Please wait a minute...
浙江大学学报(医学版)  2019, Vol. 48 Issue (1): 65-74    DOI: 10.3785/j.issn.1008-9292.2019.02.11
原著     
Rictor对小鼠胚胎干细胞来源心肌细胞线粒体钙信号的调控
邵颖1(),王佳丹1,2(),朱丹雁1,*()
1. 浙江大学药学院药理毒理研究所, 浙江 杭州 310058
2. 浙江萧山老年医院药学部, 浙江 杭州 310006
Rictor regulates mitochondrial calcium signaling in mouse embryo stem cell-derived cardiomyocytes
SHAO Ying1(),WANG Jiadan1,2(),ZHU Danyan1,*()
1. Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
2. Department of Pharmacy, Zhejiang Xiaoshan Geriatric Hospital, Hangzhou 310006, China
 全文: PDF(8324 KB)   HTML( 19 )
摘要:

目的: 探索Rictor在小鼠胚胎干细胞来源心肌细胞(ESC-CM)中的表达、定位及其对线粒体钙信号的调控作用。方法: 通过经典"悬滴-悬浮-贴壁"三步法建立ESC-CM模型。利用免疫荧光法及蛋白质印迹法观察Rictor在ESC-CM中的定位。慢病毒技术干扰小鼠胚胎干细胞Rictor表达后,采用免疫荧光法考察ESC-CM内质网与线粒体的叠加情况;通过透射电镜观察ESC-CM的超微结构;活细胞工作站测定分化后心肌细胞线粒体钙瞬变;免疫共沉淀法检测ESC-CM中1,4,5-三磷酸肌醇受体(IP3R)、葡萄糖调节蛋白75(Grp75)、线粒体外膜的电压依赖性阴离子通道1(VDAC1)间的相互作用;蛋白质印迹法检测线粒体融合蛋白2(Mfn2)的表达情况。结果: Rictor在ESC-CM中主要定位于内质网及线粒体-内质网结构偶联(MAM)域,且其表达定位与线粒体及内质网有很好的叠加。干扰Rictor后,心肌细胞线粒体部分呈散点状,线粒体与内质网的叠加率降低(P < 0.01);ESC-CM超微MAM形成减少;ATP刺激引起的ESC-CM线粒体钙瞬变幅度下降,其中钙瞬变斜率和上升峰值均降低(均P < 0.01);MAM中IP3R、Grp75、VDAC1相互作用明显减弱,且Mfn2蛋白表达降低(P < 0.01)。结论: 干扰小鼠胚胎干细胞中Rictor表达可降低ESC-CM中钙从内质网到线粒体的释放,这可能是通过影响IP3R、Grp75、VDAC1间相互作用,减少Mfn2表达,进而破坏MAM来实现的。

关键词: 胚胎干细胞/细胞学肌细胞, 心脏/细胞学哺乳动物雷帕霉素靶蛋白钙信号内质网线粒体    
Abstract:

Objective: To explore the expression, localization and regulatory effect on mitochondrial calcium signaling of Rictor in embryonic stem cell-derived cardiomyocytes (ESC-CMs). Methods: Classical embryonic stem cell cardiomyogenesis model was used for differentiation of mouse embryonic stem cells into cardiomyocytes. The location of Rictor in ESC-CMs was investigated by immunofluorescence and Western blot. The expression of Rictor in mouse embryonic stem cells was interfered with lentiviral technology, then the superposition of mitochondria and endoplasmic reticulum (ER) in ESC-CMs was detected with immunofluorescence method; the cellular ultrastructure of ESC-CMs was observed by transmission electron microscope; the mitochondrial calcium transients of ESC-CMs was detected by living cell workstation; immunoprecipitation was used to detect the interaction between 1, 5, 5-trisphosphate receptor (IP3 receptor, IP3R), glucose-regulated protein 75 (Grp75) and voltage-dependent anion channel 1 (VDAC1) in mitochondrial outer membrane; the expression of mitochondrial fusion protein (mitonusin-2, Mfn2) was detected by Western blot. Results: Rictor was mainly localized in the endoplasmic reticulum and mitochondrial-endoplasmic reticulum membrane (MAM) in ESC-CMs. Immunofluorescence results showed that Rictor was highly overlapped with ER and mitochondria in ESC-CMs. After mitochondrial and ER were labeled with Mito-Tracker Red and ER-Tracker Green, it was demonstrated that the mitochondria of the myocardial cells in the Rictor group were scattered, and the superimposition rate of mitochondria and ER was lower than that of the negative control group (P < 0.01). The MAM structures were decreased in ESC-CMs after knockdown of Rictor. The results of the living cell workstation showed that the amplitude of mitochondrial calcium transients by ATP stimulation in ESC-CMs was decreased after knockdown of Rictor (P < 0.01). The results of co-immunoprecipitation showed that the interaction between IP3R, Grp75 and VDAC1 in the MAM structure of the cardiomyocytes in the Rictor group was significantly attenuated (P < 0.01); the results of Western blot showed that the expression of Mfn2 protein was significantly decreased (P < 0.01). Conclusion: Using lentiviral technology to interfere Rictor expression in mouse embryonic stem cells, the release of calcium from the endoplasmic reticulum to mitochondria in ESC-CMs decreases, which may be affected by reducing the interaction of IP3R, Grp75, VDAC1 and decreasing the expression of Mfn2, leading to the damage of MAM structure.

