Please wait a minute...
浙江大学学报(医学版)  2019, Vol. 48 Issue (1): 44-49    DOI: 10.3785/j.issn.1008-9292.2019.02.08
专题报道     
细菌RNA聚合酶抑制剂的分子生物学机制研究进展
史婧1(),冯钰1,2
1. 浙江大学医学院生物物理系, 浙江 杭州 310058
2. 浙江大学医学院附属邵逸夫医院病理科, 浙江 杭州 310016
New inhibitors targeting bacterial RNA polymerase
SHI Jing1(),FENG Jue1,2
 全文: PDF(1296 KB)   HTML( 22 )
摘要:

细菌RNA聚合酶抑制剂利福霉素类药物是治疗结核病的一线药物,随着利福霉素类药物耐药菌的出现,开发能杀灭利福霉素类药物耐药菌且生物利用度高的新型RNA聚合酶抑制剂已迫在眉睫。细菌RNA聚合酶与不同抑制剂复合物的晶体结构和冷冻电镜结构研究揭示了RNA聚合酶抑制剂主要具有以下分子生物学作用机制:①阻止短RNA延伸;②与底物竞争;③阻止“桥螺旋”变构;④阻止蟹钳打开;⑤阻止蟹钳关闭。本文综述了这五类重要RNA聚合酶抑制剂的研究进展,以期为已有RNA聚合酶抑制剂的修饰改造和新型RNA聚合酶抑制剂的开发提供参考。

关键词: 利福霉素类/药代动力学抗菌药指导DNA的RNA聚合酶类/拮抗剂和抑制剂显微镜检查,电子冷冻综述    
Abstract:

Rifamycins, a group of bacterial RNA polymerase inhibitors, are the first-line antimicrobial drugs to treat tuberculosis. In light of the emergence of rifamycin-resistant bacteria, development of new RNA polymerase inhibitors that kill rifamycin-resistant bacteria with high bioavailability is urgent. Structural analysis of bacterial RNA polymerase in complex with inhibitors by crystallography and cryo-EM indicates that RNA polymerase inhibitors function through five distinct molecular mechanisms: inhibition of the extension of short RNA; competition with substrates; inhibition of the conformational change of the ‘bridge helix’; inhibition of clamp opening; inhibition of clamp closure. This article reviews the research progress of these five groups of RNA polymerase inhibitors to provide references for the modification of existing RNA polymerase inhibitors and the discovery of new RNA polymerase inhibitors.

Key words: Rifamycins/pharmacokinetics    Anti-bacterial agents    DNA-directed RNA polymerases/antagonists & inhibitors    Microscopy, electron    Freezing    Review
收稿日期: 2018-07-25 出版日期: 2019-05-10
:  Q71  
基金资助: 国家重点研发计划(2018YFA0507800)
作者简介: 史 婧(1981—),女,博士,助理研究员,讲师,主要从事细菌RNA聚合酶的结构及功能研究;E-mail: 0617440@zju.edu.cn; https://orcid.org/0000-0001-9389-4055
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
史婧
冯钰

引用本文:

史婧,冯钰. 细菌RNA聚合酶抑制剂的分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 44-49.

SHI Jing,FENG Jue. New inhibitors targeting bacterial RNA polymerase. J Zhejiang Univ (Med Sci), 2019, 48(1): 44-49.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2019.02.08        http://www.zjujournals.com/med/CN/Y2019/V48/I1/44

