Please wait a minute...
浙江大学学报(医学版)  2018, Vol. 47 Issue (5): 480-486    DOI: 10.3785/j.issn.1008-9292.2018.10.06
专题报道     
姜黄素保护帕金森病多巴胺能神经元的机制研究
吴忧(),梁顺利,徐彬*(),张荣博,徐林胜
浙江中医药大学附属第二医院神经内科, 浙江 杭州 310005
Protective effect of curcumin on dopamine neurons in Parkinson's disease and its mechanism
WU You(),LIANG Shunli,XU Bin*(),ZHANG Rongbo,XU Linsheng
Department of Neurology, the Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
 全文: PDF(1263 KB)   HTML( 6 )
摘要:

目的: 观察姜黄素对帕金森病细胞模型中多巴胺能神经元的保护作用并探讨其作用机制。方法: 人神经母细胞瘤SH-SY5Y细胞采用1-甲基-4-苯基-四氢吡啶离子(MPTP)处理建立帕金森病细胞模型,进一步设立姜黄素干预、自噬抑制剂3-甲基腺嘌呤(3-MA)干预以及姜黄素和3-MA同时干预组。各组细胞在药物处理48 h后分别进行酪氨酸羟化酶(TH)免疫荧光染色观察多巴胺能神经元存活数;蛋白质印迹法检测α-突触核蛋白(α-Syn)、转录因子EB(TFEB)、自噬相关蛋白多克隆抗溶酶体相关膜蛋白2A(LAMP2A)和微管相关蛋白1轻链3-Ⅱ(LC3-Ⅱ)的蛋白表达;RT-PCR检测α-Syn的mRNA表达。结果: 与模型对照组比较,姜黄素组多巴胺能神经元存活数增加(P < 0.01),α-Syn蛋白及mRNA表达减少(均P < 0.01),TFEB以及自噬蛋白LAMP2A和LC3-Ⅱ表达上调(均P < 0.01);3-MA和姜黄素同时干预组多巴胺能神经元存活数增加(P < 0.05),α-Syn蛋白及mRNA表达减少(P < 0.05或P < 0.01),TFEB、LAMP2A和LC3-Ⅱ蛋白表达上调(均P < 0.01)。与姜黄素组比较,姜黄素和3-MA同时干预组多巴胺能神经元存活数减少,LC3-Ⅱ和LAMP2A蛋白表达减少(均P < 0.05)。结论: 姜黄素可激活细胞自噬功能促进α-Syn自噬性清除,从而减轻MPTP所致的多巴胺能神经元损伤。

关键词: 姜黄素/药理学帕金森病/病理生理学神经元/代谢α突触核蛋白转录因子自噬疾病模型, 动物    
Abstract:

Objective: To investigate the effect of curcumin on dopamine neurons in Parkinson's disease (PD) and its mechanism. Methods: SH-SY5Y human neuroblastoma cells were treated with 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) to establish the PD cell model. The model cells were treated with curcumin and/or autophagy inhibitor 3-MA. After 48 h of drug treatment, the number of surviving dopamine neurons was detected by tyrosine hydroxylase immunofluorescence method. Western blotting was used to detect protein expression of α-Synuclein (α-Syn), transcription factor EB (TFEB) and autophagy-related proteins lysosome-associated membrane protein 2A (LAMP2A) and microtubule-associated protein 1 light chain 3-Ⅱ(LC3-Ⅱ); RT-PCR was used to detect mRNA expression of α-Syn. Results: Compared with MPTP model group, curcumin increased the number of surviving dopamine neurons(P < 0.01), decreased both protein expression and mRNA expression of α-Syn (all P < 0.01), and increased protein expression of TFEB, LAMP2A and LC3-Ⅱ (all P < 0.01). When curcumin and 3-MA were given concurrently, the number of surviving dopamine neurons, protein expression of TFEB, LAMP2A and LC3-Ⅱ increased (P < 0.05 or P < 0.01), and both protein expression and mRNA expression of α-Syn decreased (P < 0.05 or P < 0.01) compared with MPTP model group; but the number of surviving dopamine neurons and protein expression of LAMP2A and LC3-Ⅱ decreased compared with curcumin group (all P < 0.05). Conclusion: Curcumin exerts protective effect on dopamine neurons in PD, which may be associated with enhancing autophagy and promoting the clearance of α-Syn.