Key words: Embryonic stem cells/cytology    Myocytes, cardiac/cytology    Mammalian target of rapamycin    Calcium signaling    Endoplasmic reticulum    Mitochondrial
收稿日期: 2018-08-01 出版日期: 2019-05-13
:  R966  
基金资助: 国家重点研发计划政府间国际科技创新合作重点专项(中印尼生物技术联合实验室)(2017YFE0102200);国家自然科学基金(81573426);浙江省公益性技术应用研究计划(2016C33157)
通讯作者: 朱丹雁     E-mail: shao940618@zju.edu.cn;304712785@qq.com;zdyzxb@zju.edu.cn
作者简介: 邵颖(1994-), 女, 硕士研究生, 主要从事干细胞生物学研究; E-mail:shao940618@zju.edu.cn; https://orcid.org/0000-0002-9907-2228|王佳丹(1992-), 女, 硕士, 初级药师, 主要从事干细胞生物学研究; E-mail:304712785@qq.com; https://orcid.org/0000-0002-5257-8811
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邵颖
王佳丹
朱丹雁

引用本文:

邵颖,王佳丹,朱丹雁. Rictor对小鼠胚胎干细胞来源心肌细胞线粒体钙信号的调控[J]. 浙江大学学报(医学版), 2019, 48(1): 65-74.

SHAO Ying,WANG Jiadan,ZHU Danyan. Rictor regulates mitochondrial calcium signaling in mouse embryo stem cell-derived cardiomyocytes. J Zhejiang Univ (Med Sci), 2019, 48(1): 65-74.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2019.02.11        http://www.zjujournals.com/med/CN/Y2019/V48/I1/65

