Please wait a minute...
浙江大学学报(医学版)  2018, Vol. 47 Issue (5): 525-533    DOI: 10.3785/j.issn.1008-9292.2018.10.13
综述     
基于间充质干细胞的小分子化学药物肿瘤靶向递送系统研究进展
王晓玲1,2(),欧阳旭梅1,2,孙晓译1,*()
1. 浙江大学城市学院医学院药学系, 浙江 杭州 310015
2. 浙江大学药学院, 浙江 杭州 310058
Application of mesenchymal stem cells in antineoplastic drugs delivery for tumor-targeted therapy
WANG Xiaoling1,2(),OUYANG Xumei1,2,SUN Xiaoyi1,*()
1. Department of Pharmacy, Zhejiang University City College, Hangzhou 310015, China
2. College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
 全文: PDF(914 KB)   HTML( 15 )
摘要:

近年来,大量研究通过细胞内化或细胞膜结合的方式将生物大分子或小分子化学药物负载于间充质干细胞(MSC)上,利用其天然的肿瘤归巢特性实现药物的靶向递送,继而通过在靶部位药物的释放或基因表达,达到肿瘤治疗的目的。基因修饰MSC的研究较为成熟,而递送小分子化学药物的研究起步较晚。本文从MSC肿瘤迁移机制、细胞注射后体内分布特点入手,总结了MSC在小分子化学药物肿瘤靶向递送中的研究;同时介绍了MSC与原型药物、载药纳米粒构建的复合系统的载药、释药过程,展望了该系统遇到的挑战和应用前景。

关键词: 肿瘤间质干细胞/细胞学纳米球抗肿瘤药药物释放系统综述    
Abstract:

In recent years, a large number of studies have achieved tumor targeting by mesenchymal stem cells (MSC)-based delivery system attributed to the tumor tropism of MSCs. Biomacromolecules and antineoplastic drugs loaded on MSC via internalization or cell membrane anchoring can be released or expressed at tumor site to perform their antitumor effects. The genetically modified MSC are extensively studied, however, the applications of MSCs in targeted delivery of antineoplastic drug with small molecules are not well summarized. In this review, MSCs homing mechanism and the distribution of injected MSCs in vivo is introduced; the examples of antitumor drug-primed MSCs and drug loaded MSCs are presented; the drug loading and releasing process from MSCs is also illustrated; finally, challenges and future perspectives of MSCs-based drug delivery system on realizing its full potential are prospected.

Key words: Neoplasms    Mesenchymal stem cells/cytology    Nanospheres    Antineoplastic agents    Drug delivery systems    Review
收稿日期: 2018-05-11 出版日期: 2019-01-23
:  R979.1  
基金资助: 国家自然科学基金(81402872);浙江省自然科学基金(LY17H160002)
通讯作者: 孙晓译     E-mail: lingxiaowangjy@163.com;sunxiaoyi@zucc.edu.cn
作者简介: 王晓玲(1992-), 女, 硕士研究生, 主要从事基于间充质干细胞载药系统研究; E-mail:lingxiaowangjy@163.com; https://orcid.org/0000-0002-5930-7782
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王晓玲
欧阳旭梅
孙晓译

引用本文:

王晓玲,欧阳旭梅,孙晓译. 基于间充质干细胞的小分子化学药物肿瘤靶向递送系统研究进展[J]. 浙江大学学报(医学版), 2018, 47(5): 525-533.

WANG Xiaoling,OUYANG Xumei,SUN Xiaoyi. Application of mesenchymal stem cells in antineoplastic drugs delivery for tumor-targeted therapy. J Zhejiang Univ (Med Sci), 2018, 47(5): 525-533.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2018.10.13        http://www.zjujournals.com/med/CN/Y2018/V47/I5/525

药物 MSC来源 肿瘤模型 MSC给药途径 递送效果 文献
  “—”:无相关资料; hTERT:人端粒酶逆转录酶.