图1  细菌RNA聚合酶和抑制剂的复合物结构
图2  细菌RNA聚合酶抑制剂的化学结构
1 GRUBER T M , GROSS C A . Multiple sigma subunits and the partitioning of bacterial transcription space[J]. Annu Rev Microbiol,2003,57:441-466.
2 ZHANG G , CAMPBELL E A , MINAKHIN L , et al . Crystal structure of thermus aquaticus core RNA polymerase at 3.3 ? resolution[J]. Cell,1999,98(6):811-824.
3 MURAKAMI K S . X-ray crystal structure of Escherichia coli RNA polymerase sigma70 holoenzyme[J]. J Biol Chem,2013,288(13):9126-9134.
4 DEGEN D , FENG Y , ZHANG Y , et al . Transcription inhibition by the depsipeptide antibiotic salinamide A[J/OL]. Elife,2014,3:e02451.
5 ZUO Y , WANG Y , STEITZ T A . The mechanism of E. coli RNA polymerase regulation by ppGpp is suggested by the structure of their complex[J]. Mol Cell,2013,50(3):430-436.
6 HUBIN E A , FAY A, XU C , et al . Structure and function of the mycobacterial transcription initiation complex with the essential regulator RbpA[J/OL]. Elife,2017,6:e22520.
7 LIN W , MANDAL S , DEGEN D , et al . Structural basis of mycobacterium tuberculosis transcription and transcription inhibition[J]. Mol Cell,2017,66(2):169-179.e8.
8 BAE B, DAVIS E , BROWN D , et al . Phage T7 Gp2 inhibition of Escherichia coli RNA polymerase involves misappropriation of sigma70 domain 1.1[J]. Proc Natl Acad Sci U S A,2013,110:19772-19777.
9 FEKLISTOV A , BAE B, HAUVER J , et al . RNA polymerase motions during promoter melting[J]. Science,2017,356(6340):863-866.
10 WEINZIERL R O . The nucleotide addition cycle of RNA polymerase is controlled by two molecular hinges in the bridge helix domain[J]. BMC Biol,2010,8:134.
11 HEIN P P , LANDICK R . The bridge helix coordinates movements of modules in RNA polymerase[J]. BMC Biol,2010,8:141.
12 WEHRLI W . Ansamycins chemistry, biosynthesis and biological activity[J]. Top Curr Chem,1977,72:21-49.
13 ROTHSTEIN D M . Rifamycins, alone and in combination[J]. Cold Spring Harb Perspect Med,2016,6(7):pii:a027011.
14 ARISTOFF P A , GARCIA G A , KIRCHHOFF P D , et al . Rifamycins—obstacles and opportunities[J]. Tuberculosis (Edinb),2010,90:94-118.
15 MOLODTSOV V , SCHARF N T , STEFAN M A , et al . Structural basis for rifamycin resistance of bacterial RNA polymerase by the three most clinically important RpoB mutations found in Mycobacterium tuberculosis [J]. Mol Microbiol,2017,103(6):1034-1045.
16 CAMPBELL E A , KORZHEVA N , MUSTAEV A , et al . Structural mechanism for rifampicin inhibition of bacterial RNA polymerase[J]. Cell,2001,104(6):901-912.
17 ARTSIMOVITCH I , VASSYLYEVA M N , SVETLOV D , et al . Allosteric modulation of the RNA polymerase catalytic reaction is an essential component of transcription control by rifamycins[J]. Cell,2005,122(3):351-363.
18 SMITH A B 3RD, DONG S , BRENNEMAN J B , et al . Total synthesis of (+)-sorangicin A[J]. J Am Chem Soc, 2009,131(34):12109-12111.
19 CAMPBELL E A , PAVLOVA O , ZENKIN N , et al . Structural, functional, and genetic analysis of sorangicin inhibition of bacterial RNA polymerase[J]. EMBO J,2005,24(4):674-682.
20 CICILIATO I , CORTI E , SARUBBI E , et al . Antibiotics GE23077, novel inhibitors of bacterial RNA polymerase. I. Taxonomy, isolation and characterization[J]. J Antibiot (Tokyo),2004,57(3):210-217.
21 ZHANG Y , DEGEN D , HO M X, et al . GE23077 binds to the RNA polymerase 'i' and 'i+1' sites and prevents the binding of initiating nucleotides[J/OL]. Elife,2014,3:e02450.
22 MAFFIOLI S I , ZHANG Y , DEGEN D , et al . Antibacterial nucleoside-analog inhibitor of bacterial RNA polymerase[J]. Cell,2017,169(7):1240-1248.e23.
23 SIDDHIKOL C , ERBSTOESZER J W , WEISBLUM B . Mode of action of streptolydigin[J]. J Bacteriol,1969,99(1):151-155.
24 CASSANI G , BURGESS R R , GOODMAN H M , et al . Inhibition of RNA polymerase by streptolydigin[J]. Nat New Biol,1971,230(15):197-200.
