Please wait a minute...
浙江大学学报(医学版)  2019, Vol. 48 Issue (1): 12-18    DOI: 10.3785/j.issn.1008-9292.2019.02.03
专题报道     
I1363T突变致人骨骼肌电压门控钠通道快失活受损的机制
唐思阳1(),叶佳1,李月舟1,2()
1. 浙江大学医学院生物物理学系, 浙江 杭州310058
2. 浙江大学医学院附属儿童医院实验检验中心, 浙江 杭州310052
I1363T mutation induces the defects in fast inactivation of human skeletal muscle voltage-gated sodium channel
TANG Siyang1(),YE Jia1,LI Yuezhou1,2()
1.Department of Biophysics, Zhejiang University School of Medicine, Hangzhou 310058, China
2.Department of Laboratory, the Childrens Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
 全文: PDF(1055 KB)   HTML( 23 )
摘要: 目的

探究人源骨骼肌电压门控钠通道hNav1.4 I1363T突变体导致患者出现先天性副肌强直症状的机制。

方法

利用氨基酸序列比对,检测hNav1.4 I1363位点的保守性;将hNav1.4蛋白的羧基端融合荧光蛋白mCherry,利用共聚焦显微镜观察hNav1.4野生型与I1363T突变体蛋白的表达量与分布情况;通过全细胞电生理技术记录野生型与I1363T突变体的稳态激活及快失活参数,并进一步分析野生型与I1363T突变体的窗电流。

结果

hNav1.4 I1363位点在各类钠通道中高度保守。野生型与I1363T突变体均能正常上膜,且表达量无明显差异。野生型与I1363T突变体的50%激活电压V0.5 分别为(-29.08±0.24)mV和(-28.79±0.21)mV,斜率因子k分别为5.06±0.21和4.73±0.18(均P>0.05);野生型与I1363T突变体的50%失活电压V0.5 分别为(-68.03±0.34)mV和(-59.01±0.26)mV,斜率因子k分别为4.55±0.21和5.24±0.23(均P<0.05),I1363T突变体的失活电压向去极化方向移动,且更为平缓。I1363T突变体形成的窗电流大于野生型的窗电流。

结论

I1363T突变会导致hNav1.4慢失活受损,增加肌肉细胞兴奋性,导致肌强直的发生;而增大的窗电流使得钠离子在细胞内缓慢聚集,最终导致细胞兴奋性下降,引发肌无力。

关键词: 骨骼肌/病理生理学先天性肌强直/遗传学基因表达电压门控钠通道/遗传学突变转染    
Abstract: Objective

To investigate the mechanism of congenital paramyotonia caused by human skeletal muscle voltage-gated sodium channel hNav1.4 mutant I1363T.

Methods

The conservation of the mutant site were detecled by using amino acid sequence alignment; the C-terminal mCherry fusion hNav1.4 was constructed, and the expression and distribution of wild type and hNav1.4 mutant I1363T were determined by confocal microscopy; the steady-state activation, fast inactivation and window current of wild type and hNav1.4 mutant I1363T were examined by whole-cell patch clamp.

Results

Alignment of the amino acid sequences revealed that Ile1363 is highly conserved in human sodium channels. There was no significant difference in expression level and distribution between wild type and I1363T. Although no significant differences were observed between I1363T mutant and wild type in the activation upon channel gating, the V0.5 of voltage-dependence of fast inactivation of I1363T mutant [(-59.01±0.26) mV] shifted 9 mV towards depolarization as compared with wild type [(-68.03±0.34) mV], and the slope factor of voltage-dependence curve increased to (5.24±0.23) mV, compared with (4.55±0.21) mV of the wild type. Moreover, I1363T showed the larger window current than that of the wild type.

Conclusions

I1363T causes the defect in fast inactivation of hNav1.4, which may increase the excitability of muscle cells and be responsible for myotonia. The increased window current of I1363T may result in an increase of inward Na+ current, could subsequently inactivate the channels and lead to loss of excitability and paralysis.

Key words: Muscle, skeletal/physiopathology    Myotonia congenita/genetics    Gene expression    Voltage-gated sodium channels/genetics    Mutation    Transfection
收稿日期: 2018-08-21 出版日期: 2019-05-10
:  Q71  
基金资助: 国家重点基础研究发展计划(2014CB910302)
通讯作者: 李月舟     E-mail: 21218314@zju.edu.cn;yuezhou-li@zju.edu.cn
作者简介: 唐思阳(1989—),男,博士,助理研究员,主要从事离子通道及相关疾病研究;E-mail: 21218314@zju.edu.cnhttps://orcid.org/0000-0001-9361-7111|李月舟(1972—),男,博士,研究员,主要从事离子通道及相关疾病研究;E-mail: yuezhou-li@zju.edu.cnhttps://orcid.org/0000-0003-0582-4255
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
唐思阳
叶佳
李月舟

引用本文:

唐思阳,叶佳,李月舟. I1363T突变致人骨骼肌电压门控钠通道快失活受损的机制[J]. 浙江大学学报(医学版), 2019, 48(1): 12-18.

