Please wait a minute...
浙江大学学报(医学版)  2018, Vol. 47 Issue (3): 307-312    DOI: 10.3785/j.issn.1008-9292.2018.06.15
综述     
秀丽隐杆线虫嗅觉适应性的分子细胞生物学机制
张小燕(),康利军*()
浙江大学医学院神经科学研究所, 浙江 杭州 310058
Molecular and cell biological mechanism of olfactory adaptation in Caenorhabditis elegans
ZHANG Xiaoyan(),KANG Lijun*()
Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou 310058, China
 全文: PDF(1023 KB)   HTML( 19 )
摘要:

嗅觉适应是动物的一项重要生理功能,可以保护自身细胞免受过度刺激,进而更好地应对周围环境变化。目前发现秀丽隐杆线虫嗅觉适应性主要与嗅觉神经元胞内信号分子和感受蛋白有关,如AWC神经元区域特异性环鸟苷酸(cGMP)反应、瞬时受体电位香草酸亚型(TRPV)离子通道蛋白OSM-9、细胞质基质抑制蛋白ARR-1和G蛋白信号通路中的甘油二酯(DAG)通路等均可以调控嗅觉适应,而神经环路方面的嗅觉适应性研究甚少。本文总结回顾了线虫嗅觉适应有关的分子细胞生物学机制,以期为高等生物嗅觉的研究提供参考。

关键词: 新小杆线虫, 漂亮嗅觉分子生物学神经元综述    
Abstract:

Olfactory adaptation is an important physiological function of animals, which can protect their own neurons from overstimulation, and be better to deal with all kinds of stimuli in the surrounding environment. In this article, we discuss the neuronal basis of olfactory adaptation in Caenorhabditis elegans. Up to now, several intracellular regulatory factors have been discovered to be associated with olfactory adaptation in Caenorhabditis elegans, including cyclic guanosine monophosphate (cGMP) signaling in the olfactory neurons AWC, OSM-9 in transient receptor potential vanilloid (TRPV) channel, arrestin ARR-1, diglyceride (DAG) pathway in G protein signaling pathways, etc. However, the neural circuits of the olfactory adaptation remains largely unknown. This paper reviews molecular and cell biological mechanism of olfactory adaptation in Caenorhabditis elegans, so as to provide reference for studies on olfactory sensation in advanced animals.

Key words: Caenorhabditis elegans    Smell    Molecular biology    Neurons    Review
收稿日期: 2017-12-03 出版日期: 2018-09-18
CLC:  Q421  
基金资助: 国家自然科学基金(31771113, 31271180, 31471023);浙江省自然科学基金(LR14C090001)
通讯作者: 康利军     E-mail: zhangxiaoyan1011@qq.com;kanglijun@zju.edu.cn
作者简介: 张小燕(1992-), 女, 硕士研究生, 主要从事神经胶质细胞对神经元活性和神经系统功能的影响及其分子机制研究; E-mail:zhangxiaoyan1011@qq.com; https://orcid.org/0000-0002-6950-5096
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张小燕
康利军

引用本文:

张小燕,康利军. 秀丽隐杆线虫嗅觉适应性的分子细胞生物学机制[J]. 浙江大学学报(医学版), 2018, 47(3): 307-312.

ZHANG Xiaoyan,KANG Lijun. Molecular and cell biological mechanism of olfactory adaptation in Caenorhabditis elegans. J Zhejiang Univ (Med Sci), 2018, 47(3): 307-312.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2018.06.15        http://www.zjujournals.com/med/CN/Y2018/V47/I3/307