紫杉醇 人骨髓 人前列腺癌(DU145)NOD/SCID小鼠皮下移植瘤、人胶质瘤(U87MG)裸鼠皮下移植瘤 MSC与肿瘤细胞混合接种 DU145瘤重为对照组的1/3;U87MG瘤重为对照组的60% [16]
人胸膜间皮瘤(NCI-H28)细胞系 每个MSC释放0.15 pg紫杉醇 [18]
人骨髓瘤(RPMI 8226)三维动态培养模型 引起肿瘤细胞凋亡和坏死 [19]
人急性T淋巴细胞白血病MOLT-4裸鼠皮下移植瘤 MSC与肿瘤细胞混合接种/MSC瘤内注射 混合接种2个月后未观察到肿瘤结节;瘤内注射后肿瘤体积是对照组的1/4 [20]
人羊膜 人胰腺癌(CFPAC-1)细胞系 MSC在48 h内释放59%胞内药物,每个MSC约释放紫杉醇0.51 pg [17]
人牙龈 人胰腺癌(CFPAC-1)细胞系 MSC释放紫杉醇,释放液具细胞毒性 [21]
人口腔鳞状细胞癌(SCC154)细胞系 MSC在24 h内释放63%胞内药物,106个MSC约释放150 ng紫杉醇 [22]
hTERT/SV40永生化人脂肪 人胰腺癌(CFPAC-1)细胞系 MSC通过微泡结构释放紫杉醇 [23]
BDF/1小鼠骨髓 人胰腺癌(CFPAC-1)细胞系 紫杉醇通过外泌体结构被MSC排出,每个MSC释放0.1 pg紫杉醇 [24]
鼠黑色素瘤(B16)C57BL16小鼠皮下移植瘤 MSC与肿瘤细胞混合接种 瘤重约为对照组的1/4 [16]
鼠黑色素瘤(B16)C57BL16小鼠肺转移模型 尾静脉注射 注射3次后转移瘤被治愈,MSC优先分布于结节周围血管 [25]
鼠淋巴细胞白血病(L1210) BDF/1小鼠原位瘤 腹腔注射 生存时间延长1倍 [20]
人胶质瘤(U87MG)免疫抑制Wistar大鼠原位移植瘤 颅内注射,MSC与肿瘤细胞同时接种于同侧半球,注射部位间距2~3 mm 具肿瘤归巢能力,胶质瘤细胞核发生紫杉醇诱发的典型变化,星形胶质细胞和周围神经元形态无显著变化 [26]
犬骨髓/犬脂肪 犬胶质瘤(J3T)细胞系、人胶质瘤(T98G/U87MG)细胞系 每个MSC释放0.09 pg紫杉醇,有效抑制肿瘤细胞增殖 [27]
阿霉素 人牙龈 人口腔鳞状细胞癌(SCC154)细胞系 MSC可在24 h内释放100%胞内药物,106个MSC可释放669 ng阿霉素 [22]
人骨髓 人乳腺癌(MDA-MB-231/Rluc)裸鼠皮下移植瘤、人甲状腺癌(CAL62/Rluc)裸鼠皮下移植瘤 尾静脉注射 与5 μmol/L阿霉素孵育得到的载药MSC可迁移至肿瘤组织,肿瘤内药物浓度高于对照组 [28]
吉西他滨 人骨髓/人胰腺 人胰腺癌(CFPAC-1)细胞系 与2 μg/mL吉西他滨孵育后的载药MSC可抑制肿瘤细胞增殖 [29]
人牙龈 人口腔鳞状细胞癌(SCC154)细胞系 MSC在24 h内释放92%胞内药物,106个MSC释放75 ng吉西他滨 [22]
顺铂、铂(Ⅱ)配合物 人脂肪 人胶质瘤(U87MG)细胞系、人胸膜间皮瘤(NCI-H28)细胞系 MSC分别释放胞内36%的铂(Ⅱ)配合物和95%顺铂 [30]
索拉非尼 人骨髓 人胶质瘤(U87MG)裸鼠原位移植瘤 鼻腔给药 48 h释放60%药物, MSC广泛分布于肿瘤组织内,切片中细胞密度达403个/mm2,但无明显抑制肿瘤生长作用 [31]
表 1  间充质干细胞(MSC)直接包载抗肿瘤药物在肿瘤靶向递送中的应用研究一览
载体类型 载体 载体修饰 药物 MSC来源 肿瘤模型 MSC给药途径 递送效果 文献
  “—”:无相关资料.PLGA:聚乳酸-羟基乙酸; PLA:聚乳酸;PAMAM:聚酰胺-胺型树枝状聚合物; PMMA:聚甲基丙烯酸甲酯;TPPS:四苯基卟啉磺酸盐.