TANG Siyang,YE Jia,LI Yuezhou. I1363T mutation induces the defects in fast inactivation of human skeletal muscle voltage-gated sodium channel. J Zhejiang Univ (Med Sci), 2019, 48(1): 12-18.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2019.02.03        http://www.zjujournals.com/med/CN/Y2019/V48/I1/12

图1  I1363T突变体序列分析
图2  共聚焦显微镜下观察野生型和I1363T突变体在HEK293细胞中的表达及定位
图3  I1363T突变体的电压依赖性
图4  I1363T突变体的窗电流
1 PTACEK L J , GOUW L , KWIECI?SKI H , et al . Sodium channel mutations in paramyotonia congenita and hyperkalemic periodic paralysis[J]. Ann Neurol,1993,33(3):300-307.
2 LEHMANN-HORN F , RüDEL R , RICKER K . Membrane defects in paramyotonia congenita (Eulenburg)[J]. Muscle Nerve,1987,10(7):633-641.
3 CHAHINE M , GEORGE A L , ZHOU M , et al . Sodium channel mutations in paramyotonia congenita uncouple inactivation from activation[J]. Neuron,1994,12(2):281-294.
4 PTáCEK L J , GEORGE A L , BARCHI R L , et al . Mutations in an S4 segment of the adult skeletal muscle sodium channel cause paramyotonia congenita[J]. Neuron,1992,8(5):891-897.
5 HOFFMAN E P , LEHMANN-HORN F , RüDEL R . Overexcited or inactive: ion channels in muscle disease[J]. Cell,1995,80(5):681-686.
6 WOOD J N , BAKER M . Voltage-gated sodium channels[J]. Curr Opin Pharmacol,2001,1(1):17-21.
7 CATTERALL W A . Cellular and molecular biology of voltage-gated sodium channels[J]. Physiol Rev,1992,72(4 Suppl):S15-S48.
8 CATTERALL W A . From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels[J]. Neuron,2000,26(1):13-25.
9 MARBAN E , YAMAGISHI T , TOMASELLI G F . Structure and function of voltage-gated sodium channels[J]. J Physiol,1998,508( Pt 3):647-657.
10 MILLER T M , DIAS D S M R , MILLER H A , et al . Correlating phenotype and genotype in the periodic paralyses[J]. Neurology,2004,63(9):1647-1655.
11 EGRI C , RUBEN P C . A hot topic: temperature sensitive sodium channelopathies[J]. Channels(Austin),2012,6(2):75-85.
12 SUGIURA Y , AOKI T , SUGIYAMA Y , et al . Temperature-sensitive sodium channelopathy with heat-induced myotonia and cold-induced paralysis[J]. Neurology,2000,54(11):2179-2181.
13 WAGNER S , LERCHE H , MITROVIC N , et al . A novel sodium channel mutation causing a hyperkalemic paralytic and paramyotonic syndrome with variable clinical expressivity[J]. Neurology,1997,49(4):1018-1025.
14 CUMMINS T R , ZHOU J , SIGWORTH F J , et al . Functional consequences of a Na+ channel mutation causing hyperkalemic periodic paralysis[J]. Neuron,1993,10(4):667-678.
15 O’LEARY M E , CHEN L Q , KALLEN R G , et al . A molecular link between activation and inactivation of sodium channels[J]. J Gen Physiol,1995,106(4):641-658.
16 BENDAHHOU S , CUMMINS T R , KULA R W , et al . Impairment of slow inactivation as a common mechanism for periodic paralysis in DIIS4-S5[J]. Neurology,2002,58(8):1266-1272.
17 WEBB J , CANNON S C . Cold-induced defects of sodium channel gating in atypical periodic paralysis plus myotonia[J]. Neurology,2008,70(10):755-761.
18 BOUHOURS M , STERNBERG D , DAVOINE C S , et al . Functional characterization and cold sensitivity of T1313A, a new mutation of the skeletal muscle sodium channel causing paramyotonia congenita in humans[J]. J Physiol,2004,554(Pt 3):635-647.
19 DICE M S , ABBRUZZESE J L , WHEELER J T , et al . Temperature-sensitive defects in paramyotonia congenita mutants R1448C and T1313M[J]. Muscle Nerve,2004,30(3):277-288.
