Please wait a minute...
浙江大学学报(医学版)  2018, Vol. 47 Issue (5): 465-472    DOI: 10.3785/j.issn.1008-9292.2018.10.04
专题报道     
雷帕霉素对帕金森病小鼠的保护作用
朱锋(),范苗,徐孜惟,蔡依廷,陈益臻,余双,曾玲晖*()
浙江大学城市学院医学院, 浙江 杭州 310015
Neuroprotective effect of rapamycin against Parkinson's disease in mice
ZHU Feng(),FAN Miao,XU Ziwei,CAI Yiting,CHEN Yizhen,YU Shuang,ZENG Linghui*()
School of Medicine, Zhejiang University City College, Hangzhou 310015, China
 全文: PDF(1247 KB)   HTML( 12 )
摘要:

目的: 探索雷帕霉素对帕金森病模型小鼠的保护作用及机制。方法: 60只SPF级成年健康雄性C57/B6小鼠随机分为对照组、模型组和治疗组。模型组和治疗组采用1-甲基4-苯基-1、2、3、6-四氢吡啶(MPTP)诱导建立帕金森病模型。治疗组在第7天MPTP注射后1 h开始腹腔注射雷帕霉素(3 mg/kg,1次/d,共7 d),模型组和对照组均予腹腔注射等体积的溶剂。CatWalk步态分析系统分析小鼠运动功能;免疫荧光法检测小鼠脑黑质部酪氨酸羟化酶(TH)阳性神经元数量;蛋白质印迹法检测mTOR信号通路相关蛋白及自噬相关蛋白的表达;试剂盒测定谷胱甘肽过氧化物酶(GSH-Px)、丙二醛和超氧化物歧化酶(SOD)等氧化应激产物的浓度。结果: 与对照组比较,模型组小鼠行走速度和步频变慢,速度变化率增加(P < 0.05或P < 0.01),被系统识别的落脚模式减少;小鼠脑黑质中TH阳性染色神经元数量减少,Akt、S6K、S6及UNC-51样激酶(ULK)磷酸化水平升高,LC3-Ⅱ/Ⅰ比值降低,氧化应激相关的SOD和GSH-Px含量减少而丙二醛含量增加(均P < 0.01)。与模型组比较,治疗组步态规律性恢复,落脚模式被系统识别的数量增加,行走速度和步频加快,速度变化率减小(P < 0.05或P < 0.01);小鼠脑黑质中TH阳性染色神经元数量增加,mTOR信号通路相关蛋白及ULK磷酸化水平降低,LC3-Ⅱ/Ⅰ比值升高,SOD、GSH-Px含量增加而丙二醛含量减少(P < 0.05或P < 0.01)。结论: 雷帕霉素可以抑制帕金森病小鼠mTOR信号通路活性,通过增强大脑黑质部自噬活性和降低氧化应激水平来减轻多巴胺能神经元损伤,改善帕金森病小鼠行为学异常。

关键词: 帕金森病/预防和控制西罗莫司/药理学信号传导自噬氧化性应激    
Abstract:

Objective: To investigate the effect of rapamycin on Parkinson's disease (PD) and its underlying mechanism in mice. Methods: Sixty SPF adult male C57BL/6 mice were randomly divided into control group, model group and treatment group. 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine(MPTP) was used to induce Parkinson's disease in model group and treatment group. All mice were trained to cross the runway and were subjected to computer-assisted CatWalk. The numbers of tyrosine hydroxylase positive (TH+) neurons in the substantia nigra (SN) were assessed by unbiased stereology using the optical fractionator method; protein expression was detected by Western blot analysis; and glutathione peroxidase (GSH-Px), malondialdehyde (MDA) and superoxide dismutase (SOD) were detected by spectrophotometry. Results: In the model group, a decrease in stride rate and an increase in variation of stance and swing were noted by CatWalk system (P < 0.05 or P < 0.01); the numbers of TH+ neurons decreased (P < 0.01); expression of p-Akt, p-S6K, p-S6 and p-ULK increased (all P < 0.01); LC3-Ⅱ/Ⅰ ratio decreased (P < 0.01); MDA level was elevated while the levels of SOD and GSH-PX were reduced (all P < 0.01). Compared with the model group, after treated with rapamycin, the abnormal behavior including the stride length, variation of stance and swing and step patterns induced by MPTP were all improved (P < 0.05 or P < 0.01); the numbers of TH+ neurons increased (P < 0.05); the expression of p-Akt, p-S6K, p-S6 and p-ULK was suppressed (all P < 0.01); the LC3-Ⅱ/Ⅰ ratio was upregulated (P < 0.05); MDA level decreased while the levels of GSH-Px and SOD increased (all P < 0.01). Conclusion: Rapamycin inhibits the activation of mTOR pathway, which contributes to protect against the loss of dopaminergic neurons and provide behavioral improvements in mice with Parkinson's disease. These results are partially related to the ability of rapamycin in inducing autophagy and reducing oxidative stress.

