Please wait a minute...
浙江大学学报(医学版)  2018, Vol. 47 Issue (3): 227-238    DOI: 10.3785/j.issn.1008-9292.2018.06.02
专题报道     
遗传和表观遗传机制在先天性心脏病中的研究进展
田广烽(),高慧,胡莎莎,舒强*()
浙江大学医学院附属儿童医院心胸外科, 浙江 杭州 310052
Research progress on genetic and epigenetic mechanisms in congenital heart disease
TIAN Guangfeng(),GAO Hui,HU Shasha,SHU Qiang*()
Department of Cardiovascular and Thoracic Surgery, the Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China
 全文: PDF(1206 KB)   HTML( 32 )
摘要:

先天性心脏病是胎儿期心脏及大血管发育异常所致的先天性畸形,是最常见的出生缺陷之一。先天性心脏病病因复杂,染色体异常、基因突变、核酸修饰、非编码RNA等遗传和表观遗传机制在其发生过程中发挥重要作用。现阶段,染色体异常、基因突变等遗传机制已经广泛应用于临床疾病的诊断与治疗。然而,针对遗传及表观遗传修饰在先天性心脏病的诊疗应用仍需深入研究。本文综述了染色体异常、基因突变、拷贝数变异及表观遗传修饰与先天性心脏病发生的关系,以期为进一步探究先天性心脏病早期诊断及个体化治疗提供依据。

关键词: 心脏缺损, 先天性/遗传学染色体畸变:组蛋白类/遗传学后成说, 遗传微RNAsDNA甲基化综述    
Abstract:

Congenital heart disease (CHD) is a type of birth defects due to the abnormal development of heart and blood vessels during embryonic stage. Studies indicate that the etiology of CHD is complicated. Genetic and epigenetic mechanisms including chromosomal abnormalities, gene mutations, nucleic acid modifications, non-coding RNAs may play important roles in CHD. At present, genetic mechanisms such as chromosome abnormality and gene mutation have been widely used in the diagnosis and treatment of clinical diseases. However, the application of genetic and epigenetic modification in diagnosis and treatment of CHD still need further research. This paper reviews the relationship between chromosomal abnormality, gene mutation, copy number variation, epigenetic modification and the occurrence of CHD, which may provide a basis for further exploring the early diagnosis and individualized therapy of CHD.

Key words: Heart defects, congenital/genetics    Chromosome aberrations    Histones/genetics    Epigenesis, genetic    MicroRNAs    DNA methylation    Review
收稿日期: 2018-02-23 出版日期: 2018-09-18
CLC:  R722.11  
基金资助: 浙江省重点研发计划(2017C03009);浙江省卫生高层次人才培养工程(2016-6)
通讯作者: 舒强     E-mail: guangfeng_tian@zju.edu.cn;shuqiang@zju.edu.cn
作者简介: 田广烽(1992-), 男, 硕士研究生, 主要从事出生缺陷防治研究; E-mail:guangfeng_tian@zju.edu.cn; https://orcid.org/0000-0002-9242-8789
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
田广烽
高慧
胡莎莎
舒强

引用本文:

田广烽,高慧,胡莎莎,舒强. 遗传和表观遗传机制在先天性心脏病中的研究进展[J]. 浙江大学学报(医学版), 2018, 47(3): 227-238.

TIAN Guangfeng,GAO Hui,HU Shasha,SHU Qiang. Research progress on genetic and epigenetic mechanisms in congenital heart disease. J Zhejiang Univ (Med Sci), 2018, 47(3): 227-238.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2018.06.02        http://www.zjujournals.com/med/CN/Y2018/V47/I3/227