高分子纳米粒 PLGA纳米粒 壳聚糖吸附 紫杉醇 大鼠骨髓 人结肠癌(HT-29)细胞系、人卵巢癌(Skov-3)细胞系、鼠肺癌(Lewis)细胞系 Transwell系统中,向肿瘤细胞迁移效率HT-29> Skov-3>Lewis [33]
鼠胶质瘤(C6)大鼠原位移植瘤 颅内注射,对侧半球 生存期为MSC直接包载紫杉醇组及紫杉醇纳米粒组的1.5倍 [35]
人骨髓 人肺癌(A549)裸鼠原位移植瘤 尾静脉注射 较纳米组显著增加肺内分布,2 d后仍可测得荧光探针信号;AUC为溶液组或纳米粒组9倍,生存期为纳米粒组1.4倍 [34, 42]
鼠Lewis肺腺癌C57BL/6小鼠原位移植瘤 尾静脉注射 纳米粒组或溶液组剂量的1/48可获得相同的抗肿瘤效果 [42]
阿霉素 C57BL6小鼠脂肪 鼠黑色素瘤(B16F10) C57BL/6小鼠肺转移模型 尾静脉注射 肺重量和肺内节结数显著显著低于MSC直接包载阿霉素组 [43]
多烯紫杉醇 人胎盘 KrasLSL-G12D肺癌小鼠 尾静脉注射 纳米粒组剂量的1/8可获得相同的抗肿瘤效果 [4]
PLA纳米粒 6-香豆素 人骨髓 人胶质瘤(U87MG)裸鼠原位移植瘤 瘤内注射 注射7 d后,MSC和药物分布在肿瘤周围 [41]
PAMAM RGD偶联 阿霉素 大鼠骨髓 鼠胶质瘤(C6)ICR小鼠原位移植瘤 瘤内注射 较RGD偶联纳米粒生存期延长了46.8% [44]
PMMA纳米粒 TPPS 人骨髓 人骨肉瘤(U2OS)细胞系 混合共培养,光触发产生活性氧杀灭肿瘤细胞 [45]
白蛋白纳米粒 铁离子螯合 阿霉素 人脐带 人乳腺癌(MCF-7)裸鼠皮下移植瘤 尾静脉注射 主要分布于肿瘤,瘤重及肿瘤体积显著低于溶液组或纳米粒组 [46]
无机纳米粒 介孔硅 阿霉素 人胎盘 N-甲基亚硝基脲诱发的大鼠乳腺癌模型 尾静脉注射 注射后3 d可在肿瘤组织内发现纳米粒 [47]
有序介孔有机硅纳米球 紫杉醇 Balb/C小鼠 人乳腺癌(MCF-7)裸鼠皮下移植瘤 瘤内注射 有效抑制肿瘤生长,但与纳米粒对照组差异无统计学意义 [48]
金纳米粒 柠康酰胺酸碱度敏感基团 人来源 人纤维瘤(HT-1080)裸鼠皮下移植瘤 尾静脉注射 肿瘤靶向效率比普通金纳米粒高37倍、瘤区温度高8.3 ℃,肿瘤几乎不可见 [49]
四氧化三铁/三氧化二铁磁性纳米粒 棕榈酸/棕榈酸钠 米托蒽醌 人脂肪 人骨肉瘤三维组织样结构 每细胞含1.22 pg米托蒽醌和9 pg磁性材料 [50]
脂质颗粒 类脂纳米囊 莫昔芬的二茂铁衍生物 人骨髓 人胶质瘤(U87MG)裸鼠皮下移植瘤 瘤内注射 可抑制肿瘤生长,但效果较弱 [51]
膜融合长循环超声纳米泡 喜树碱 C57BL/ 6JNarl小鼠脂肪 鼠黑色素瘤(B16F0) C57BL/6JNarl小鼠皮下移植瘤 瘤内注射 纳米泡可在肿瘤区域被示踪,可杀伤肿瘤细胞 [52]
表 2  间充质干细胞(MSC)负载载药纳米粒在肿瘤靶向递送中的应用研究一览
1 CHULPANOVA D S , KITAEVA K V , TAZETDINOVA L G et al. Application of mesenchymal stem cells for therapeutic agent delivery in anti-tumor treatment[J]. Front Pharmacol, 2018, 9:259
doi: 10.3389/fphar.2018.00259
2 FURLANI D , UGURLUCAN M , ONG L et al. Is the intravascular administration of mesenchymal stem cells safe? Mesenchymal stem cells and intravital microscopy[J]. Microvasc Res, 2009, 77 (3): 370- 376
doi: 10.1016/j.mvr.2009.02.001
3 LEE R H , PULIN A A , SEO M J et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6[J]. Cell Stem Cell, 2009, 5 (1): 54- 63
doi: 10.1016/j.stem.2009.05.003
4 WANG X , CHEN H , ZENG X et al. Efficient lung cancer-targeted drug delivery via a nanoparticle/MSC system[J]. Acta Pharm Sin B, 2018, in press
5 NYSTEDT J , ANDERSON H , TIKKANEN J et al. Cell surface structures influence lung clearance rate of systemically infused mesenchymal stromal cells[J]. Stem Cells, 2013, 31 (2): 317- 326
doi: 10.1002/stem.v31.2