Key words: Parkinson disease/prevention & control    Sirolimus/pharmacology    Signal transduction    Autophagy    Oxidative stress
收稿日期: 2018-09-15 出版日期: 2019-01-23
:  R742  
基金资助: 杭州市科发展计划重大科技创新专项(20152013A02);2018年度高层次留学回国人员(团队)在杭创业创新资助项目
通讯作者: 曾玲晖     E-mail: zhuf@zucc.edu.cn;zenglh@zucc.edu.cn
作者简介: 朱锋(1978-), 女, 硕士, 副教授, 主要从事神经药理学研究; E-mail:zhuf@zucc.edu.cn; https://orcid.org/0000-0002-3220-6762
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
朱锋
范苗
徐孜惟
蔡依廷
陈益臻
余双
曾玲晖

引用本文:

朱锋,范苗,徐孜惟,蔡依廷,陈益臻,余双,曾玲晖. 雷帕霉素对帕金森病小鼠的保护作用[J]. 浙江大学学报(医学版), 2018, 47(5): 465-472.

ZHU Feng,FAN Miao,XU Ziwei,CAI Yiting,CHEN Yizhen,YU Shuang,ZENG Linghui. Neuroprotective effect of rapamycin against Parkinson's disease in mice. J Zhejiang Univ (Med Sci), 2018, 47(5): 465-472.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2018.10.04        http://www.zjujournals.com/med/CN/Y2018/V47/I5/465