1 BARGMANN C I . Genetic and cellular analysis of behavior in C. elegans[J]. Annu Rev Neurosci, 1993, 16 47- 71
doi: 10.1146/annurev.ne.16.030193.000403
2 BARGMANN C I , HORVITZ H R . Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans[J]. Neuron, 1991, 7 (5): 729- 742
doi: 10.1016/0896-6273(91)90276-6
3 MORI I , OHSHIMA Y . Neural regulation of thermotaxis in Caenorhabditis elegans[J]. Nature, 1995, 376 (6538): 344- 348
doi: 10.1038/376344a0
4 BARGMANN C I . Chemosensation in C. elegans[J]. WormBook, 2006, 1- 29
5 MORI I . Genetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans[J]. Annu Rev Genet, 1999, 33 399- 422
doi: 10.1146/annurev.genet.33.1.399
6 LANS H , RADEMAKERS S , JANSEN G . A network of stimulatory and inhibitory Galpha-subunits regulates olfaction in Caenorhabditis elegans[J]. Genetics, 2004, 167 (4): 1677- 1687
doi: 10.1534/genetics.103.024786
7 HIROTSU T , IINO Y . Neural circuit-dependent odor adaptation in C. elegans is regulated by the Ras-MAPK pathway[J]. Genes Cells, 2005, 10 (6): 517- 530
doi: 10.1111/gtc.2005.10.issue-6
8 BARGMANN C I , HARTWIEG E , HORVITZH R . Odorant-selective genes and neurons mediate olfaction in C. elegans[J]. Cell, 1993, 74 (3): 515- 527
doi: 10.1016/0092-8674(93)80053-H
9 BARGMANN C I . Neurobiology of the Caenorhabditis elegans genome[J]. Science, 1998, 282 (5396): 2028- 2033
doi: 10.1126/science.282.5396.2028
10 COLBERT H A , SMITH T L , BARGMANN C I . OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans[J]. J Neurosci, 1997, 17 (21): 8259- 8269
doi: 10.1523/JNEUROSCI.17-21-08259.1997
11 AXEL R . Scents and sensibility:a molecular logic of olfactory perception(Nobel lecture)[J]. Angew Chem Int Ed Engl, 2005, 44 (38): 6110- 6127
doi: 10.1002/(ISSN)1521-3773
12 JANSEN G , THIJSSEN K L , WERNER P et al. The complete family of genes encoding G proteins of Caenorhabditis elegans[J]. Nat Genet, 1999, 21 (4): 414- 419
doi: 10.1038/7753
13 SENGUPTA P , CHOU J H , BARGMANN C I . odr-10 encodes a seven transmembrane domain olfactory receptor required for responses to the odorant diacetyl[J]. Cell, 1996, 84 (6): 899- 909
doi: 10.1016/S0092-8674(00)81068-5
14 BATTU G , HOIER E F , HAJNAL A . The C. elegans G-protein-coupled receptor SRA-13 inhibits RAS/MAPK signalling during olfaction and vulval development[J]. Development, 2003, 130 (12): 2567- 2577
doi: 10.1242/dev.00497
15 KOMATSU H , JIN Y H , L'ETOILE N et al. Functional reconstitution of a heteromeric cyclic nucleotide-gated channel of Caenorhabditis elegans in cultured cells[J]. Brain Res, 1999, 821 (1): 160- 168
16 COBURN C M , BARGMANN C I . A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans[J]. Neuron, 1996, 17 (4): 695- 706
doi: 10.1016/S0896-6273(00)80201-9
17 O'HALLORAN D M , ALTSHULER-KEYLIN S , LEE J I et al. Regulators of AWC-mediated olfactory plasticity in Caenorhabditis elegans[J]. PLoS Genet, 2009, 5 (12): e1000761
doi: 10.1371/journal.pgen.1000761
18 PALMITESSA A , HESS H A , BANY I A et al. Caenorhabditus elegans arrestin regulates neural G protein signaling and olfactory adaptation and recovery[J]. J Biol Chem, 2005, 280 (26): 24649- 24662
doi: 10.1074/jbc.M502637200
19 COLBERT H A , BARGMANN C I . Odorant-specific adaptation pathways generate olfactory plasticity in C. elegans[J]. Neuron, 1995, 14 (4): 803- 812
doi: 10.1016/0896-6273(95)90224-4
20 SHIDARA H , HOTTA K , OKA K . Compartmentalized cGMP Responses of Olfactory Sensory Neurons in Caenorhabditis elegans[J]. J Neurosci, 2017, 37 (14): 3753- 3763
doi: 10.1523/JNEUROSCI.2628-16.2017
21 DE BONO M , MARICQ A V . Neuronal substrates of complex behaviors in C. elegans[J]. Annu Rev Neurosci, 2005, 28 451- 501