6 GHOLAMREZANEZHAD A , MIRPOUR S , BAGHERI M et al. In vivo tracking of 111In-oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis[J]. Nucl Med Biol, 2011, 38 (7): 961- 967
doi: 10.1016/j.nucmedbio.2011.03.008
7 KIM S M , JEONG C H , WOO J S et al. In vivo near-infrared imaging for the tracking of systemically delivered mesenchymal stem cells:tropism for brain tumors and biodistribution[J]. Int J Nanomedicine, 2016, 11:13- 23
8 DE WITTE S F H , LUK F , SIERRA P J M et al. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells[J]. Stem Cells, 2018, 36 (4): 602- 615
doi: 10.1002/stem.v36.4
9 GALLEU A , RIFFO-VASQUEZ Y , TRENTO C et al. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation[J]. Sci Transl Med, 2017, 9 (416): eaam7828
doi: 10.1126/scitranslmed.aam7828
10 TEG K , DLJ T , DENMEADE S R et al. Concise review:mesenchymal stem cell-based drug delivery:the good, the bad, the ugly, and the promise[J]. Stem Cells Transl Med, 2018, 7 (9): 651- 663
doi: 10.1002/sctm.18-0024
11 TOMA C , WAGNER W R , BOWRY S et al. Fate of culture-expanded mesenchymal stem cells in the microvasculature:in vivo observations of cell kinetics[J]. Circ Res, 2009, 104 (3): 398- 402
doi: 10.1161/CIRCRESAHA.108.187724
12 FISCHER U M , HARTING M T , JIMENEZ F et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery:the pulmonary first-pass effect[J]. Stem Cells Dev, 2009, 18 (5): 683- 692
doi: 10.1089/scd.2008.0253
13 ZANETTI A , GRATA M , ETLING E B et al. Suspension-expansion of bone marrow results in small mesenchymal stem cells exhibiting increased transpulmonary passage following intravenous administration[J]. Tissue Eng Part C Methods, 2015, 21 (7): 683- 692
doi: 10.1089/ten.tec.2014.0344
14 GILAZIEVA Z , TAZETDINOVA L , ARKHIPOVA S et al. Effect of cisplatin on ultrastructure and viability of adipose-derived mesenchymal stem cells[J]. Bio Nano Science, 2016, 6 (4): 534- 539
15 NICOLAY N H , LOPEZ P R , RVHLE A et al. Mesenchymal stem cells maintain their defining stem cell characteristics after treatment with cisplatin[J]. Sci Rep, 2016, 6:20035
doi: 10.1038/srep20035
16 PESSINA A, BONOMI A, COCCè V, et al. Mesenchymal stromal cells primed with paclitaxel provide a new approach for cancer therapy[J/OL]. PLoS One, 2011, 6(12): e28321.
