Please wait a minute...
浙江大学学报(医学版)  2019, Vol. 48 Issue (1): 111-115    DOI: 10.3785/j.issn.1008-9292.2019.02.16
综述     
细胞衰老与特发性肺纤维化的相关性研究进展
赵世浩(),张雪,柯越海*()
浙江大学医学院基础医学系, 浙江 杭州 310058
Progress on correlation between cell senescence and idiopathic pulmonary fibrosis
ZHAO Shihao(),ZHANG Xue,KE Yuehai*()
College of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou 310058, China
 全文: PDF(490 KB)   HTML( 15 )
摘要:

细胞衰老是驱动衰老相关疾病的关键因素。衰老相关分泌表型、端粒损伤、表观遗传学改变、线粒体自噬受损等介导了细胞衰老相关特发性肺纤维化的发病;降低细胞衰老水平或清除衰老细胞可下调纤维化因子表达,缓解特发性肺纤维化进程。本文就近年来细胞衰老在特发性肺纤维化中的作用及机制研究进展作一综述。

关键词: 细胞衰老/病理学成纤维细胞/病理学上皮细胞/病理学肺纤维化/病理学综述    
Abstract:

Cellular senescence is a key factor driving age-related diseases. Recent studies have revealed that senescence-associated secretory phenotype, telomere attrition, epigenetic changes, and mitochondrial autophagy damage may mediate the pathogenesis of senescence-related idiopathic pulmonary fibrosis (IPF). Reducing the level of cellular senescence or clearing senescent cells can down-regulate the expression of fibrosis factors and alleviate the symptoms of IPF. In this review, we outlined the role and mechanism of cellular senescence in IPF.

Key words: Cell aging/pathology    Fibroblasts/pathology    Epithelial cells/pathology    Pulmonary fibrosis/pathology    Review
收稿日期: 2018-10-12 出版日期: 2019-05-13
:  R563  
基金资助: 国家自然科学基金(81530001)
通讯作者: 柯越海     E-mail: 21718492@zju.edu.cn;yke@zju.edu.cn
作者简介: 赵世浩(1995-), 男, 硕士研究生, 主要从事肺泡上皮稳态及炎症微环境的相关研究; E-mail:21718492@zju.edu.cn; https://orcid.org/0000-0002-9866-7844
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
赵世浩
张雪
柯越海

引用本文:

赵世浩,张雪,柯越海. 细胞衰老与特发性肺纤维化的相关性研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 111-115.

ZHAO Shihao,ZHANG Xue,KE Yuehai. Progress on correlation between cell senescence and idiopathic pulmonary fibrosis. J Zhejiang Univ (Med Sci), 2019, 48(1): 111-115.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2019.02.16        http://www.zjujournals.com/med/CN/Y2019/V48/I1/111

