Please wait a minute...
浙江大学学报(医学版)  2018, Vol. 47 Issue (4): 338-343    DOI: 10.3785/j.issn.1008-9292.2018.08.02
专题报道     
人乳头瘤病毒相关宫颈癌的精准筛查和治疗
胡争1(),马丁2,*()
1. 中山大学附属第一医院妇产科, 广东 广州 510080
2. 华中科技大学同济医学院附属同济医院妇产科, 湖北 武汉 430030
Precision screening and treatment of human papilloma virus related cervical cancer
HU Zheng1(),MA Ding2,*()
1. Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
2. Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430030, China
 全文: PDF(1018 KB)   HTML( 15 )
摘要:

宫颈癌是自身和环境共同作用下的复杂疾病。在宿主遗传易感性的基础上,高危型人乳头瘤病毒(HPV)持续感染并整合入宿主、宿主基因组的甲基化及体细胞突变等基因组及表观基因组特征变化在宫颈癌的发生和发展中具备分子分型、早期预警及指示预后的关键作用。因此,基于第二代测序技术的HPV等分子检测及动态机器学习模型将更精准地预测真正可能致癌的患者,减轻反复筛查负担;与此同时,基因编辑技术的靶向定点切割将使HPV感染相关宫颈病变的治疗成为可能。本文回顾了HPV相关宫颈癌分子生物学研究进展,提出未来我国宫颈癌精准防治的方向。

关键词: 分子结构宫颈肿瘤/诊断宫颈肿瘤/治疗乳头状瘤病毒科/遗传学病毒整合RNA编辑序列分析, DNA/方法普查    
Abstract:

Cervical cancer is a complex disease caused by both genetic susceptibility and environmental factors. Inherited genomic variance, high-risk human papilloma virus (HPV) infection/integration, genome methylation and somatic mutation could all constitute one machine learning model, laying the ground for molecular classification and the precision medicine of cervical cancer. Therefore, for cervical screening, next generation sequencing (NGS)-based HPV DNA and other molecular tests as well as dynamic machine learning models would accurately predict patients with potential to develop the cancer, thereby reducing the burden of repeated screening. Meantime, genome-editing tools targeting HPV would emerge as the next generation gene therapy for HPV-related cervical lesions. In this article, we review the substantial progress on molecular mechanism of cervical cancer development and suggest the future for precise prevention and early treatment of cervical cancer.

Key words: Molecular structure    Uterine cervical neoplasms/diagnosis    Uterine cervical neoplasms/therapy    Papillomaviridae/genetics    Virus integration    RNA editing    Sequence analysis, DNA/methods    Mass screening
收稿日期: 2018-06-03 出版日期: 2018-12-04
:  R737.33  
基金资助: 艾滋病和病毒性肝炎等重大传染病防治科技重大专项(2018ZX10301402);国家自然科学基金(81761148025, 81630060)
通讯作者: 马丁     E-mail: huzheng1998@163.com;dma@tjh.tjmu.edu.cn
作者简介: 胡争(1982-), 男, 博士, 研究员, 副主任医师, 博士生导师, 主要从事HPV相关宫颈癌的发病机制及精准靶向防治研究; E-mail:huzheng1998@163.com; https://orcid.org/0000-0001-9306-9442
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
胡争
马丁

引用本文:

胡争,马丁. 人乳头瘤病毒相关宫颈癌的精准筛查和治疗[J]. 浙江大学学报(医学版), 2018, 47(4): 338-343.

HU Zheng,MA Ding. Precision screening and treatment of human papilloma virus related cervical cancer. J Zhejiang Univ (Med Sci), 2018, 47(4): 338-343.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2018.08.02        http://www.zjujournals.com/med/CN/Y2018/V47/I4/338