Key words: Curcumin/pharmacology    Parkinson disease/physiopathology    Neurons/metabolism    α-Synuclein    Transcription factors    Autophagy    Disease models, animal
收稿日期: 2018-03-20 出版日期: 2019-01-23
:  R742  
基金资助: 浙江省自然科学基金(LQ17H280003);浙江省中医药科技计划(2015ZQ017);浙江省医药卫生科技计划(2014KYB181)
通讯作者: 徐彬     E-mail: youyou1983520@sina.com;xubin2008.love@163.com
作者简介: 吴忧(1983-), 女, 硕士, 主治医师, 主要从事神经系统变性疾病的临床和基础研究; E-mail:youyou1983520@sina.com; https://orcid.org/0000-0003-1022-9434
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
吴忧
梁顺利
徐彬
张荣博
徐林胜

引用本文:

吴忧,梁顺利,徐彬,张荣博,徐林胜. 姜黄素保护帕金森病多巴胺能神经元的机制研究[J]. 浙江大学学报(医学版), 2018, 47(5): 480-486.

WU You,LIANG Shunli,XU Bin,ZHANG Rongbo,XU Linsheng. Protective effect of curcumin on dopamine neurons in Parkinson's disease and its mechanism. J Zhejiang Univ (Med Sci), 2018, 47(5): 480-486.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2018.10.06        http://www.zjujournals.com/med/CN/Y2018/V47/I5/480