图 1  遗传和环境因素与先天性心脏病发生的关系
基因 心脏表型 参考文献
ACTC1 房间隔缺损、室间隔缺损 [17]
ACVR2B 心脏左右轴异位畸形 [18]
ALK2 房间隔缺损 [19]
AXIN2 先天性瓣膜缺损 [20]
ANKRD1 总静脉回流异常 [21]
BAF60C 房间隔缺损、室间隔缺损、房室间隔缺损、心脏圆锥动脉畸形 [22]
BRAF 肺动脉狭窄、房间隔缺损 [23]
BRG1 房间隔缺损、室间隔缺损 [24]
CHD7 法洛四联症、右室双向流出道 [25]
CITED2 房间隔缺损、室间隔缺损 [26]
CRELD1 房室间隔缺损 [27-29]
CX40 心室发育不良 [30]
CX43 法洛四联症 [31]
DLC1 房间隔缺损 [32]
ELN 上腔静脉主动脉狭窄 [33]
FOXH1 法洛四联症、先天性心功能异常 [34]
GATA4 房间隔缺损、房室间隔缺损、法洛四联症 [35-38]
GATA6 持续性动脉硬化性肺动脉瓣 [39]
GDF1 法洛四联症、大动脉转位 [19]
GJA5 室间隔缺损、法洛四联症、主动脉狭窄 [40-41]
HAND2 法洛四联症 [42-43]
HDAC5 室间隔缺损 [44]
HEY2 三尖瓣闭锁 [45]
HRAS IRX4 肺动脉狭窄、心动过速室间隔缺损 [46][47]
JAG1 法洛四联症 [48-49]
KRAS 肺动脉狭窄、房间隔缺损 [50]
MAP2K1 肺动脉狭窄、房间隔缺损 [51]
MED13L 大动脉转位、左心发育不良、主动脉狭窄 [52]
MYBPC3 房间隔缺损、室间隔缺损 [53-55]
MEF2C 室间隔缺损 [56]
MESP1 右室双向流出道 [57]
MYH6 房间隔缺损 [58]
MYH7 左心室心肌致密化不全、二叶式主动脉 [59]
NKX2.5 房间隔缺损、室间隔缺损、法洛四联症、右室双向流出道、左心发育不全 [60-64]
NKX2.6 持续性动脉硬化性肺动脉瓣 [65]
NODAL 大动脉转位 [66-69]
NOTCH1 主动脉瓣疾病 [67-68]
NOTCH2 法洛四联症、肺动脉狭窄、主动脉狭窄 [69]
NR2F2 房间隔缺损、主动脉狭窄 [70]
PTPN11 房间隔缺损、室间隔缺损、肺动脉狭窄 [71]
RAF1 房间隔缺损、法洛四联症 [72]
PAX2 室间隔缺损 [73]
RIT1 室间隔缺损、法洛四联症、主动脉狭窄 [74]
SEMA3E 法洛四联症、右室双向流出道 [75]
SMAD6 主动脉瓣疾病 [76]
SMYD1 心室发育不良 [77]
SOS1 房间隔缺损、室间隔缺损、法洛四联症 [78]
SOX9 法洛四联症 [79]
STRT1 房间隔缺损、室间隔缺损 [80]
TBX1 室间隔缺损、主动脉弓中断 [81-83]
TBX5 房间隔缺损、室间隔缺损、房室间隔缺损 [84]
TBX20 房间隔缺损、室间隔缺损、左心发育不良、动脉导管未闭 [85-86]
TDGF1 法洛四联症 [34]
WHSC1 房间隔缺损、室间隔缺损 [87]
ZFPM2 法洛四联症、右室双向流出道 [88]
ZIC3 房间隔缺损、大动脉异位 [89-91]
表 1  与先天性心脏病相关的基因及其表型
1 VAN DER BOM T , ZOMER A C , ZWINDERMAN A H et al. The changing epidemiology of congenital heart disease[J]. Nat Rev Cardiol, 2011, 8 (1): 50- 60
doi: 10.1038/nrcardio.2010.166
2 GELB B , BRUECKNER M , CHUNG W et al. The Congenital Heart Disease Genetic Network Study:rationale, design, and early results[J]. Circ Res, 2013, 112 (4): 698- 706
doi: 10.1161/CIRCRESAHA.111.300297
3 王卫平 . 儿科学[M]. 8版 北京: 人民卫生出版社, 2013: 292
WANG Weiping . Pediatrics[M]. 8th ed Beijing: People's Medical Publishing House, 2013: 292
4 李烁琳, 顾若漪, 黄国英 . 儿童先天性心脏病流行病学特征[J]. 中国实用儿科杂志, 2017, 32 (11): 871- 875
LI Shuolin , GU Ruoyi , HUANG Guoying . Epidemiological characteristics of congenital heart disease in children[J]. Chinese Journal of Practical Pediatrics, 2017, 32 (11): 871- 875
5 MADEMONT-SOLER I , MORALES C , SOLER A et al. Prenatal diagnosis of chromosomal abnormalities in fetuses with abnormal cardiac ultrasound findings:evaluation of chromosomal microarray-based analysis[J]. Ultrasound Obstet Gynecol, 2013, 41 (4): 375- 382
doi: 10.1002/uog.12372
6 HARTMAN R J , RASMUSSEN S A , BOTTO L D et al. The contribution of chromosomal abnormalities to congenital heart defects:a population-based study[J]. Pediatr Cardiol, 2011, 32 (8): 1147- 1157
doi: 10.1007/s00246-011-0034-5
7 PETRY P , POLLI J B , MATTOS V F et al. Clinical features and prognosis of a sample of patients with trisomy 13(Patau syndrome) from Brazil[J]. Am J Med Genet A, 2013, 161A (6): 1278- 1283
8 FAHED A C , GELB B D , SEIDMAN J G et al. Genetics of congenital heart disease:the glass half empty[J]. Circ Res, 2013, 112 (4): 707- 720
doi: 10.1161/CIRCRESAHA.112.300853
9 VOELCKEL M A , GIRARDOT L , GIUSIANO B et al. Allelic variations at the haploid TBX1 locus do not influence the cardiac phenotype in cases of 22q11 microdeletion[J]. Ann Genet, 2004, 47 (3): 235- 240