图 1  人乳头瘤病毒检测在宫颈癌筛查中发展的时间简史
图 2  基因编辑技术治疗人乳头瘤病毒(HPV)感染的示意图
1 BRAY F , FERLAY J , SOERJOMATARAM I et al. Global cancer statistics 2018:GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68 (6): 394- 424
doi: 10.3322/caac.v68.6
2 BOONE E , LEWIS L , KARP M . Discontent and confusion:primary care providers' opinions and understanding of current cervical cancer screening recommendations[J]. J Womens Health (Larchmt), 2016, 25 (3): 255- 262
doi: 10.1089/jwh.2015.5326
3 BURK R D , HARARI A , CHEN Z . Human papillomavirus genome variants[J]. Virology, 2013, 445 (1-2): 232- 243
doi: 10.1016/j.virol.2013.07.018
4 MIRABELLO L , YEAGER M , CULLEN M et al. HPV16 sublineage associations with histology-specific cancer risk using HPV whole-genome sequences in 3200 women[J]. J Natl Cancer Inst, 2016, 108 (9): djw100
doi: 10.1093/jnci/djw100
5 WENTZENSEN N , RIDDER R , KLAES R et al. Characterization of viral-cellular fusion transcripts in a large series of HPV16 and 18 positive anogenital lesions[J]. Oncogene, 2002, 21 (3): 419- 426
doi: 10.1038/sj.onc.1205104
6 WENTZENSEN N , VINOKUROVA S , VON KNEBEL DOEBERITZ M . Systematic review of genomic integration sites of human papillomavirus genomes in epithelial dysplasia and invasive cancer of the female lower genital tract[J]. Cancer Res, 2004, 64 (11): 3878- 3884
doi: 10.1158/0008-5472.CAN-04-0009
7 PETT M , COLEMAN N . Integration of high-risk human papillomavirus:a key event in cervical carcinogenesis?[J]. J Pathol, 2007, 212 (4): 356- 367
8 AU YEUNG C L , TSANG W P , TSANGT Y et al. HPV-16 E6 upregulation of DNMT1 through repression of tumor suppressor p53[J]. Oncol Rep, 2010, 24 (6): 1599- 1604
9 OJESINA A I , LICHTENSTEIN L , FREEMAN S S et al. Landscape of genomic alterations in cervical carcinomas[J]. Nature, 2014, 506 (7488): 371- 375
doi: 10.1038/nature12881
10 BIERKENS M , HESSELINK A T , MEIJERC J et al. CADM1 and MAL promoter methylation levels in hrHPV-positive cervical scrapes increase proportional to degree and duration of underlying cervical disease[J]. Int J Cancer, 2013, 133 (6): 1293- 1299
doi: 10.1002/ijc.v133.6
11 HESSELINK A T , HEIDEMAN D A , STEENBERGENR D et al. Combined promoter methylation analysis of CADM1 and MAL:an objective triage tool for high-risk human papillomavirus DNA-positive women[J]. Clin Cancer Res, 2011, 17 (8): 2459- 2465
doi: 10.1158/1078-0432.CCR-10-2548
12 CHAKRABORTY C , DUTTA S , MUKHERJEE N et al. Inactivation of PTCH1 is associated with the development of cervical carcinoma:clinical and prognostic implication[J]. Tumour Biol, 2015, 36 (2): 1143- 1154
doi: 10.1007/s13277-014-2707-1
13 SU P H , LIN Y W , HUANG R L et al. Epigenetic silencing of PTPRR activates MAPK signaling, promotes metastasis and serves as a biomarker of invasive cervical cancer[J]. Oncogene, 2013, 32 (1): 15- 26
doi: 10.1038/onc.2012.29
14 YIN F F , WANG N , BIX N et al. Serine/threonine kinases 31(STK31) may be a novel cellular target gene for the HPV16 oncogene E7 with potential as a DNA hypomethylation biomarker in cervical cancer[J]. Virol J, 2016, 13 60
doi: 10.1186/s12985-016-0515-5