图 1  小鼠胚胎干细胞来源的心肌细胞中Rictor与内质网及线粒体的共定位结果
图 2  Rictor在小鼠胚胎干细胞来源的心肌细胞各细胞器中的表达电泳图
图 3  干扰Rictor蛋白表达后小鼠胚胎干细胞来源的心肌细胞中线粒体与内质网的叠加在共聚焦显微镜下所见
图 4  干扰Rictor蛋白表达后小鼠胚胎干细胞来源的心肌细胞中MAM、线粒体及内质网的超微结构透射电镜观察
图 5  干扰Rictor蛋白表达后ATP刺激的小鼠胚胎干细胞来源心肌细胞线粒体钙瞬变免疫荧光图
图 6  干扰Rictor蛋白后小鼠胚胎干细胞来源心肌细胞在ATP刺激后的荧光强度变化
图 7  干扰Rictor蛋白表达后小鼠胚胎干细胞来源心肌细胞中Mfn2蛋白表达电泳图
图 8  干扰Rictor蛋白表达后小鼠胚胎干细胞来源心肌细胞中Grp75、IP3R、VDAC1蛋白共沉淀电泳图
1 CHIANG G G , ABRAHAM R T . Targeting the mTOR signaling network in cancer[J]. Trends Mol Med, 2007, 13 (10): 433- 442
doi: 10.1016/j.molmed.2007.08.001
2 LAPLANTE M , SABATINI D M . mTOR signaling at a glance[J]. J Cell Sci, 2009, 122 (Pt 20): 3589- 3594
3 GUERTIN D A , STEVENS D M , THOREEN C C et al. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1[J]. Dev Cell, 2006, 11 (6): 859- 871
doi: 10.1016/j.devcel.2006.10.007
4 OH W J , JACINTO E . mTOR complex 2 signaling and functions[J]. Cell Cycle, 2011, 10 (14): 2305- 2316
doi: 10.4161/cc.10.14.16586
5 GURUSAMY N , LEKLI I , MUKHERJEE S et al. Cardioprotection by resveratrol:a novel mechanism via autophagy involving the mTORC2 pathway[J]. Cardiovasc Res, 2010, 86 (1): 103- 112
doi: 10.1093/cvr/cvp384
6 BETZ C , STRACKA D , PRESCIANOTTO-BASCHONG C et al. mTOR complex 2-Akt signaling at mitochondria-associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology[J]. Proc Natl Acad Sci U S A, 2013, 110 (31): 12526- 12534
doi: 10.1073/pnas.1302455110
7 JOUAVILLE L S , PINTON P , BASTIANUTTO C et al. Regulation of mitochondrial ATP synthesis by calcium:evidence for a long-term metabolic priming[J]. Proc Natl Acad Sci U S A, 1999, 96 (24): 13807- 13812
doi: 10.1073/pnas.96.24.13807
8 RIZZUTO R , BRINI M , MURGIA M et al. Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria[J]. Science, 1993, 262 (5134): 744- 747
doi: 10.1126/science.8235595
9 CSORDáS G , VáRNAI P , GOLENáRT et al. Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface[J]. Mol Cell, 2010, 39 (1): 121- 132
doi: 10.1016/j.molcel.2010.06.029
10 KOSHIBA T , YASUKAWA K , YANAGI Y et al. Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling[J]. Sci Signal, 2011, 4 (158): ra7
11 PAPANICOLAOU K N , KHAIRALLAH R J , NGOH G A et al. Mitofusin-2 maintains mitochondrial structure and contributes to stress-induced permeability transition in cardiac myocytes[J]. Mol Cell Biol, 2011, 31 (6): 1309- 1328
doi: 10.1128/MCB.00911-10
12 NAON D , ZANINELLO M , GIACOMELLO M et al. Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether[J]. Proc Natl Acad Sci U S A, 2016, 113 (40): 11249- 11254
doi: 10.1073/pnas.1606786113
13 YING Q L , NICHOLS J , CHAMBERS I et al. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3[J]. Cell, 2003, 115 (3): 281- 292
14 FU J D , LI J , TWEEDIE D et al. Crucial role of the sarcoplasmic reticulum in the developmental regulation of Ca2+ transients and contraction in cardiomyocytes derived from embryonic stem cells[J]. FASEB J, 2006, 20 (1): 181- 183
doi: 10.1096/fj.05-4501fje
15 MCKINSEY T A , ZHANG C L , Olson E N . Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5[J]. Proc Natl Acad Sci U S A, 2000, 97 (26): 14400- 14405
doi: 10.1073/pnas.260501497
16 MICHALAK M , LYNCH J , GROENENDYK J et al. Calreticulin in cardiac development and pathology[J]. Biochim Biophys Acta, 2002, 1600 (1-2): 32- 37
doi: 10.1016/S1570-9639(02)00441-7
17 CHUNG S , DZEJA P P , FAUSTINO R S et al. Developmental restructuring of the creatine kinase system integrates mitochondrial energetics with stem cell cardiogenesis[J]. Ann N Y Acad Sci, 2008, 1147:254- 263
doi: 10.1196/annals.1427.004