doi: 10.1146/annurev.neuro.27.070203.144259
22 L'ETOILE N D , COBURN C M , EASTHAM J et al. The cyclic GMP-dependent protein kinase EGL-4 regulates olfactory adaptation in C. elegans[J]. Neuron, 2002, 36 (6): 1079- 1089
doi: 10.1016/S0896-6273(02)01066-8
23 LEE J I , O'HALLORAN D M , EASTHAM-ANDERSON J et al. Nuclear entry of a cGMP-dependent kinase converts transient into long-lasting olfactory adaptation[J]. Proc Natl Acad Sci U S A, 2010, 107 (13): 6016- 6021
doi: 10.1073/pnas.1000866107
24 O'HALLORAN D M , HAMILTON O S , LEE J I et al. Changes in cGMP levels affect the localization of EGL-4 in AWC in Caenorhabditis elegans[J]. PLoS One, 2012, 7 (2): e31614
doi: 10.1371/journal.pone.0031614
25 KOMATSU H , MORI I , RHEEJ S et al. Mutations in a cyclic nucleotide-gated channel lead to abnormal thermosensation and chemosensation in C. elegans[J]. Neuron, 1996, 17 (4): 707- 718
doi: 10.1016/S0896-6273(00)80202-0
26 COBURN C M , BARGMANN C I . A putative cyclic nucleotide-gated channel is required for sensory development and function in C. elegans[J]. Neuron, 1996, 17 (4): 695- 706
doi: 10.1016/S0896-6273(00)80201-9
27 COLBERT H A , SMITH T L , BARGMANN C I . OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans[J]. J Neurosci, 1997, 17 (21): 8259- 8269
doi: 10.1523/JNEUROSCI.17-21-08259.1997
28 STERNWEIS P C , ROBISHAW J D . Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain[J]. J Biol Chem, 1984, 259 (22): 13806- 13813
29 MATSUKI M , KUNITOMO H , IINO Y . Goalpha regulates olfactory adaptation by antagonizing Gqalpha-DAG signaling in Caenorhabditis elegans[J]. Proc Natl Acad Sci U S A, 2006, 103 (4): 1112- 1117
doi: 10.1073/pnas.0506954103
30 KUHARA A , INADA H , KATSURA I et al. Negative regulation and gain control of sensory neurons by the C. elegans calcineurin TAX-6[J]. Neuron, 2002, 33 (5): 751- 763
doi: 10.1016/S0896-6273(02)00607-4
31 YAMADA K , HIROTSU T , MATSUKI M et al. GPC-1, a G protein gamma-subunit, regulates olfactory adaptation in Caenorhabditis elegans[J]. Genetics, 2009, 181 (4): 1347- 1357
doi: 10.1534/genetics.108.099002
32 MIYAHARA K , SUZUKI N , ISHIHARAT et al. TBX2/TBX3 transcriptional factor homologue controls olfactory adaptation in Caenorhabditis elegans[J]. J Neurobiol, 2004, 58 (3): 392- 402
doi: 10.1002/(ISSN)1097-4695
33 IKEDA D D , DUAN Y , MATSUKI M et al. CASY-1, an ortholog of calsyntenins/alcadeins, is essential for learning in Caenorhabditis elegans[J]. Proc Natl Acad Sci U S A, 2008, 105 (13): 5260- 5265
doi: 10.1073/pnas.0711894105
[1] 王伟,刘振,刘军,甄平,李旭升,宋明甲. 全膝关节置换术中是否需要保留后交叉韧带?[J]. 浙江大学学报(医学版), 2018, 47(3): 313-319.
[2] 陈挺,赵正言,蒋萍萍,舒强. 高苯丙氨酸血症表型与基因型研究进展[J]. 浙江大学学报(医学版), 2018, 47(3): 219-226.
[3] 钱波,张彦玲,莫绪明. 先天性食管闭锁相关转录因子及信号通路研究进展[J]. 浙江大学学报(医学版), 2018, 47(3): 239-243.
[4] 田广烽,高慧,胡莎莎,舒强. 遗传和表观遗传机制在先天性心脏病中的研究进展[J]. 浙江大学学报(医学版), 2018, 47(3): 227-238.
[5] 李福山,房冉,饶琳,孟飞龙,赵小立. 外泌体在心血管疾病诊疗中的作用研究进展[J]. 浙江大学学报(医学版), 2018, 47(3): 320-326.
[6] 何玉贤,郑良荣. 脊髓电刺激对心肌缺血和心肌梗死作用的研究进展[J]. 浙江大学学报(医学版), 2018, 47(2): 201-206.
[7] 吕丹丹,应可净. 自噬在肺动脉高压发生和发展中的调节作用[J]. 浙江大学学报(医学版), 2018, 47(2): 207-212.
[8] 蒋曦依,李璐,唐慧娟,陈天辉. 结直肠癌高危人群多因素风险预测模型及评价[J]. 浙江大学学报(医学版), 2018, 47(2): 194-200.
[9] 王浩,郭红刚,楼琦,石巧娟. 半胱氨酰白三烯受体拮抗剂对全脑缺血再灌注慢性损伤的作用[J]. 浙江大学学报(医学版), 2018, 47(1): 19-26.
[10] 唐慧娟,蒋曦依,楼建林,陈天辉. 基于人群的肿瘤登记数据评估患者生存的方法学研究进展[J]. 浙江大学学报(医学版), 2018, 47(1): 104-109.
[11] 张毓川,陈玮. Vav1对T细胞的调控作用及其与相关疾病的关系[J]. 浙江大学学报(医学版), 2018, 47(1): 75-81.
[12] 王佳静,谷海瀛. 幽门螺杆菌的基因分型技术及其应用[J]. 浙江大学学报(医学版), 2018, 47(1): 97-103.
[13] 凌静,李红蕊,陈玮琳. 蛋白泛素化修饰调控炎性肠疾病发生和发展的研究进展[J]. 浙江大学学报(医学版), 2018, 47(1): 82-88.
[14] 丁京京,卢韵碧. 受体相互作用蛋白家族在炎症中的作用研究进展[J]. 浙江大学学报(医学版), 2018, 47(1): 89-96.
[15] 冯梦宇,张太平,赵玉沛. 加速康复外科在胰腺外科中的应用[J]. 浙江大学学报(医学版), 2017, 46(6): 666-674.