1 RAGHU G , COLLARD H R , EGAN J J et al. An official ATS/ERS/JRS/ALAT statement:idiopathic pulmonary fibrosis:evidence-based guidelines for diagnosis and management[J]. Am J Respir Crit Care Med, 2011, 183 (6): 788- 824
doi: 10.1164/rccm.2009-040GL
2 SELMAN M , KING T E , PARDO A . Idiopathic pulmonary fibrosis:prevailing and evolving hypotheses about its pathogenesis and implications for therapy[J]. Ann Intern Med, 2001, 134 (2): 136- 151
doi: 10.7326/0003-4819-134-2-200101160-00015
3 RAGHU G , ANSTROM K J , KING T E et al. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis[J]. N Engl J Med, 2012, 366 (21): 1968- 1977
doi: 10.1056/NEJMoa1113354
4 RAGHU G , WEYCKER D , EDELSBERG J et al. Incidence and prevalence of idiopathic pulmonary fibrosis[J]. Am J Respir Crit Care Med, 2006, 174 (7): 810- 816
doi: 10.1164/rccm.200602-163OC
5 MINAGAWA S , ARAYA J , NUMATA T et al. Accelerated epithelial cell senescence in IPF and the inhibitory role of SIRT6 in TGF-beta-induced senescence of human bronchial epithelial cells[J]. Am J Physiol Lung Cell Mol Physiol, 2011, 300 (3): L391- L401
doi: 10.1152/ajplung.00097.2010
6 YANAI H , SHTEINBERG A , PORAT Z et al. Cellular senescence-like features of lung fibroblasts derived from idiopathic pulmonary fibrosis patients[J]. Aging(Albany NY), 2015, 7 (9): 664- 672
7 BAKER D J , WIJSHAKE T , TCHKONIA T et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders[J]. Nature, 2011, 479 (7372): 232- 236
doi: 10.1038/nature10600
8 HAYFLICK L , MOORHEAD P S . The serial cultivation of human diploid cell strains[J]. Exp Cell Res, 1961, 25:585- 621
doi: 10.1016/0014-4827(61)90192-6
9 COPPé J P , PATIL C K , RODIER F et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor[J]. PLoS Biol, 2008, 6 (12): 2853- 2868
10 VAN DEURSEN J M . The role of senescent cells in ageing[J]. Nature, 2014, 509 (7501): 439- 446
doi: 10.1038/nature13193
11 GIRE V , DULIC V . Senescence from G2 arrest, revisited[J]. Cell Cycle, 2015, 14 (3): 297- 304
doi: 10.1080/15384101.2014.1000134
12 ZHAO H , BAUZON F , FU H et al. Skp2 deletion unmasks a p27 safeguard that blocks tumorigenesis in the absence of pRb and p53 tumor suppressors[J]. Cancer Cell, 2013, 24 (5): 645- 659
doi: 10.1016/j.ccr.2013.09.021
13 LEHMANN M , KORFEI M , MUTZE K et al. Senolytic drugs target alveolar epithelial cell function and attenuate experimental lung fibrosis ex vivo[J]. Eur Respir J, 2017, 50 (2): 1602367
doi: 10.1183/13993003.02367-2016
14 MORA A L , ROJAS M , PARDO A et al. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease[J]. Nat Rev Drug Discov, 2017, 16 (11): 755- 772
doi: 10.1038/nrd.2017.170
15 MU?OZ-ESPíN D , SERRANO M . Cellular senescence:from physiology to pathology[J]. Nat Rev Mol Cell Biol, 2014, 15 (7): 482- 496
doi: 10.1038/nrm3823
16 SCHAFER M J , WHITE T A , ⅡJIMA K et al. Cellular senescence mediates fibrotic pulmonary disease[J]. Nat Commun, 2017, 8:14532
doi: 10.1038/ncomms14532
17 AOSHIBA K , TSUJI T , KAMEYAMA S et al. Senescence-associated secretory phenotype in a mouse model of bleomycin-induced lung injury[J]. Exp Toxicol Pathol, 2013, 65 (7-8): 1053- 1062