17 BONOMI A , SILINI A , VERTUA E et al. Human amniotic mesenchymal stromal cells (hAMSCs) as potential vehicles for drug delivery in cancer therapy:an in vitro study[J]. Stem Cell Res Ther, 2015, 6 (1): 155
18 PETRELLA F , COCCè V , MASIA C et al. Paclitaxel-releasing mesenchymal stromal cells inhibit in vitro proliferation of human mesothelioma cells[J]. Biomed Pharmacother, 2017, 87:755- 758
doi: 10.1016/j.biopha.2017.01.118
19 BONOMI A , STEIMBERG N , BENETTI A et al. Paclitaxel-releasing mesenchymal stromal cells inhibit the growth of multiple myeloma cells in a dynamic 3D culture system[J]. Hematol Oncol, 2017, 35 (4): 693- 702
doi: 10.1002/hon.v35.4
20 PESSINA A , COCCè V , PASCUCCI L et al. Mesenchymal stromal cells primed with Paclitaxel attract and kill leukaemia cells, inhibit angiogenesis and improve survival of leukaemia-bearing mice[J]. Br J Haematol, 2013, 160 (6): 766- 778
doi: 10.1111/bjh.12196
21 BRINI A T , COCCè V , FERREIRA L M et al. Cell-mediated drug delivery by gingival interdental papilla mesenchymal stromal cells (GinPa-MSCs) loaded with paclitaxel[J]. Expert Opin Drug Deliv, 2016, 13 (6): 789- 798
22 COCCè V , FARRONATO D , BRINI A T et al. Drug loaded gingival mesenchymal stromal cells (GinPa-MSCs) inhibit in vitro proliferation of oral squamous cell carcinoma[J]. Sci Rep, 2017, 7 (1): 9376
doi: 10.1038/s41598-017-09175-4
23 COCCE V , BALDUCCI L , FALCHETTI M L et al. Fluorescent immortalized human adipose derived stromal cells (hASCs-TS/GFP+) for studying cell drug delivery mediated by microvesicles[J]. Anticancer Agents Med Chem, 2017, 17 (11): 1578- 1585
24 PASCUCCI L , COCCè V , BONOMI A et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth:a new approach for drug delivery[J]. J Control Release, 2014, 192:262- 270
doi: 10.1016/j.jconrel.2014.07.042
25 PESSINA A , LEONETTI C , ARTUSO S et al. Drug-releasing mesenchymal cells strongly suppress B16 lung metastasis in a syngeneic murine model[J]. J Exp Clin Cancer Res, 2015, 34:82
doi: 10.1186/s13046-015-0200-3
26 PACIONI S , D'ALESSANDRIS Q G , GIANNETTI S et al. Mesenchymal stromal cells loaded with paclitaxel induce cytotoxic damage in glioblastoma brain xenografts[J]. Stem Cell Res Ther, 2015, 6:194
doi: 10.1186/s13287-015-0185-z
27 BONOMI A , GHEZZI E , PASCUCCI L et al. Effect of canine mesenchymal stromal cells loaded with paclitaxel on growth of canine glioma and human glioblastoma cell lines[J]. Vet J, 2017, 223:41- 47
doi: 10.1016/j.tvjl.2017.05.005
28 KALIMUTHU S , ZHU L , OH J M et al. Migration of mesenchymal stem cells to tumor xenograft models and in vitro drug delivery by doxorubicin[J]. Int J Med Sci, 2018, 15 (10): 1051- 1061
doi: 10.7150/ijms.25760
29 BONOMI A , SORDI V , DUGNANI E et al. Gemcitabine-releasing mesenchymal stromal cells inhibit in vitro proliferation of human pancreatic carcinoma cells[J]. Cytotherapy, 2015, 17 (12): 1687- 1695
doi: 10.1016/j.jcyt.2015.09.005
30 RIMOLDI I , COCCè V , FACCHETTI G et al. Uptake-release by MSCs of a cationic platinum(Ⅱ) complex active in vitro on human malignant cancer cell lines[J]. Biomed Pharmacother, 2018, 108:111- 118
doi: 10.1016/j.biopha.2018.09.040