图 1  各组造模前后的典型脚印直观图
图 2  各组典型的落脚模式
图 3  各组行走时间、步频和速度变化率比较(n=8)
图 4  各组脑黑质区酪氨酸羟化酶(TH)免疫荧光染色图
图 5  各组脑黑质区Akt、S6K和S6蛋白磷酸化水平比较(n=6)
图 6  各组脑黑质区自噬相关蛋白表达及比较(n=6)
($\bar x \pm s$)
组别 n SOD(U/mg) GSH-Px(U/mg) 丙二醛(nmol/mg)
与对照组比较,*P < 0.05,* *P < 0.01;与模型组比较,##P < 0.01.SOD:超氧化物歧化酶;GSH-Px:谷胱甘肽过氧化物酶.
对照组 6 107±22 94±16 3.0±1.7
模型组 6 58±7** 38±10** 7.5±1.3**
治疗组 6 89±5## 61±11*## 4.0±1.6*#
表 1  各组脑黑质中氧化应激产物水平比较
1 BELLUCCI A , MERCURI N B , VENNERI A et al. Review:Parkinson's disease:from synaptic loss to connectome dysfunction[J]. Neuropathol Appl Neurobiol, 2016, 42 (1): 77- 94
doi: 10.1111/nan.2016.42.issue-1
2 MELKI R . Alpha-synuclein and the prion hypothesis in Parkinson's disease[J]. Rev Neurol(Paris), 2018, 174 (9): 644- 652
doi: 10.1016/j.neurol.2018.08.002
3 LEWITT P A , FAHN S . Levodopa therapy for Parkinson disease:a look backward and forward[J]. Neurology, 2016, 86 (14 Suppl 1): S3- S12
4 RASCOL O , BROOKS D J , MELAMED E et al. Rasagiline as an adjunct to levodopa in patients with Parkinson's disease and motor fluctuations (LARGO, Lasting effect in Adjunct therapy with Rasagiline Given Once daily, study):a randomised, double-blind, parallel group trial[J]. Lancet, 2005, 365 (9463): 947- 954
doi: 10.1016/S0140-6736(05)71083-7
5 SARKAR S , RAYMICK J , IMAM S . Neuroprotective and therapeutic strategies against Parkinson's disease:recent perspectives[J]. Int J Mol Sci, 2016, 17 (6): pii:E904
doi: 10.3390/ijms17060904
6 HANG L , BASIL A H , LIM K L . Nutraceuticals in Parkinson's disease[J]. Neuromolecular Med, 2016, 18 (3): 306- 321
doi: 10.1007/s12017-016-8398-6
7 GIUGNI J C , OKUN M S . Treatment of advanced Parkinson's disease[J]. Curr Opin Neurol, 2014, 27 (4): 450- 460
doi: 10.1097/WCO.0000000000000118
8 MAIESE K , CHONG Z Z , SHANG Y C et al. mTOR:on target for novel therapeutic strategies in the nervous system[J]. Trends Mol Med, 2013, 19 (1): 51- 60
doi: 10.1016/j.molmed.2012.11.001
9 TIMMONS S , COAKLEY M F , MOLONEY A M et al. Akt signal transduction dysfunction in Parkinson's disease[J]. Neurosci Lett, 2009, 467 (1): 30- 35
doi: 10.1016/j.neulet.2009.09.055
10 YAL?NKAYA N , HAYTURAL H , BILGI? B et al. Expression changes of genes associated with apoptosis and survival processes in Parkinson's disease[J]. Neurosci Lett, 2016, 615:72- 77
doi: 10.1016/j.neulet.2016.01.029
11 CANAL M , MARTíN-FLORES N , PéREZ-SISQUéS L et al. Loss of NEDD4 contributes to RTP801 elevation and neuron toxicity:implications for Parkinson's disease[J]. Oncotarget, 2016, 7 (37): 58813- 58831
12 NACARELLI T , AZAR A , SELL C . Aberrant mTOR activation in senescence and aging:a mitochondrial stress response?[J]. Exp Gerontol, 2015, 68:66- 70
doi: 10.1016/j.exger.2014.11.004
13 WEN Z , ZHANG J , TANG P et al. Overexpression of miR-185 inhibits autophagy and poptosis of dopaminergic neurons by regulating the AMPK/mTOR signaling pathway in Parkinson's disease[J]. Mol Med Rep, 2018, 17 (1): 131- 137
14 CACCAMO A , MAJUMDER S , RICHARDSON A et al. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-p and Tau:effects on cognitive impairments[J]. J Biol Chem, 2010, 285 (17): 13107- 13120
doi: 10.1074/jbc.M110.100420
15 MOORS T E , HOOZEMANS J J , INGRASSIA A et al. Therapeutic potential of autophagy-enhancing agents in Parkinson's disease[J]. Mol Neurodegener, 2017, 12 (1): 11
doi: 10.1186/s13024-017-0154-3
16 ZHANG Y, HE X, WU X, et al. Rapamycin upregulates glutamate transporter and IL-6 expression in astrocytes in a mouse model of Parkinson's disease[J/OL]. Cell Death Dis, 2017, 8(2): e2611.
17 FANG C , GU L , SMERIN D et al. The Interrelation between reactive oxygen species and autophagy in neurological disorders[J]. Oxid Med Cell Longev, 2017, 2017:8495160
18 ANDERSON F L , COFFEY M M , BERWIN B L et al. Inflammasomes:an emerging mechanism translating environmental toxicant exposure into neuroinflammation in Parkinson's disease[J]. Toxicol Sci, 2018, 166 (1): 3- 15
19 DIJKSTRA A A, INGRASSIA A, DE MENEZES R X, et al. Evidence for immune response, axonal dysfunction and reduced endocytosis in the substantia Nigra in early stage Parkinson's disease[J/OL]. PLoS One, 2015, 10(6): e0128651.