图 1  酪氨酸羟化酶(TH)免疫荧光染色观察细胞存活的数量和状态
图 2  各组α-Syn蛋白和mRNA表达及比较(n=6)
图 3  各组LAMP2A和LC3-Ⅱ蛋白表达及比较(n=6)
图 4  各组转录因子EB(TFEB)蛋白表达及比较(n=6)
1 BENSKEY M J , PEREZ R G , MANFREDSSON F P . The contribution of alpha synuclein to neuronal survival and function-implications for Parkinson's disease[J]. J Neurochem, 2016, 137 (3): 331- 359
doi: 10.1111/jnc.2016.137.issue-3
2 LEHRI-BOUFALA S, OUIDJA M O, BARBIER-CHASSEFIèRE V, et al. New roles of glycosaminoglycans in α-synuclein aggregation in a cellular model of Parkinson disease[J/OL]. PLoS One, 2015, 10(1): e0116641.
3 SALA G , MARINIG D , AROSIO A et al. Role of chaperone-mediated autophagy dysfunctions in the pathogenesis of Parkinson's disease[J]. Front Mol Neurosci, 2016, 9:157
4 KHUWAJA G , KHAN M M , ISHRAT T et al. Neuroprotective effects of curcumin on 6-hydroxydopamine-induced Parkinsonism in rats:behavioral, neurochemical and immunohistochemical studies[J]. Brain Res, 2011, 1368:254- 263
doi: 10.1016/j.brainres.2010.10.023
5 PANDAREESH M D , SHRIVASH M K , NAVEEN KUMAR H N et al. Curcumin monoglucoside shows improved bioavailability and mitigates rotenone induced neurotoxicity in cell and drosophila models of Parkinson's disease[J]. Neurochem Res, 2016, 41 (11): 3113- 3128
doi: 10.1007/s11064-016-2034-6
6 AQQARWAL B B , HARIKUMAR K B . Potential therapeutic effect of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, meta-bolic, autoimmune and neoplastic diseases[J]. Int J Biochem Cell Biol, 2009, 41 (1): 40- 59
doi: 10.1016/j.biocel.2008.06.010
7 HE X J , UCHIDA K , MEGUMI C et al. Dietary curcumin supplementation attenuates 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) neurotoxicity in C57BL mice[J]. J Toxicol Pathol, 2015, 28 (4): 197- 206
doi: 10.1293/tox.2015-0020
8 SPINELLI K J, OSTERBERG V R, MESHUL C K, et al. Curcumin treatment improves motor behavior in α-synuclein transgenic mice[J/OL]. PLoS One, 2015, 10(6): e0128510.
9 MANSOURI Z , SABETKASAEI M , MORADI F et al. Curcumin has neuroprotection effect on homocysteine rat model of Parkinson[J]. J Mol Neurosci, 2012, 47 (2): 234- 242
10 SONG S , NIE Q , LI Z et al. Curcumin improves neurofunctions of 6-OHDA-induced parkinsonian rats[J]. Pathol Res Pract, 2016, 212 (4): 247- 251
doi: 10.1016/j.prp.2015.11.012
11 KHATRI D K , JUVEKAR A R . Neuroprotective effect of curcumin as evinced by abrogation of rotenone-induced motor deficits, oxidative and mitochondrial dysfunctions in mouse model of Parkinson's disease[J]. Pharmacol Biochem Behav, 2016, 150-151:39- 47
doi: 10.1016/j.pbb.2016.09.002
12 CUI Q , LI X , ZHU H . Curcumin ameliorates dopaminergic neuronal oxidative damage via activation of the Akt/Nrf2 pathway[J]. Mol Med Rep, 2016, 13 (2): 1381- 1388
doi: 10.3892/mmr.2015.4657
13 SIDDIQUE Y H , NAZ F , JYOTI S . Effect of curcumin on lifespan, activity pattern, oxidative stress, and apoptosis in the brains of transgenic Drosophila model of Parkinson's disease[J]. Biomed Res Int, 2014, 2014:606928
14 VAN DER MERWE C , VAN DYK H C , ENGELBRECHT L et al. Curcumin rescues a PINK1 knock down SH-SY5Y cellular model of Parkinson's disease from mitochondrial dysfunction and cell death[J]. Mol Neurobiol, 2017, 54 (4): 2752- 2762
doi: 10.1007/s12035-016-9843-0
15 U?UZ A C , ?Z A , NAZIRO?LU M . Curcumin inhibits apoptosis by regulating intracellular calcium release, reactive oxygen species and mitochondrial depolarization levels in SH-SY5Y neuronal cells[J]. J Recept Signal Transduct Res, 2016, 36 (4): 395- 401
doi: 10.3109/10799893.2015.1108337
16 JAISIN Y , THAMPITHAK A , MEESARAPEE B et al. CurcuminⅠ protects the dopaminergic cell line SH-SY5Y from 6-hydroxydopamine-induced neurotoxicity through attenuation of p53-mediated apoptosis[J]. Neurosci Lett, 2011, 489 (3): 192- 196
doi: 10.1016/j.neulet.2010.12.014
17 BOLLIMPELLI V S , KUMAR P , KUMARI S et al. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity[J]. Neurochem Int, 2016, 95:37- 45
doi: 10.1016/j.neuint.2016.01.006
18 HARRIS H , RUBINSZTEIN D C . Control of autophagy as a therapy for neurodegenerative disease[J]. Nat Rev Neurol, 2011, 8 (2): 108- 117
19 MALAGELADA C , JIN Z H , JACKSON-LEWIS V et al. Rapamycin protects against neuron death in in vitro and in vivo models of Parkinson's disease[J]. J Neurosci, 2010, 30 (3): 1166- 1175
doi: 10.1523/JNEUROSCI.3944-09.2010