20 SIMKIN D , BENDAHHOU S . Skeletal muscle na channel disorders[J]. Front Pharmacol,2011,2:63.
21 MOHAMMADI B , MITROVIC N , LEHMANN-HORN F , et al . Mechanisms of cold sensitivity of paramyotonia congenita mutation R1448H and overlap syndrome mutation M1360V[J]. J Physiol,2003,547(Pt 3):691-698.
22 JURKAT-ROTT K , HOLZHERR B , FAULER M , et al . Sodium channelopathies of skeletal muscle result from gain or loss of function[J]. Pflugers Arch,2010,460(2):239-248.
23 KE Q , YE J , TANG S , et al . N1366S mutation of human skeletal muscle sodium channel causes paramyotonia congenita[J]. J Physiol,2017,595(22):6837-6850.
24 OKUDA S , KANDA F , NISHIMOTO K , et al . Hyperkalemic periodic paralysis and paramyotonia congenita—a novel sodium channel mutation[J]. J Neurol,2001,248(11):1003-1004.
25 PAYANDEH J , SCHEUER T , ZHENG N , et al . The crystal structure of a voltage-gated sodium channel[J]. Nature,2011,475(7356):353-358.
26 ZHANG X , REN W , DECAEN P , et al . Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel[J]. Nature,2012,486(7401):130-134.
27 SHEN H , ZHOU Q , PAN X , et al . Structure of a eukaryotic voltage-gated sodium channel at near-atomic resolution[J]. Science,2017,355(6328):eaal4326.
28 SHEN H , LI Z , JIANG Y , et al . Structural basis for the modulation of voltage-gated sodium channels by animal toxins[J]. Science,2018,362(6412):eaau2596.
29 MOMANY F A , MCGUIRE R F , BURGESS A W , et al . Energy parameters in polypeptides. Ⅶ. Geometric parameters, partial atomic charges, nonbonded interactions, hydrogen bond interactions, and intrinsic torsional potentials for the naturally occurring amino acids[J]. J Phys Chem,1975,79(22):2361-2381.
30 NEMETHY G , POTTLE M S , SCHERAGA H A . Energy parameters in polypeptides. 9. Updating of geometrical parameters, nonbonded interactions, and hydrogen bond interactions for the naturally occurring amino acids[J]. J Phys Chem,1983,87(11):1883-1887.
31 LEHMANN-HORN F , ENGEL A G , RICKER K , et al . The periodic paralyses and paramyotonia congenita[J]. Myology,1994,2:1303-1334.
[1] 伦永志, 孙杰. 肝细胞癌患者外周血单个核细胞诊断候选基因的筛选及其调控网络分析[J]. 浙江大学学报(医学版), 2019, 48(2): 148-157.
[2] 杨坤, 胡晓晟. 微小RNA-21在心脏疾病中的研究进展[J]. 浙江大学学报(医学版), 2019, 48(2): 214-218.
[3] 洪萍萍, 郭冰洁, 林莉, 林细华, 周嘉强. 葡萄糖激酶W257R突变致青少年发病的成人型糖尿病一家系分析[J]. 浙江大学学报(医学版), 2019, 48(2): 200-203.
[4] 杜东芬,朱丽霞,王云贵,叶琇锦. 肾母细胞瘤1基因表达及其对急性髓系白血病患者预后的预测价值[J]. 浙江大学学报(医学版), 2019, 48(1): 50-57.
[5] 孙博强,王琼艳,潘冬立. 单纯疱疹病毒潜伏和激活机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(1): 89-101.
[6] 尹黎,李歌,沈健,刘震杰. 遗传性易栓症筛查及相关基因检测分析[J]. 浙江大学学报(医学版), 2018, 47(6): 606-611.
[7] 翁炳焕,徐威,苏岚,沈敏,李蓉,虞晓鹏,李兰娟. 脂质体介导SV40LT基因转染构建羊水染色体核型分析质控细胞系研究[J]. 浙江大学学报(医学版), 2018, 47(5): 520-524.
[8] 史庭,叶琇锦. CCAAT增强子结合蛋白α与急性髓细胞白血病的发生[J]. 浙江大学学报(医学版), 2018, 47(5): 552-557.
[9] 潘宗富,方琦璐,张轶雯,李莉,黄萍. 基于生物信息学的未分化甲状腺癌关键发病机制及其潜在干预靶点研究[J]. 浙江大学学报(医学版), 2018, 47(2): 187-193.
[10] 夏海雄,李莉,周艳华,任平平,何志旭,舒莉萍. g6pd基因在野生型斑马鱼胚胎发育过程中的表达[J]. 浙江大学学报(医学版), 2018, 47(1): 57-63.
[11] 沈杰,陈闻东,姬开达,高平进,朱鼎良. Arg188Gln(G/A)突变对犬尿氨酸酶活性的影响[J]. 浙江大学学报(医学版), 2017, 46(6): 643-648.
[12] 王梦嫣 等. 耶氏肺孢子菌对磺胺类药物耐药相关基因突变的研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 563-569.
[13] 姜贻乾 等. 微小RNA-29b对乳腺癌细胞增殖和迁移的影响及其分子生物学机制[J]. 浙江大学学报(医学版), 2017, 46(4): 349-356.
[14] 任晓梅 等. 低盐饮食对犬类心脏组织基因表达的影响[J]. 浙江大学学报(医学版), 2017, 46(4): 433-438.
[15] 陈达华 等. CRISPR/Cas9基因编辑技术构建靶向敲除小鼠微小RNA-101a基因的一体化载体系统[J]. 浙江大学学报(医学版), 2017, 46(4): 427-432.