 paradigm of macrophage activation:time for reassessment[J]. F1000Prime Rep, 2014, 6:13
|
44 |
ITALIANI P , BORASCHI D . From monocytes to M1/M2 macrophages:phenotypical vs. functional differentiation[J]. Front Immunol, 2014, 5:514
|
45 |
ISHIBASHI R , AOKI T , NISHIMURA M et al. Contribution of mast cells to cerebral aneurysm formation[J]. Curr Neurovasc Res, 2010, 7 (2): 113- 124
doi: 10.2174/156720210791184916
|
46 |
SHI J , JOHANSSON J , WOODLING N S et al. The prostaglandin E2 E-prostanoid 4 receptor exerts anti-inflammatory effects in brain innate immunity[J]. J Immunol, 2010, 184 (12): 7207- 7218
doi: 10.4049/jimmunol.0903487
|
47 |
LIU J , KUWABARA A , KAMIO Y et al. Human mesenchymal stem cell-derived microvesicles prevent the rupture of intracranial aneurysm in part by suppression of mast cell activation via a PGE2-dependent mechanism[J]. Stem Cells, 2016, 34 (12): 2943- 2955
doi: 10.1002/stem.v34.12
|
48 |
XU J , MA F , YAN W et al. Identification of the soluble form of tyrosine kinase receptor Axl as a potential biomarker for intracranial aneurysm rupture[J]. BMC Neurol, 2015, 15:23
doi: 10.1186/s12883-015-0282-8
|
49 |
ETMINAN N , DREIER R , BUCHHOLZB A et al. Age of collagen in intracranial saccular aneurysms[J]. Stroke, 2014, 45 (6): 1757- 1763
doi: 10.1161/STROKEAHA.114.005461
|
50 |
CAIRD J , NAPOLI C , TAGGART C et al. Matrix metalloproteinases 2 and 9 in human atherosclerotic and non-atherosclerotic cerebral aneurysms[J]. Eur J Neurol, 2006, 13 (10): 1098- 1105
doi: 10.1111/ene.2006.13.issue-10
|
51 |
JIN D , SHENG J , YANG X et al. Matrix metalloproteinases and tissue inhibitors of metalloproteinases expression in human cerebral ruptured and unruptured aneurysm[J]. Surg Neurol, 2007, 68 Suppl 2:S11- S16
|
52 |
NUKI Y , TSOU T L , KURIHARA C et al. Elastase-induced intracranial aneurysms in hypertensive mice[J]. Hypertension, 2009, 54 (6): 1337- 1344
doi: 10.1161/HYPERTENSIONAHA.109.138297
|
53 |
AOKI T , KATAOKA H , MORIWAKI T et al. Role of TIMP-1 and TIMP-2 in the progression of cerebral aneurysms[J]. Stroke, 2007, 38 (8): 2337- 2345
doi: 10.1161/STROKEAHA.107.481838
|
54 |
KILIC T , SOHRABIFAR M , KURTKAYA O et al. Expression of structural proteins and angiogenic factors in normal arterial and unruptured and ruptured aneurysm walls[J]. Neurosurgery, 2005, 57 (5): 997- 1007
doi: 10.1227/01.NEU.0000180812.77621.6C
|
55 |
MOREL S , DIAGBOUGA M R , DUPUY N et al. Correlating clinical risk factors and histological features in ruptured and unruptured human intracranial aneurysms:the Swiss AneuX Study[J]. J Neuropathol Exp Neurol, 2018, 77 (7): 555- 566
doi: 10.1093/jnen/nly031
|
56 |
AOKI T , KATAOKA H , NISHIMURA M et al. Regression of intracranial aneurysms by simultaneous inhibition of nuclear factor-kappaB and Ets with chimeric decoy oligodeoxynucleotide treatment[J]. Neurosurgery, 2012, 70 (6): 1534- 1543
doi: 10.1227/NEU.0b013e318246a390
|
57 |
TURJMAN A S , TURJMAN F , EDELMAN E R . Role of fluid dynamics and inflammation in intracranial aneurysm formation[J]. Circulation, 2014, 129 (3): 373- 382
doi: 10.1161/CIRCULATIONAHA.113.001444
|
58 |
CHALOUHI N , HOH B L , HASAN D . Review of cerebral aneurysm formation, growth, and rupture[J]. Stroke, 2013, 44 (12): 3613- 3622
doi: 10.1161/STROKEAHA.113.002390
|
59 |
HASAN D M , MAHANEY K B , BROWN R D et al. Aspirin as a promising agent for decreasing incidence of cerebral aneurysm rupture[J]. Stroke, 2011, 42 (11): 3156- 3162
doi: 10.1161/STROKEAHA.111.619411
|
60 |
HASAN D M, CHALOUHI N, JABBOUR P, et al. Evidence that acetylsalicylic acid attenuates inflammation in the walls of human cerebral aneurysms: preliminary results[J/OL]. J Am Heart Assoc, 2013, 2(1): e000019.
|
61 |
GARCíA-RODRíGUEZ L A , GAIST D , MORTON J et al. Antithrombotic drugs and risk of hemorrhagic stroke in the general population[J]. Neurology, 2013, 81 (6): 566- 574
doi: 10.1212/WNL.0b013e31829e6ffa
|
62 |
HASAN D , CHALOUHI N , JABBOUR P et al. Early change in ferumoxytol-enhanced magnetic resonance imaging signal suggests unstable human cerebral aneurysm:a pilot study[J]. Stroke, 2012, 43 (12): 3258- 3265
doi: 10.1161/STROKEAHA.112.673400
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|