15 Cancer Genome Atlas Research Network , Albert Einstein College of Medicine , Analytical Biological Services et al. Integrated genomic and molecular characterization of cervical cancer[J]. Nature, 2017, 543 (7645): 378- 384
doi: 10.1038/nature21386
16 POLJAK M , KOCJAN B J , OSTRBENK A et al. Commercially available molecular tests for human papilloma viruses (HPV):2015 update[J]. J Clin Virol, 2016, 76 (Suppl 1): S3- S13
17 WRIGHT T C JR , SCHIFFMAN M , SOLOMON D et al. Interim guidance for the use of human papillomavirus DNA testing as an adjunct to cervical cytology for screening[J]. Obstet Gynecol, 2004, 103 (2): 304- 309
doi: 10.1097/01.AOG.0000109426.82624.f8
18 CUI M , CHAN N , LIU M et al. Clinical performance of Roche Cobas 4800 HPV test[J]. J Clin Microbiol, 2014, 52 (6): 2210- 2211
doi: 10.1128/JCM.00883-14
19 WENTZENSEN N , SCHIFFMAN M , PALMER T et al. Triage of HPV positive women in cervical cancer screening[J]. J Clin Virol, 2016, 76 (Suppl 1): S49- S55
20 HU B , TAO N , ZENG F et al. A risk evaluation model of cervical cancer based on etiology and human leukocyte antigen allele susceptibility[J]. Int J Infect Dis, 2014, 28 8- 12
doi: 10.1016/j.ijid.2014.05.015
21 DING W , HU Z , ZHU D et al. Zinc finger nucleases targeting the human papillomavirus E7 oncogene induce E7 disruption and a transformed phenotype in HPV16/18-positive cervical cancer cells[J]. Clin Cancer Res, 2014, 20 (24): 6495- 6503
doi: 10.1158/1078-0432.CCR-14-0250
22 PERIWAL V . A comprehensive overview of computational resources to aid in precision genome editing with engineered nucleases[J]. Brief Bioinform, 2017, 18 (4): 698- 711
23 HU Z , DING W , ZHU D et al. TALEN-mediated targeting of HPV oncogenes ameliorates HPV-related cervical malignancy[J]. J Clin Invest, 2015, 125 (1): 425- 436
doi: 10.1172/JCI78206
24 KENNEDY E M , KORNEPATI A V , GOLDSTEIN M et al. Inactivation of the human papillomavirus E6 or E7 gene in cervical carcinoma cells by using a bacterial CRISPR/Cas RNA-guided endonuclease[J]. J Virol, 2014, 88 (20): 11965- 11972
doi: 10.1128/JVI.01879-14
25 FU Y , FODEN J A , KHAYTER C et al. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nat Biotechnol, 2013, 31 (9): 822- 826
doi: 10.1038/nbt.2623
[1] 陈志强,米贤军,陈昂,段立锋,代新珍,邓文同. 免疫组织化学法检测子宫颈组织p16蛋白表达的石蜡切片厚度探讨[J]. 浙江大学学报(医学版), 2018, 47(4): 362-366.
[2] 狄晨红,金帆. 密封蛋白4与高危型人乳头瘤病毒联合检测对于高级别鳞状上皮内病变及宫颈鳞癌的诊断价值[J]. 浙江大学学报(医学版), 2018, 47(4): 344-350.
[3] 陈达华 等. CRISPR/Cas9基因编辑技术构建靶向敲除小鼠微小RNA-101a基因的一体化载体系统[J]. 浙江大学学报(医学版), 2017, 46(4): 427-432.
[4] 窦琳琳,杨国绘,莫伟明. 本地胎儿双顶径估算孕龄应用于孕中期产前筛查的意义[J]. 浙江大学学报(医学版), 2017, 46(1): 59-65.
[5] 陈永健,周永列,徐莉,严杰. 运用聚乙二醇6000沉淀筛检巨催乳素血症患者[J]. 浙江大学学报(医学版), 2014, 43(2): 187-192.
[6] . 大肠癌优化序贯筛查方案的应用研究[J]. 浙江大学学报(医学版), 2011, 40(3): 272-275.
[7] . 结直肠癌人群筛检策略[J]. 浙江大学学报(医学版), 2011, 40(3): 233-236.
[8] 傅旭春;孙群. β受体阻断剂的小肠吸收速率与分子结构的相关性[J]. 浙江大学学报(医学版), 2005, 34(2): 177-180.
[9] 姚济芬,季银芬,石一复,郑伟,周彩云. 微血管密度和血管套及血管内皮生长因子在子宫颈癌中的表达[J]. 浙江大学学报(医学版), 2003, 32(1): 62-66.
[10] 余永谱, 邓银泉, 李夏玉, 余春艳, 沈淑彬, 丁婉音, 章春娣. 杭州市3015名职工脂肪肝调查报告[J]. 浙江大学学报(医学版), 1994, 23(2): 75-77.
[11] 陈宗理, 董玉兰. 杭州市5913名儿童少年生长发育调查[J]. 浙江大学学报(医学版), 1989, 18(2): 81-83,91.