Please wait a minute...
浙江大学学报(医学版)  2019, Vol. 48 Issue (1): 34-38    DOI: 10.3785/j.issn.1008-9292.2019.02.06
专题报道     
超声遗传学技术中的机械敏感性离子通道
洪非凡1(),李月舟1,2()
1. 浙江大学医学院生物物理系, 浙江 杭州 310058
2. 浙江大学医学院附属儿童医院实验检验中心, 浙江 杭州 310052
Application of mechanosensitive channels in sonogenetics
HONG Feifan1(),LI Yuezhou1,2()
 全文: PDF(725 KB)   HTML( 28 )
摘要:

超声遗传学技术是一种非侵入性神经调控手段。机械敏感性离子通道可以被低强度的超声激活而开放,达到调节可兴奋性细胞活性的目的,避免高强度超声对组织器官可能造成的损害。本文着重介绍了大电导机械敏感性离子通道、瞬时受体电位通道、双孔钾通道、Piezo等机械敏感性离子通道在超声神经调控中的研究进展及其应用,以期为超声遗传学研究提供参考。

关键词: 离子通道电生理学超声检查神经生理学神经元综述    
Abstract:

As a non-invasive approach, sonogenetics is applied to control neuronal activity. The mechanosensitive channel(MSC), which has low threshold of responding to ultrasound, may be the alternative solution. Sonogenetics is the technique that activates the MSC expressed in targeted neurons by low intensity ultrasound, thus achieve the neuromodulation. In this review, we introduce the mechanosensitive channel of large conductance, transient receptor potential, channels of the two-pore-domain potassium family, Piezo and the recent progress on their application in sonogenetics.

Key words: Ion channels    Electrophysiology    Ultrasonography    Neurophysiology    Neurons    Review
收稿日期: 2018-08-21 出版日期: 2019-05-10
:  Q71  
基金资助: 国家自然科学基金(81527901,31270878)
通讯作者: 李月舟     E-mail: hongfeifanhff@qq.com;yuezhou-li@zju.edu.cn
作者简介: 洪非凡(1995—),男,硕士研究生,主要从事超声神经调控研究;E-mail:hongfeifanhff@qq.comhttps://orcid.org/0000-0003-3792-906X|李月舟(1972—),男,博士,研究员,主要从事机械敏感性离子通道的功能和机制研究;E-mail:yuezhou-li@zju.edu.cnhttps://orcid.org/ 0000-0003-0582-4255
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
洪非凡
李月舟

引用本文:

洪非凡,李月舟. 超声遗传学技术中的机械敏感性离子通道[J]. 浙江大学学报(医学版), 2019, 48(1): 34-38.

HONG Feifan,LI Yuezhou. Application of mechanosensitive channels in sonogenetics. J Zhejiang Univ (Med Sci), 2019, 48(1): 34-38.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2019.02.06        http://www.zjujournals.com/med/CN/Y2019/V48/I1/34