31 CLAVREUL A , POURBAGHI-MASOULEH M , ROGER E et al. Human mesenchymal stromal cells as cellular drug-delivery vectors for glioblastoma therapy:a good deal?[J]. J Exp Clin Cancer Res, 2017, 36 (1): 135
doi: 10.1186/s13046-017-0605-2
32 YAO S , LI X , LIU J et al. Maximized nanodrug-loaded mesenchymal stem cells by a dual drug-loaded mode for the systemic treatment of metastatic lung cancer[J]. Drug Deliv, 2017, 24 (1): 1372- 1383
doi: 10.1080/10717544.2017.1375580
33 DAI T , YANG E , SUN Y et al. Preparation and drug release mechanism of CTS-TAX-NP-MSCs drug delivery system[J]. Int J Pharm, 2013, 456 (1): 186- 194
doi: 10.1016/j.ijpharm.2013.07.070
34 SADHUKHA T , O'BRIEN T D , PRABHA S . Nano-engineered mesenchymal stem cells as targeted therapeutic carriers[J]. J Control Release, 2014, 196:243- 251
doi: 10.1016/j.jconrel.2014.10.015
35 WANG X , GAO J , OUYANG X et al. Mesenchymal stem cells loaded with paclitaxel-poly(lactic-co-glycolic acid) nanoparticles for glioma-targeting therapy[J]. Int J Nanomedicine, 2018, 13:5231- 5248
doi: 10.2147/IJN
36 YANES R E , TARN D , HWANG A A et al. Involvement of lysosomal exocytosis in the excretion of mesoporous silica nanoparticles and enhancement of the drug delivery effect by exocytosis inhibition[J]. Small, 2013, 9 (5): 697- 704
doi: 10.1002/smll.v9.5
37 OH N , PARK J H . Endocytosis and exocytosis of nanoparticles in mammalian cells[J]. Int J Nanomedicine, 2014, 9 (Suppl 1): 51- 63
38 SAKHTIANCHI R , MINCHIN R F , LEE K B et al. Exocytosis of nanoparticles from cells:role in cellular retention and toxicity[J]. Adv Colloid Interface Sci, 2013, 201-202:18- 29
doi: 10.1016/j.cis.2013.10.013
39 EL-DAKDOUKI M H , PURé E , HUANG X . Development of drug loaded nanoparticles for tumor targeting. Part 2:Enhancement of tumor penetration through receptor mediated transcytosis in 3D tumor models[J]. Nanoscale, 2013, 5 (9): 3904- 3911
doi: 10.1039/c3nr90022c
40 LIU S L , ZHANG Z L , SUN E Z et al. Visualizing the endocytic and exocytic processes of wheat germ agglutinin by quantum dot-based single-particle tracking[J]. Biomaterials, 2011, 32 (30): 7616- 7624
doi: 10.1016/j.biomaterials.2011.06.046
41 ROGER M , CLAVREUL A , VENIER-JULIENNE M C et al. Mesenchymal stem cells as cellular vehicles for delivery of nanoparticles to brain tumors[J]. Biomaterials, 2010, 31 (32): 8393- 8401
doi: 10.1016/j.biomaterials.2010.07.048
42 LAYEK B , SADHUKHA T , PANYAM J et al. Nano-engineered mesenchymal stem cells increase therapeutic efficacy of anticancer drug through true active tumor targeting[J]. Mol Cancer Ther, 2018, 17 (6): 1196- 1206
doi: 10.1158/1535-7163.MCT-17-0682
43 ZHAO Y , TANG S , GUO J et al. Targeted delivery of doxorubicin by nano-loaded mesenchymal stem cells for lung melanoma metastases therapy[J]. Sci Rep, 2017, 7:44758
doi: 10.1038/srep44758
44 ZHANG X , YAO S , LIU C et al. Tumor tropic delivery of doxorubicin-polymer conjugates using mesenchymal stem cells for glioma therapy[J]. Biomaterials, 2015, 39:269- 281
doi: 10.1016/j.biomaterials.2014.11.003
45 DUCHI S , SOTGIU G , LUCARELLI E et al. Mesenchymal stem cells as delivery vehicle of porphyrin loaded nanoparticles:effective photoinduced in vitro killing of osteosarcoma[J]. J Control Release, 2013, 168 (2): 225- 237