doi: 10.1016/j.etp.2013.04.001
18 SHIVSHANKAR P , BRAMPTON C , MIYASATO S et al. Caveolin-1 deficiency protects from pulmonary fibrosis by modulating epithelial cell senescence in mice[J]. Am J Respir Cell Mol Biol, 2012, 47 (1): 28- 36
doi: 10.1165/rcmb.2011-0349OC
19 KADOTA T , FUJITA Y , YOSHIOKA Y et al. Emerging role of extracellular vesicles as a senescence-associated secretory phenotype:Insights into the pathophysiology of lung diseases[J]. Mol Aspects Med, 2018, 60:92- 103
doi: 10.1016/j.mam.2017.11.005
20 FUJITA Y , ARAYA J , ITO S et al. Suppression of autophagy by extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis[J]. J Extracell Vesicles, 2015, 4:28388
doi: 10.3402/jev.v4.28388
21 PAN J , LI D , XU Y et al. Inhibition of Bcl-2/xl with ABT-263 selectively kills senescent type Ⅱ pneumocytes and reverses persistent pulmonary fibrosis induced by ionizing radiation in mice[J]. Int J Radiat Oncol Biol Phys, 2017, 99 (2): 353- 361
doi: 10.1016/j.ijrobp.2017.02.216
22 REDDY M , FONSECA L , GOWDA S et al. Human adipose-derived mesenchymal stem cells attenuate early stage of bleomycin induced pulmonary fibrosis:comparison with pirfenidone[J]. Int J Stem Cells, 2016, 9 (2): 192- 206
doi: 10.15283/ijsc16041
23 CHAMBERS D C , ENEVER D , ILIC N et al. A phase 1b study of placenta-derived mesenchymal stromal cells in patients with idiopathic pulmonary fibrosis[J]. Respirology, 2014, 19 (7): 1013- 1018
doi: 10.1111/resp.12343
24 STANLEY S E , ARMANIOS M . The short and long telomere syndromes:paired paradigms for molecular medicine[J]. Curr Opin Genet Dev, 2015, 33:1- 9
doi: 10.1016/j.gde.2015.06.004
25 SNETSELAAR R , VAN BATENBURG A A , VAN OOSTERHOUT M F M et al. Short telomere length in IPF lung associates with fibrotic lesions and predicts survival[J]. PLoS One, 2017, 12 (12): e0189467
doi: 10.1371/journal.pone.0189467
26 NAIKAWADI R P , DISAYABUTR S , MALLAVIA B et al. Telomere dysfunction in alveolar epithelial cells causes lung remodeling and fibrosis[J]. JCI Insight, 2016, 1 (14): e86704
27 ALDER J K , BARKAUSKAS C E , LIMJUNYAWONG N et al. Telomere dysfunction causes alveolar stem cell failure[J]. Proc Natl Acad Sci U S A, 2015, 112 (16): 5099- 5104
doi: 10.1073/pnas.1504780112
28 TOWNSLEY D M , DUMITRIU B , YOUNG N S . Danazol treatment for telomere diseases[J]. N Engl J Med, 2016, 375 (11): 1095- 1096
doi: 10.1056/NEJMc1607752
29 WILEY C D , VELARDE M C , LECOT P et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype[J]. Cell Metab, 2016, 23 (2): 303- 314
doi: 10.1016/j.cmet.2015.11.011
30 GARCíA-PRAT L , MARTíNEZ-VICENTE M , PERDIGUERO E et al. Autophagy maintains stemness by preventing senescence[J]. Nature, 2016, 529 (7584): 37- 42
doi: 10.1038/nature16187
31 ARAYA J , KOJIMA J , TAKASAKA N et al. Insufficient autophagy in idiopathic pulmonary fibrosis[J]. Am J Physiol Lung Cell Mol Physiol, 2013, 304 (1): L56- L69
doi: 10.1152/ajplung.00213.2012
32 BUENO M , LAI Y C , ROMERO Y et al. PINK1 deficiency impairs mitochondrial homeostasis and promotes lung fibrosis[J]. J Clin Invest, 2015, 125 (2): 521- 538