图1  超声波调控神经活性的机制[15]
1 BOYDEN E S , ZHANG F , BAMBERG E , et al . Millisecond-timescale, genetically targeted optical control of neural activity[J]. Nat Neurosci,2005,8(9):1263-1268.
2 FRY F J, ADES H W , FRY W J . Production of reversible changes in the central nervous system by ultrasound[J]. Science,1958,127(3289):83-84.
3 FOSTER K R , WIEDERHOLD M L . Auditory responses in cats produced by pulsed ultrasound[J]. J Acoust Soc Am,1978,63(4):1199-1205.
4 TYLER W J , TUFAIL Y , FINSTERWALD M , et al . Remote excitation of neuronal circuits using low-intensity, ultrasound low-frequency [J/OL]. PLoS One,2008,3(10):e3511.
5 DEFFIEUX T , YOUNAN Y , WATTIEZ N , et al . Low-intensity focused ultrasound modulates monkey visuomotor behavior[J]. Curr Biol,2013,23(23):2430-2433.
6 LEGON W , SATO T F , OPITZ A , et al . Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans[J]. Nat Neurosci,2014,17(2):322-329.
7 TUFAIL Y , YOSHIHIRO A , PATI S , et al . Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound[J]. Nat Protoc,2011,6(9):1453-1470.
8 IBSEN S , TONG A , SCHUTT C , et al . Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans [J]. Nat Commun,2015,6:8264.
9 MARTINAC B , BUECHNER M , DELCOUR A H , et al . Pressure-sensitive ion channel in Escherichia coli [J]. Proc Natl Acad Sci U S A,1987,84(8):2297-2301.
10 LEVINA N , T?TEMEYER S , STOKES N R , et al . Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity[J]. EMBO J,1999,18(7):1730-1737.
11 CRUICKSHANK C C , MINCHIN R F , LE D A C , et al . Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli[J]. Biophys J,1997,73(4):1925-1931.
12 WALTON T A , IDIGO C A , HERRERA N , et al . MscL: channeling membrane tension[J]. Pflugers Arch,2015,467(1):15-25.
13 DOERNER J F , FEBVAY S , CLAPHAM D E . Controlled delivery of bioactive molecules into live cells using the bacterial mechanosensitive channel MscL[J]. Nat Commun,2012,3:990.
14 HEUREAUX J , CHEN D , MURRAY V L , et al . Activation of a bacterial mechanosensitive channel in mammalian cells by cytoskeletal stress[J]. Cell Mol Bioeng,2014,7(3):307-319.
15 YE J , TANG S , MENG L , et al . Ultrasonic control of neural activity through activation of the mechano-sensitive channel MscL[J]. Nano Lett,2018,18(7):4148-4155.
16 NILIUS B , OWSIANIK G . The transient receptor potential family of ion channels[J]. Genome Biol,2011,12(3):218.
17 VENKATACHALAM K , MONTELL C . TRP channels[J]. Annu Rev Biochem,2007,76:387-417.
18 DAMANN N , VOETS T , NILIUS B . TRPs in our senses[J]. Curr Biol,2008,18(18):R880-889.
19 KANG L , GAO J , SCHAFER W R , et al . C.elegans TRP family protein TRP-4 is a pore-forming subunit of a native mechanotransduction channel[J]. Neuron,2010,67(3):381-391.
20 WALKER R G , WILLINGHAM A T , ZUKER C S . A drosophila mechanosensory transduction channel[J]. Science,2000,287(5461):2229-2234.
21 SIDI S , FRIEDRICH R W , NICOLSON T . NompC TRP channel required for vertebrate sensory hair cell mechanotransduction[J]. Science,2003,301(5629):96-99.
22 LI W , FENG Z Y , STERNBERG P ,et al . A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue[J]. Nature,2006,440(7084):684-687 .
23 CHALASANI S H , CHRONIS N , TSUNOZAKI M , et al . Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans [J]. Nature,2007,450(7166):63-70.
24 KOCABAS A , SHEN C H , GUO Z V , et al . Controlling interneuron activity in Caenorhabditis elegans to evoke chemotactic behaviour[J]. Nature,2012,490(7419):273-277.
25 LESAGE F , GUILLEMARE E , FINK M , et al . TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure[J]. EMBO J,1996,15(5):1004-1011.
26 RENIGUNTA V , SCHLICHTH?RL G , DAUT J . Much more than a leak: structure and function of K2P-channels[J]. Pflugers Arch,2015,467(5):867-894.
27 FELICIANGELI S , CHATELAIN F C , BICHET D , et al . The family of K2P channels: salient structural and functional properties[J]. J Physiol,2015,593(12):2587-2603.
28 KUBANEK J , SHI J , MARSH J , et al . Ultrasound modulates ion channel currents[J]. Sci Rep,2016,6:24170.
29 COSTE B , MATHUR J , SCHMIDT M , et al . Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels[J]. Science,2010,330(6000):55-60.
30 GE J , LI W , ZHAO Q , et al . Architecture of the mammalian mechanosensitive Piezo1 channel[J]. Nature,2015,527(7576):64-69.
31 SYEDA R , XU J , DUBIN A E , et al . Chemical activation of the mechanotransduction channel Piezo1[J]. Elife,2015,4.
[1] Baboo Kalianee Devi, 陈正云, 张信美. 子宫腺肌病患者药物治疗进展[J]. 浙江大学学报(医学版), 2019, 48(2): 142-147.
[2] 吴彬彬, 杨毅. 心脏手术相关急性肾损伤早期生物学标志物研究进展[J]. 浙江大学学报(医学版), 2019, 48(2): 224-229.
[3] 杨坤, 胡晓晟. 微小RNA-21在心脏疾病中的研究进展[J]. 浙江大学学报(医学版), 2019, 48(2): 214-218.
[4] 徐力, 许鸣, 童向民. 有氧糖酵解在非霍奇金淋巴瘤发病及耐药机制中的作用[J]. 浙江大学学报(医学版), 2019, 48(2): 219-223.
[5] 赵世浩,张雪,柯越海. 细胞衰老与特发性肺纤维化的相关性研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 111-115.
[6] 宋方俊,郭江涛. 电压门控离子通道结构生物学研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 25-33.
[7] 史婧,冯钰. 细菌RNA聚合酶抑制剂的分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 44-49.
[8] 孙博强,王琼艳,潘冬立. 单纯疱疹病毒潜伏和激活机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 89-101.
[9] 沈夏梦,吕卫国. 外泌体参与卵巢癌患者对化疗耐药的研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 116-120.
[10] 徐丽臻,杨帆. 瞬时受体电位M8型离子通道选择性滤器的三维结构计算建模[J]. 浙江大学学报(医学版), 2019, 48(1): 19-24.
[11] 肖梨,佟晓永. 肺动脉高压形成中的血管重构分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 102-110.
[12] 向一郎,吴子衡,张鸿坤. 胸主动脉覆膜支架原位开窗技术的应用现状[J]. 浙江大学学报(医学版), 2018, 47(6): 617-622.
[13] 曹丽芹,施继敏. 异基因造血干细胞移植植入失败研究进展[J]. 浙江大学学报(医学版), 2018, 47(6): 651-658.
[14] 唐和孝,白玉泉,申武林,赵金平. 白介素6在肺癌中的作用研究进展[J]. 浙江大学学报(医学版), 2018, 47(6): 659-664.
[15] 赵慧慧,汤慧芳. 基于基因敲除的炎性肠疾病复合动物模型研究进展[J]. 浙江大学学报(医学版), 2018, 47(6): 665-670.