doi: 10.1016/j.jconrel.2013.03.012
46 CAO S , GUO J , HE Y et al. Nano-loaded human umbilical cord mesenchymal stem cells as targeted carriers of doxorubicin for breast cancer therapy[J]. Artif Cells Nanomed Biotechnol, 2018, 1- 11
47 PARIS J L , DE LA TORRE P , MANZANO M et al. Decidua-derived mesenchymal stem cells as carriers of mesoporous silica nanoparticles. In vitro and in vivo evaluation on mammary tumors[J]. Acta Biomater, 2016, 33:275- 282
doi: 10.1016/j.actbio.2016.01.017
48 WU J , LIU Y , TANG Y et al. Synergistic chemo-photothermal therapy of breast cancer by mesenchymal stem cell-encapsulated yolk-shell GNR@HPMO-PTX nanospheres[J]. ACS Appl Mater Interfaces, 2016, 8 (28): 17927- 17935
doi: 10.1021/acsami.6b05677
49 KANG S , BHANG S H , HWANG S et al. Mesenchymal stem cells aggregate and deliver gold nanoparticles to tumors for photothermal therapy[J]. ACS Nano, 2015, 9 (10): 9678- 9690
doi: 10.1021/acsnano.5b02207
50 HEREA D D , LABUSCA L , RADU E et al. Human adipose-derived stem cells loaded with drug-coated magnetic nanoparticles for in-vitro tumor cells targeting[J]. Mater Sci Eng C Mater Biol Appl, 2019, 94:666- 676
doi: 10.1016/j.msec.2018.10.019
51 ROGER M , CLAVREUL A , HUYNH N T et al. Ferrociphenol lipid nanocapsule delivery by mesenchymal stromal cells in brain tumor therapy[J]. Int J Pharm, 2012, 423 (1): 63- 68
52 HO Y J , CHIANG Y J , KANG S T et al. Camptothecin-loaded fusogenic nanodroplets as ultrasound theranostic agent in stem cell-mediated drug-delivery system[J]. J Control Release, 2018, 278:100- 109
doi: 10.1016/j.jconrel.2018.04.001
53 WANG Q , CHENG H , PENG H et al. Non-genetic engineering of cells for drug delivery and cell-based therapy[J]. Adv Drug Deliv Rev, 2015, 91:125- 140
doi: 10.1016/j.addr.2014.12.003
54 CHENG H , KASTRUP C J , RAMANATHAN R et al. Nanoparticulate cellular patches for cell-mediated tumoritropic delivery[J]. ACS nano, 2010, 4 (2): 625- 631
doi: 10.1021/nn901319y
55 LI L , GUAN Y , LIU H et al. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy[J]. ACS Nano, 2011, 5 (9): 7462- 7470
doi: 10.1021/nn202399w
56 SURYAPRAKASH S , LI M , LAO Y H et al. Graphene oxide cellular patches for mesenchymal stem cell-based cancer therapy[J]. Carbon, 2018, 129:863- 868
doi: 10.1016/j.carbon.2017.12.031
57 KLOPP A H , GUPTA A , SPAETH E et al. Concise review:dissecting a discrepancy in the literature:do mesenchymal stem cells support or suppress tumor growth?[J]. Stem Cells, 2011, 29 (1): 11- 19
doi: 10.1002/stem.559
58 SHI Y , DU L , LIN L et al. Tumour-associated mesenchymal stem/stromal cells:emerging therapeutic targets[J]. Nat Rev Drug Discov, 2017, 16 (1): 35- 52
59 ZHANG T Y , HUANG B , WU H B et al. Synergistic effects of co-administration of suicide gene expressing mesenchymal stem cells and prodrug-encapsulated liposome on aggressive lung melanoma metastases in mice[J]. J Control Release, 2015, 209:260- 271
doi: 10.1016/j.jconrel.2015.05.007
60 PACIONI S , D'ALESSANDRIS Q G , GIANNETTI S et al. Human mesenchymal stromal cells inhibit tumor growth in orthotopic glioblastoma xenografts[J]. Stem Cell Res Ther, 2017, 8 (1): 53
[1] 赵慧慧, 汤慧芳. 基于基因敲除的炎性肠疾病复合动物模型研究进展[J]. 浙江大学学报(医学版), 2018, 47(6): 665-670.