18 ZHENG B , WANG J , TANG L et al. mTORC1 and mTORC2 play different roles in regulating cardiomyocyte differentiation from embryonic stem cells[J]. Int J Dev Biol, 2017, 61 (1-2): 65- 72
doi: 10.1387/ijdb.160207dz
19 ZHENG B , WANG J , TANG L et al. Involvement of Rictor/mTORC2 in cardiomyocyte differentiation of mouse embryonic stem cells in vitro[J]. Int J Biol Sci, 2017, 13 (1): 110- 121
doi: 10.7150/ijbs.16312
20 SHINOZAWA T , FURUKAWA H , SATO E et al. A novel purification method of murine embryonic stem cell-and human-induced pluripotent stem cell-derived cardiomyocytes by simple manual dissociation[J]. J Biomol Screen, 2012, 17 (5): 683- 691
doi: 10.1177/1087057111434145
21 SHU L , HOUGHTON P J . The mTORC2 complex regulates terminal differentiation of C2C12 myoblasts[J]. Mol Cell Biol, 2009, 29 (17): 4691- 4700
doi: 10.1128/MCB.00764-09
22 LOU Y J , LIANG X G . Embryonic stem cell application in drug discovery[J]. Acta Pharmacol Sin, 2011, 32 (2): 152- 159
doi: 10.1038/aps.2010.194
23 GUO A , YANG H T . Ca2+ removal mechanisms in mouse embryonic stem cell-derived cardiomyocytes[J]. AJP:Cell Physiol, 2009, 297 (3): C732- C741
doi: 10.1152/ajpcell.00025.2009
24 VALLI A , ROSNER M , FUCHS C et al. Embryoid body formation of human amniotic fluid stem cells depends on mTOR[J]. Oncogene, 2010, 29 (7): 966- 977
doi: 10.1038/onc.2009.405
25 FRIAS M A , THOREEN C C , JAFFE J D et al. mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s[J]. Curr Biol, 2006, 16 (18): 1865- 1870
doi: 10.1016/j.cub.2006.08.001
26 ZHAO X , LU S , NIE J et al. Phosphoinositide-dependent kinase 1 and mTORC2 synergistically maintain postnatal heart growth and heart function in mice[J]. Mol Cell Biol, 2014, 34 (11): 1966- 1975
doi: 10.1128/MCB.00144-14
27 VIDARSSON H , HYLLNER J , SARTIPY P . Differentiation of human embryonic stem cells to cardiomyocytes for in vitro and in vivo applications[J]. Stem Cell Rev, 2010, 6 (1): 108- 120
28 DE BRITO O M , SCORRANO L . An intimate liaison:spatial organization of the endoplasmic reticulum-mitochondria relationship[J]. EMBO J, 2010, 29 (16): 2715- 2723
doi: 10.1038/emboj.2010.177
29 DE BRITO O M , SCORRANO L . Mitofusin 2 tethers endoplasmic reticulum to mitochondria[J]. Nature, 2008, 456 (7222): 605- 610
doi: 10.1038/nature07534
[1] 肖梨,佟晓永. 肺动脉高压形成中的血管重构分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 102-110.
[2] 赵誉,张凤,赵筱萍,袁玮,张金华,王毅. 参麦注射液保护氧化损伤心肌细胞线粒体的机制研究[J]. 浙江大学学报(医学版), 2018, 47(5): 507-513.
[3] 何佳怡,张信美. 氧化应激在子宫内膜异位症发病机制中的研究进展[J]. 浙江大学学报(医学版), 2018, 47(4): 419-425.
[4] 蒋滟蕲,杨雅兰,杨婷,李玥伶,陈莉玲,燕锦,杨艳芳. UCP2 rs659366位点多态性与结直肠癌术后患者生存结局的关系[J]. 浙江大学学报(医学版), 2018, 47(2): 143-149.
[5] 杨静娟,吴峰峰,陈江华,杨毅. 脓毒性急性肾损伤小鼠线粒体DNA损伤修复相关基因的筛选[J]. 浙江大学学报(医学版), 2018, 47(1): 41-50.
[6] 郑静 等. 浙江省新生儿脂肪酸氧化代谢疾病筛查及随访分析[J]. 浙江大学学报(医学版), 2017, 46(3): 248-255.
[7] 王莉,王瑜,武海英. 尼克酰胺降低妊娠期糖尿病大鼠的血糖水平以及调控线粒体超氧水平研究[J]. 浙江大学学报(医学版), 2017, 46(2): 179-185.
[8] 郑艳榕,张翔南,陈忠. Nix介导的线粒体自噬机制的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 92-96.
[9] 张翀, 周佳乐, 方洁, 张大勇, 王宝明, 陈瑞玲, 潘建平. TcpC诱导人血管内皮细胞凋亡及其机制[J]. 浙江大学学报(医学版), 2013, 42(5): 492-497.
[10] 王家胜,罗建红,张筱敏综述. 从内质网到高尔基体:一个受信号分子调控的蛋白质分泌过程[J]. 浙江大学学报(医学版), 2013, 42(4): 472-.
[11] 姜翠翠, 夏满莉, 王敏, 陈士票. 右美托咪定预处理减轻离体大鼠心脏缺血/再灌注损伤的线粒体相关机制[J]. 浙江大学学报(医学版), 2013, 42(3): 326-330.
[12] . 人参皂苷Rg1经线粒体通路抗Aβ25-35致原代大鼠皮层神经元凋亡[J]. 浙江大学学报(医学版), 2012, 41(4): 393-401.
[13] . 线粒体钙单向转运体在缺血后处理中对心肌保护的作用[J]. 浙江大学学报(医学版), 2011, 40(3): 304-308.
[14] 夏强,钱令波. 心脑缺血再灌注损伤的机制及防治策略研究进展[J]. 浙江大学学报(医学版), 2010, 39(6): 551-558.
[15] 李正红,姜翠荣,夏满莉,叶红伟,关宿东,高琴. 乙醛脱氢酶2和线粒体渗透转换参与乙醇后处理的心肌保护作用[J]. 浙江大学学报(医学版), 2010, 39(6): 566-571.