20 BOLAND B , KUMAR A , LEE S et al. Autophagy induction and autophagosome clearance in neurons:relationship to autophagic pathology in Alzheimer's disease[J]. J Neurosci, 2008, 28 (27): 6926- 6937
doi: 10.1523/JNEUROSCI.0800-08.2008
21 MENZIES F M , FLEMING A , CARICASOLE A . Autophagy and neurodegeneration:pathogenic mechanisms and therapeutic opportunities[J]. Neuron, 2017, 93 (5): 1015- 1034
doi: 10.1016/j.neuron.2017.01.022
22 RADAD K , MOLDZIO R , AL-SHRAIM M et al. Recent advances in autophagy-based neuroprotection[J]. Expert Rev Neurother, 2015, 15 (2): 195- 205
doi: 10.1586/14737175.2015.1002087
23 SAXTON R A , SABATINI D M . mTOR signaling in growth, metabolism, and disease[J]. Cell, 2017, 169 (2): 361- 371
24 HERAS-SANDOVAL D , PéREZ-ROJAS J M , HERNáNDEZ-DAMIáN J et al. The role of PI3K/AKT/mTOR pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration[J]. Cell Signal, 2014, 26 (12): 2694- 2701
doi: 10.1016/j.cellsig.2014.08.019
25 PERLUIGI M , DI DOMENICO F , BUTTERFIELD D A . mTOR signaling in aging and neurodegeneration:at the crossroad between metabolism dysfunction and impairment of autophagy[J]. Neurobiol Dis, 2015, 84:39- 49
doi: 10.1016/j.nbd.2015.03.014
26 JENWITHEESUK A , NOPPARAT C , MUKDA S et al. Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways[J]. Int J Mol Sci, 2014, 15 (9): 16848- 16884
doi: 10.3390/ijms150916848
27 RYSKALIN L , LIMANAQI F , FRATI A et al. mTOR-related brain dysfunctions in neuropsychiatric disorders[J]. Int J Mol Sci, 2018, 19 (8): pii:E2226
doi: 10.3390/ijms19082226
28 MAIESE K , CHONG Z Z , SHANG Y C et al. mTOR:on target for novel therapeutic strategies in the nervous system[J]. Trends Mol Med, 2013, 19 (1): 51- 60
doi: 10.1016/j.molmed.2012.11.001
29 PUSPITA L , CHUNG S Y , SHIM J W . Oxidative stress and cellular pathologies in Parkinson's disease[J]. Mol Brain, 2017, 10 (1): 53
30 NACARELLI T , AZAR A , SELL C . Aberrant mTOR activation in senescence and aging:A mitochondrial stress response?[J]. Exp Gerontol, 2015, 68:66- 70
doi: 10.1016/j.exger.2014.11.004
31 PRASAD K N . Oxidative stress, pro-inflammatory cytokines, and antioxidants regulate expression levels of microRNAs in Parkinson's disease[J]. Curr Aging Sci, 2017, 10 (3): 177- 184
32 RAVIKUMAR B , DUDEN R , RUBINSZTEIN D C . Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy[J]. Hum Mol Genet, 2002, 11 (9): 1107- 1117
doi: 10.1093/hmg/11.9.1107
33 SINGH A K , SINGH S , GAR G et al. Rapamycin alleviates oxidative stress-induced damage in rat erythrocytes[J]. Biochem Cell Biol, 2016, 94 (5): 471- 479
doi: 10.1139/bcb-2016-0048
34 SINGH A K , KASHYAP M P , TRIPATHI V K et al. Neuroprotection through rapamycin-induced activation of autophagy and PI3K/Akt1/mTOR/CREB signaling against amyloid-β-induced oxidative stress, synaptic/neurotransmission dysfunction, and neurodegeneration in adult rats[J]. Mol Neurobiol, 2017, 54 (8): 5815- 5828
doi: 10.1007/s12035-016-0129-3
[1] 吴忧,梁顺利,徐彬,张荣博,徐林胜. 姜黄素保护帕金森病多巴胺能神经元的机制研究[J]. 浙江大学学报(医学版), 2018, 47(5): 480-486.
[2] 梁刚, 牛育苗, 李一涵, 魏安怡, 董静尹, 曾玲晖. 雷帕霉素在大鼠局灶性脑缺血再灌注后24 h给药对脑损伤的保护作用[J]. 浙江大学学报(医学版), 2018, 47(5): 443-449.
[3] 王青梅,舒敏,徐千姿,谢一乙,阮盛哲,王健达,曾玲晖. 和厚朴酚对癫痫小鼠学习记忆能力的改善作用[J]. 浙江大学学报(医学版), 2018, 47(5): 450-456.
[4] 何佳怡,张信美. 氧化应激在子宫内膜异位症发病机制中的研究进展[J]. 浙江大学学报(医学版), 2018, 47(4): 419-425.
[5] 钱波,张彦玲,莫绪明. 先天性食管闭锁相关转录因子及信号通路研究进展[J]. 浙江大学学报(医学版), 2018, 47(3): 239-243.
[6] 吕丹丹,应可净. 自噬在肺动脉高压发生和发展中的调节作用[J]. 浙江大学学报(医学版), 2018, 47(2): 207-212.
[7] 潘宗富,方琦璐,张轶雯,李莉,黄萍. 基于生物信息学的未分化甲状腺癌关键发病机制及其潜在干预靶点研究[J]. 浙江大学学报(医学版), 2018, 47(2): 187-193.
[8] 丁京京,卢韵碧. 受体相互作用蛋白家族在炎症中的作用研究进展[J]. 浙江大学学报(医学版), 2018, 47(1): 89-96.
[9] 刘婷婷,王凌霄,杨晓辉,姚智卿,蔡慧珍. MyD88非依赖性信号通路在枸杞多糖抑制糖尿病小鼠肿瘤坏死因子α中的作用[J]. 浙江大学学报(医学版), 2018, 47(1): 35-40.
[10] 魏振龙,石文贵,陈克明,周建,王鸣刚. 淫羊藿素通过CXCR4/SDF-1信号通路促进小鼠成骨细胞成熟和矿化[J]. 浙江大学学报(医学版), 2017, 46(6): 571-577.
[11] 张斌斌 等. 抑制哺乳动物雷帕霉素靶蛋白信号通路对慢性脑缺血小鼠认知功能的改善和机制[J]. 浙江大学学报(医学版), 2017, 46(4): 405-412.
[12] 郑艳榕,张翔南,陈忠. Nix介导的线粒体自噬机制的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 92-96.
[13] 封盛 等. 糖皮质激素受体信号通路在膀胱癌治疗中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 655-660.
[14] 刘军 等. JAK2/STAT3信号通路介导薯蓣皂苷元对骨性关节炎软骨细胞代谢的影响[J]. 浙江大学学报(医学版), 2016, 45(5): 453-460.
[15] 刘巧云 等. 锌与自噬[J]. 浙江大学学报(医学版), 2016, 45(3): 308-314.