[2] 曹丽芹, 施继敏. 异基因造血干细胞移植植入失败研究进展[J]. 浙江大学学报(医学版), 2018, 47(6): 651-658.
[3] 唐和孝, 白玉泉, 申武林, 赵金平. 白介素6在肺癌中的作用研究进展[J]. 浙江大学学报(医学版), 2018, 47(6): 659-664.
[4] 向一郎, 吴子衡, 张鸿坤. 胸主动脉覆膜支架原位开窗技术的应用现状[J]. 浙江大学学报(医学版), 2018, 47(6): 617-622.
[5] 沈宏, 季峰. 无X射线监视内镜下消化道支架置入治疗消化道狭窄的疗效和安全性[J]. 浙江大学学报(医学版), 2018, 47(6): 643-650.
[6] 李高鹏,何佳,王青青. 肿瘤相关成纤维细胞对肿瘤免疫调控作用的研究进展[J]. 浙江大学学报(医学版), 2018, 47(5): 558-563.
[7] 郝睿,苏力德,邵一鸣,部娜,马丽亚,那仁满都拉. PML蛋白参与三氧化二砷治疗急性早幼粒细胞白血病的分子生物学机制研究[J]. 浙江大学学报(医学版), 2018, 47(5): 541-551.
[8] 叶建宇,孙自玉,胡薇薇. 星形胶质细胞在脑梗死中的作用及相关治疗策略[J]. 浙江大学学报(医学版), 2018, 47(5): 493-498.
[9] 胡彩琴,朱彪. 进行性多灶性脑白质病的发病机制研究进展[J]. 浙江大学学报(医学版), 2018, 47(5): 534-540.
[10] 史庭,叶琇锦. CCAAT增强子结合蛋白α与急性髓细胞白血病的发生[J]. 浙江大学学报(医学版), 2018, 47(5): 552-557.
[11] 狄晨红,金帆. 密封蛋白4与高危型人乳头瘤病毒联合检测对于高级别鳞状上皮内病变及宫颈鳞癌的诊断价值[J]. 浙江大学学报(医学版), 2018, 47(4): 344-350.
[12] 陈志强,米贤军,陈昂,段立锋,代新珍,邓文同. 免疫组织化学法检测子宫颈组织p16蛋白表达的石蜡切片厚度探讨[J]. 浙江大学学报(医学版), 2018, 47(4): 362-366.
[13] 胡争,马丁. 人乳头瘤病毒相关宫颈癌的精准筛查和治疗[J]. 浙江大学学报(医学版), 2018, 47(4): 338-343.
[14] 张丽凤,张信美. 维生素D在子宫内膜异位症中的作用研究进展[J]. 浙江大学学报(医学版), 2018, 47(4): 413-418.
[15] 楼叶琳,周一敏,鲁红,吕卫国. 宫颈锥切术后孕妇早产预测模型的建立[J]. 浙江大学学报(医学版), 2018, 47(4): 351-356.