20 QIAN H , YANG Y , WANG X . Curcumin enhanced Adriamycin-induced human liver-derived hepatoma G2 cell death through activation of mitochondria-mediated apoptosis and autophagy[J]. Eur J Pharm Sci, 2011, 43 (3): 125- 131
doi: 10.1016/j.ejps.2011.04.002
21 THAYYULLATHIL F , RAHMAN A , PALLICHANKANDY S et al. ROS-dependent prostate apoptosis response-4(Par-4) up-regulation and ceramide generation are the prime signaling events associated with curcumin-induced autophagic cell death in human malignant glioma[J]. FEBS Open Bio, 2014, 4:763- 776
doi: 10.1016/j.fob.2014.08.005
22 JAROONWITCHAWAN T , CHAICHAROENAU-DOMRUNG N , NAMKAEW J et al. Curcumin attenuates paraquat-induced cell death in human neuroblastoma cells through modulating oxidative stress and autophagy[J]. Neurosci Lett, 2017, 636:40- 47
doi: 10.1016/j.neulet.2016.10.050
23 KLIONSKY D J , ABDELMOHSEN K , ABE A et al. Guidelines for the use and interpretation of assays for monitoring autophagy(3rd edition)[J]. Autophagy, 2016, 12 (1): 1- 222
doi: 10.1080/15548627.2015.1100356
24 WANG C , ZHANG X , TENG Z et al. Downregulation of PI3K/Akt/mTOR signaling pathway in curcumin-induced autophagy in APP/PS1 double transgenic mice[J]. Eur J Pharmacol, 2014, 740:312- 320
doi: 10.1016/j.ejphar.2014.06.051
25 EBRAHIMI-FAKHARI D , WAHLSTER L . Restoring impaired protein metabolism in Parkinson's disease-TFEB-mediated autophagy as a novel therapeutic target[J]. Mov Disord, 2013, 28 (10): 1346
doi: 10.1002/mds.25601
26 DECRESSAC M , BJ?RKLUND A . TFEB:Pathogenic role and therapeutic target in Parkinson disease[J]. Autophagy, 2013, 9 (8): 1244- 1246
doi: 10.4161/auto.25044
27 SONG J X , SUN Y R , PELUSO I et al. A novel curcumin analog binds to and activates TFEB in vitro and in vivo independent of MTOR inhibition[J]. Autophagy, 2016, 12 (8): 1372- 1389
doi: 10.1080/15548627.2016.1179404
28 ZHANG J , WANG J , XU J et al. Curcumin targets the TFEB-lysosome pathway for induction of autophagy[J]. Oncotarget, 2016, 7 (46): 75659- 75671
29 XIAO K , JIANG J , GUAN C et al. Curcumin induces autophagy via activating the AMPK signaling pathway in lung adenocarcinoma cells[J]. J Pharmacol Sci, 2013, 123 (2): 102- 109
doi: 10.1254/jphs.13085FP
30 LI W , ZHOU Y , YANG J et al. Curcumin induces apoptotic cell death and protective autophagy in human gastric cancer cells[J]. Oncol Rep, 2017, 37 (6): 2459- 3466
31 YANG C , MA X , WANG Z et al. Curcumin induces apoptosis and protective autophagy in castration-resistant prostate cancer cells through iron chelation[J]. Drug Des Devel Ther, 2017, 11:431- 439
doi: 10.2147/DDDT
32 LI X, FENG K, LI J, et al. Curcumin inhibits apoptosis of chondrocytes through activation ERK1/2 signaling pathways induced autophagy[J/OL]. Nutrients, 2017, 9(4): E414.
33 HEGER M , VAN GOLEN R F , BROEKGAARDEN M et al. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer[J]. Pharmacol Rev, 2013, 66 (1): 222- 307
34 SCHNEIDER C , GORDON O N , EDWARDS R L et al. Degradation of curcumin:from mechanism to biological implications[J]. J Agric Food Chem, 2015, 63 (35): 7606- 7614
doi: 10.1021/acs.jafc.5b00244
[1] 朱锋,范苗,徐孜惟,蔡依廷,陈益臻,余双,曾玲晖. 雷帕霉素对帕金森病小鼠的保护作用[J]. 浙江大学学报(医学版), 2018, 47(5): 465-472.
[2] 王青梅,舒敏,徐千姿,谢一乙,阮盛哲,王健达,曾玲晖. 和厚朴酚对癫痫小鼠学习记忆能力的改善作用[J]. 浙江大学学报(医学版), 2018, 47(5): 450-456.
[3] 吕丹丹,应可净. 自噬在肺动脉高压发生和发展中的调节作用[J]. 浙江大学学报(医学版), 2018, 47(2): 207-212.
[4] 丁京京,卢韵碧. 受体相互作用蛋白家族在炎症中的作用研究进展[J]. 浙江大学学报(医学版), 2018, 47(1): 89-96.
[5] 张斌斌 等. 抑制哺乳动物雷帕霉素靶蛋白信号通路对慢性脑缺血小鼠认知功能的改善和机制[J]. 浙江大学学报(医学版), 2017, 46(4): 405-412.
[6] 郑艳榕,张翔南,陈忠. Nix介导的线粒体自噬机制的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 92-96.
[7] 候仕芳 等. 下调lmna基因对斑马鱼胚胎髓系和红系造血干细胞发育的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 620-625.
[8] 林先刚 等. 姜黄素对慢性阻塞性肺疾病大鼠肺动脉平滑肌细胞的作用及其机制研究[J]. 浙江大学学报(医学版), 2016, 45(5): 469-476.
[9] 刘军 等. JAK2/STAT3信号通路介导薯蓣皂苷元对骨性关节炎软骨细胞代谢的影响[J]. 浙江大学学报(医学版), 2016, 45(5): 453-460.
[10] 刘军 等. 机体炎症因子和氧化应激标志物介导姜黄素抑制骨性关节炎的作用机制[J]. 浙江大学学报(医学版), 2016, 45(5): 461-468.
[11] 刘巧云 等. 锌与自噬[J]. 浙江大学学报(医学版), 2016, 45(3): 308-314.
[12] 陈子博等. 舒尼替尼通过调控转化生长因子β介导的上皮-间质转化抑制卵巢癌细胞转移[J]. 浙江大学学报(医学版), 2015, 44(5): 479-485.
[13] 朱惠惠, 赵西宝, 胡未伟, 陈玮琳. 泛素特异性蛋白酶在抗病毒感染免疫中的作用研究进展[J]. 浙江大学学报(医学版), 2015, 44(5): 578-583.
[14] 韩艳霞, 尤良顺, 刘辉, 毛莉萍, 叶琇锦, 钱文斌. 细胞周期蛋白依赖激酶抑制剂诱导HL-60细胞凋亡及分子机制研究[J]. 浙江大学学报(医学版), 2015, 44(2): 174-178.
[15] 曹建平, 夏大静. 自噬与肿瘤关系研究新进展[J]. 浙江大学学报(医学版), 2015, 44(2): 204-210.