doi: 10.1016/j.anngen.2004.04.002
10 王栋, 刘迎龙 . 先天性心脏病宫内微创治疗进展[J]. 心肺血管病杂志, 2011, 30 (1): 79- 81
WANG Dong , LIU Yinglong . Progress in intrauterine minimally invasive treatment of congenital heart disease[J]. Journal of Cardiovascular and Pulmonary Diseases, 2011, 30 (1): 79- 81
doi: 10.3969/j.issn.1007-5062.2011.01.025
11 于宝生 . Turner综合征的诊断和治疗[J]. 中华实用儿科临床杂志, 2013, 28 (8): 561- 563
YU Baosheng . Diagnosis and treatment of Turner syndrome[J]. Chinese Journal of Applied Clinical Pediatrics, 2013, 28 (8): 561- 563
doi: 10.3760/cma.j.issn.2095-428X.2013.08.001
12 DEMIRHAN O , TANRIVERDI N , YILMAZ M B et al. Report of a new case with pentasomy X and novel clinical findings[J]. Balkan J Med Genet, 2015, 18 (1): 85- 92
doi: 10.1515/bjmg-2015-0010
13 吴晓丽, 符芳, 李茹 et al. 染色体微阵列分析技术对先天性心脏病胎儿进行遗传病因学诊断的临床价值[J]. 中华妇产科杂志, 49 (12): 893- 898
WU Xiaoli , FU Fang , LI Ru et al. Clinical value of genome-wide high resolution chromosomal microarray analysis in etiological study of fetuses with congenital heart defects[J]. Chinese Journal of Obstetrics and Gynecology, 2014, 49 (12): 893- 898
doi: 10.3760/cma.j.issn.0529-567x.2014.12.003
14 DE WIT M C. Re: detection of submicroscopic chromosomal aberrations by array-based comparative genomic hybridization in fetuses with congenital heart disease. Y. Yan, Q. Wu, L. Zhang, X. Wang, S. Dan, D. Deng, L. Sun, L. Yao, Y. Ma and L. Wang. Ultrasound Obstet Gynecol 2014;43: 404-412[J]. Ultrasound Obstet Gynecol, 2014, 43(4): 363.
15 MUNTEAN I , TOGǎNEL R , BENEDEK T . Genetics of congenital heart disease:past and present[J]. Biochem Genet, 2017, 55 (2): 105- 123
doi: 10.1007/s10528-016-9780-7
16 VECOLI C , PULIGNANI S , FOFFA I et al. Congenital heart disease:the crossroads of genetics, epigenetics and environment[J]. Curr Genomics, 2014, 15 (5): 390- 399
doi: 10.2174/1389202915666140716175634
17 MONSERRAT L , HERMIDA-PRIETO M , FERNANDEZ X et al. Mutation in the alpha-cardiac actin gene associated with apical hypertrophic cardiomyopathy, left ventricular non-compaction, and septal defects[J]. Eur Heart J, 2007, 28 (16): 1953- 1961
doi: 10.1093/eurheartj/ehm239
18 KOSAKI R , GEBBIA M , KOSAKI K et al. Left-right axis malformations associated with mutations in ACVR2B, the gene for human activin receptor type ⅡB[J]. Am J Med Genet, 1999, 82 (1): 70- 76
doi: 10.1002/(ISSN)1096-8628
19 KARKERA J D , LEE J S , ROESSLER E et al. Loss-of-function mutations in growth differentiation factor-1(GDF1) are associated with congenital heart defects in humans[J]. Am J Hum Genet, 2007, 81 (5): 987- 994
doi: 10.1086/522890
20 BOSADA F M , DEVASTHALI V , JONES K A et al. Wnt/beta-catenin signaling enables developmental transitions during valvulogenesis[J]. Development, 2016, 143 (6): 1041- 1054
doi: 10.1242/dev.130575
21 CINQUETTI R , BADI I , CAMPIONE M et al. Transcriptional deregulation and a missense mutation define ANKRD1 as a candidate gene for total anomalous pulmonary venous return[J]. Hum Mutat, 2008, 29 (4): 468- 474
doi: 10.1002/humu.20711
22 LICKERT H , TAKEUCHI J K , VON BOTH I et al. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development[J]. Nature, 2004, 432 (7013): 107- 112
doi: 10.1038/nature03071