25 MCCLURE W R . On the mechanism of streptolydigin inhibition of Escherichia coli RNA polymerase[J]. J Biol Chem,1980,255(4):1610-1616.
26 TEMIAKOV D , ZENKIN N , VASSYLYEVA M N , et al . Structural basis of transcription inhibition by antibiotic streptolydigin[J]. Mol Cell,2005,19(5):655-666.
27 TUSKE S , SARAFIANOS S G , WANG X , et al . Inhibition of bacterial RNA polymerase by streptolydigin: stabilization of a straight-bridge-helix active-center conformation[J]. Cell,2005,122(4):541-552.
28 MOORE B S , TRISCHMAN J A , SENG D , et al . Salinamides, antiinflammatory depsipeptides from a marine streptomycete[J]. J Org Chem,1999,64(4):1145-1150.
29 ARTSIMOVITCH I , CHU C , LYNCH A S , et al . A new class of bacterial RNA polymerase inhibitor affects nucleotide addition[J]. Science,2003,302(5645):650-654.
30 FENG Y , DEGEN D , WANG X , et al . Structural basis of transcription inhibition by CBR hydroxamidines and CBR pyrazoles[J]. Structure,2015,23(8):1470-1481.
31 IRSCHIK H , GERTH K , H?FLE G , et al . The myxopyronins, new inhibitors of bacterial RNA synthesis from Myxococcus fulvus (Myxobacterales)[J]. J Antibiot (Tokyo),1983,36(12):1651-1658.
32 MUKHOPADHYAY J , DAS K, ISMAIL S , et al . The RNA polymerase "switch region" is a target for inhibitors[J]. Cell,2008,135(2):295-307.
33 BELOGUROV G A , VASSYLYEVA M N , SEVOST-YANOVA A , et al . Transcription inactivation through local refolding of the RNA polymerase structure[J]. Nature,2009,457(7227):332-335.
34 MOLODTSOV V , FLEMING P R , EYERMANN C J , et al . X-ray crystal structures of Escherichia coli RNA polymerase with switch region binding inhibitors enable rational design of squaramides with an improved fraction unbound to human plasma protein[J]. J Med Chem,2015,58(7):3156-3171.
35 CHAKRABORTY A , WANG D , EBRIGHT Y W , et al . Opening and closing of the bacterial RNA polymerase clamp[J]. Science,2012,337(6094):591-595.
36 BUURMAN E T , FOULK M A , GAO N , et al . Novel rapidly diversifiable antimicrobial RNA polymerase switch region inhibitors with confirmed mode of action in Haemophilus influenzae[J]. J Bacteriol,2012,194(20):5504-5512.
37 LANCASTER J W , MATTHEWS S J . Fidaxomicin: the newest addition to the armamentarium against Clostridium difficile infections[J]. Clin Ther,2012,34(1):1-13.
38 VENUGOPAL A A , JOHNSON S . Fidaxomicin: a novel macrocyclic antibiotic approved for treatment of Clostridium difficile infection[J]. Clin Infect Dis,2012,54(4):568-574.
39 LIN W , DAS K, DEGEN D , et al . Structural basis of transcription inhibition by fidaxomicin (lipiarmycin A3)[J]. Mol Cell,2018,70(1):60-71.e15.
[1] Baboo Kalianee Devi, 陈正云, 张信美. 子宫腺肌病患者药物治疗进展[J]. 浙江大学学报(医学版), 2019, 48(2): 142-147.
[2] 吴彬彬, 杨毅. 心脏手术相关急性肾损伤早期生物学标志物研究进展[J]. 浙江大学学报(医学版), 2019, 48(2): 224-229.
[3] 杨坤, 胡晓晟. 微小RNA-21在心脏疾病中的研究进展[J]. 浙江大学学报(医学版), 2019, 48(2): 214-218.
[4] 徐力, 许鸣, 童向民. 有氧糖酵解在非霍奇金淋巴瘤发病及耐药机制中的作用[J]. 浙江大学学报(医学版), 2019, 48(2): 219-223.
[5] 赵世浩,张雪,柯越海. 细胞衰老与特发性肺纤维化的相关性研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 111-115.
[6] 宋方俊,郭江涛. 电压门控离子通道结构生物学研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 25-33.
[7] 李春桃,张会冰,张岩. 单颗粒冷冻电镜揭开G蛋白偶联受体结构生物学研究的新篇章[J]. 浙江大学学报(医学版), 2019, 48(1): 39-43.
[8] 孙博强,王琼艳,潘冬立. 单纯疱疹病毒潜伏和激活机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 89-101.
[9] 沈夏梦,吕卫国. 外泌体参与卵巢癌患者对化疗耐药的研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 116-120.
[10] 洪非凡,李月舟. 超声遗传学技术中的机械敏感性离子通道[J]. 浙江大学学报(医学版), 2019, 48(1): 34-38.
[11] 肖梨,佟晓永. 肺动脉高压形成中的血管重构分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 102-110.
[12] 向一郎,吴子衡,张鸿坤. 胸主动脉覆膜支架原位开窗技术的应用现状[J]. 浙江大学学报(医学版), 2018, 47(6): 617-622.
[13] 曹丽芹,施继敏. 异基因造血干细胞移植植入失败研究进展[J]. 浙江大学学报(医学版), 2018, 47(6): 651-658.
[14] 唐和孝,白玉泉,申武林,赵金平. 白介素6在肺癌中的作用研究进展[J]. 浙江大学学报(医学版), 2018, 47(6): 659-664.
[15] 赵慧慧,汤慧芳. 基于基因敲除的炎性肠疾病复合动物模型研究进展[J]. 浙江大学学报(医学版), 2018, 47(6): 665-670.