doi: 10.1172/JCI74942
33 DISAYABUTR S , KIM E K , CHA S I et al. miR-34 miRNAs regulate cellular senescence in type Ⅱ alveolar epithelial cells of patients with idiopathic pulmonary fibrosis[J]. PLoS One, 2016, 11 (6): e0158367
doi: 10.1371/journal.pone.0158367
34 CUI H , GE J , XIE N et al. miR-34a promotes fibrosis in aged lungs by inducing alveolarepithelial dysfunctions[J]. Am J Physiol Lung Cell Mol Physiol, 2017, 312 (3): L415- L424
doi: 10.1152/ajplung.00335.2016
35 YANAI H , SHTEINBERG A , PORAT Z et al. Cellular senescence-like features of lung fibroblasts derived from idiopathic pulmonary fibrosis patients[J]. Aging(Albany NY), 2015, 7 (9): 664- 672
36 WYNES M W , EDELMAN B L , KOSTYK A G et al. Increased cell surface fas expression is necessary and sufficient to sensitize lung fibroblasts to fas ligation-induced apoptosis:implications for fibroblast accumulation in idiopathic pulmonary fibrosis[J]. J Immunol, 2011, 187 (1): 527- 537
doi: 10.4049/jimmunol.1100447
37 KRIZHANOVSKY V , YON M , DICKINS R A et al. Senescence of activated stellate cells limits liver fibrosis[J]. Cell, 2008, 134 (4): 657- 667
doi: 10.1016/j.cell.2008.06.049
38 LI Y , LIANG J , YANG T et al. Hyaluronan synthase 2 regulates fibroblast senescence in pulmonary fibrosis[J]. Matrix Biol, 2016, 55:35- 48
doi: 10.1016/j.matbio.2016.03.004
39 ROMERO Y , BUENO M , RAMIREZ R et al. mTORC1 activation decreases autophagy in aging and idiopathic pulmonary fibrosis and contributes to apoptosis resistance in IPF fibroblasts[J]. Aging Cell, 2016, 15 (6): 1103- 1112
doi: 10.1111/acel.2016.15.issue-6
40 HECKER L , LOGSDON N J , KURUNDKAR D et al. Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance[J]. Sci Transl Med, 2014, 6 (231): 231ra47
doi: 10.1126/scitranslmed.3008182
[1] Baboo Kalianee Devi, 陈正云, 张信美. 子宫腺肌病患者药物治疗进展[J]. 浙江大学学报(医学版), 2019, 48(2): 142-147.
[2] 吴彬彬, 杨毅. 心脏手术相关急性肾损伤早期生物学标志物研究进展[J]. 浙江大学学报(医学版), 2019, 48(2): 224-229.
[3] 杨坤, 胡晓晟. 微小RNA-21在心脏疾病中的研究进展[J]. 浙江大学学报(医学版), 2019, 48(2): 214-218.
[4] 徐力, 许鸣, 童向民. 有氧糖酵解在非霍奇金淋巴瘤发病及耐药机制中的作用[J]. 浙江大学学报(医学版), 2019, 48(2): 219-223.
[5] 宋方俊,郭江涛. 电压门控离子通道结构生物学研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 25-33.
[6] 史婧,冯钰. 细菌RNA聚合酶抑制剂的分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 44-49.
[7] 孙博强,王琼艳,潘冬立. 单纯疱疹病毒潜伏和激活机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 89-101.
[8] 沈夏梦,吕卫国. 外泌体参与卵巢癌患者对化疗耐药的研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 116-120.
[9] 洪非凡,李月舟. 超声遗传学技术中的机械敏感性离子通道[J]. 浙江大学学报(医学版), 2019, 48(1): 34-38.
[10] 肖梨,佟晓永. 肺动脉高压形成中的血管重构分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 102-110.
[11] 向一郎,吴子衡,张鸿坤. 胸主动脉覆膜支架原位开窗技术的应用现状[J]. 浙江大学学报(医学版), 2018, 47(6): 617-622.
[12] 曹丽芹,施继敏. 异基因造血干细胞移植植入失败研究进展[J]. 浙江大学学报(医学版), 2018, 47(6): 651-658.
[13] 唐和孝,白玉泉,申武林,赵金平. 白介素6在肺癌中的作用研究进展[J]. 浙江大学学报(医学版), 2018, 47(6): 659-664.
[14] 赵慧慧,汤慧芳. 基于基因敲除的炎性肠疾病复合动物模型研究进展[J]. 浙江大学学报(医学版), 2018, 47(6): 665-670.
[15] 叶建宇,孙自玉,胡薇薇. 星形胶质细胞在脑梗死中的作用及相关治疗策略[J]. 浙江大学学报(医学版), 2018, 47(5): 493-498.