23 SARKOZY A , CARTA C , MORETTI S et al. Germline BRAF mutations in Noonan, LEOPARD, and cardiofaciocutaneous syndromes:molecular diversity and associated phenotypic spectrum[J]. Hum Mutat, 2009, 30 (4): 695- 702
doi: 10.1002/humu.v30:4
24 HANG C T , YANG J , HAN P et al. Chromatin regulation by Brg1 underlies heart muscle development and disease[J]. Nature, 2010, 466 (7302): 62- 67
doi: 10.1038/nature09130
25 BAJPAI R , CHEN D A , RADA-IGLESIAS A et al. CHD7 cooperates with PBAF to control multipotent neural crest formation[J]. Nature, 2010, 463 (7283): 958- 962
doi: 10.1038/nature08733
26 SPERLING S , GRIMM C H , DUNKEL I et al. Identification and functional analysis of CITED2 mutations in patients with congenital heart defects[J]. Hum Mutat, 2005, 26 (6): 575- 582
doi: 10.1002/(ISSN)1098-1004
27 ROBINSON S W , MORRIS C D , GOLDMUNTZ E et al. Missense mutations in CRELD1 are associated with cardiac atrioventricular septal defects[J]. Am J Hum Genet, 2003, 72 (4): 1047- 1052
doi: 10.1086/374319
28 ZATYKA M , PRIESTLEY M , LADUSANS E J et al. Analysis of CRELD1 as a candidate 3p25 atrioventicular septal defect locus (AVSD2)[J]. Clin Genet, 2005, 67 (6): 526- 528
doi: 10.1111/j.1399-0004.2005.00435.x
29 MASLEN C L , BABCOCK D , ROBINSON S W et al. CRELD1 mutations contribute to the occurrence of cardiac atrioventricular septal defects in Down syndrome[J]. Am J Med Genet A, 2006, 140 (22): 2501- 2505
30 MENENDEZ-MONTES I , ESCOBAR B , PALACIOS B et al. Myocardial VHL-HIF signaling controls an embryonic metabolic switch essential for cardiac maturation[J]. Dev Cell, 2016, 39 (6): 724- 739
doi: 10.1016/j.devcel.2016.11.012
31 WU Y , MA X J , WANG H J et al. Expression of Cx43-related microRNAs in patients with tetralogy of Fallot[J]. World J Pediatr, 2014, 10 (2): 138- 144
doi: 10.1007/s12519-013-0434-0
32 LIN B, WANG Y, WANG Z, et al. Uncovering the rare variants of DLC1 isoform 1 and their functional effects in a Chinese sporadic congenital heart disease cohort[J/OL]. PLoS One, 2014, 9(2): e90215.
33 LI D Y , TOLAND A E , BOAK B B et al. Elastin point mutations cause an obstructive vascular disease, supravalvular aortic stenosis[J]. Hum Mol Genet, 1997, 6 (7): 1021- 1028
doi: 10.1093/hmg/6.7.1021
34 ROESSLER E , OUSPENSKAIA M V , KARKERA J D et al. Reduced NODAL signaling strength via mutation of several pathway members including FOXH1 is linked to human heart defects and holoprosencephaly[J]. Am J Hum Genet, 2008, 83 (1): 18- 29
doi: 10.1016/j.ajhg.2008.05.012
35 GARG V , KATHIRIYA I S , BARNES R et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5[J]. Nature, 2003, 424 (6947): 443- 447
doi: 10.1038/nature01827
36 TOMITA-MITCHELL A , MASLEN C L , MORRIS C D et al. GATA4 sequence variants in patients with congenital heart disease[J]. J Med Genet, 2007, 44 (12): 779- 783
doi: 10.1136/jmg.2007.052183
37 ZHANG W , LI X , SHEN A et al. GATA4 mutations in 486 Chinese patients with congenital heart disease[J]. Eur J Med Genet, 2008, 51 (6): 527- 535
doi: 10.1016/j.ejmg.2008.06.005
38 NEMER G , FADLALAH F , USTA J et al. A novel mutation in the GATA4 gene in patients with Tetralogy of Fallot[J]. Hum Mutat, 2006, 27 (3): 293- 294
39 KODO K , NISHIZAWA T , FURUTANI M et al. GATA6 mutations cause human cardiac outflow tract defects by disrupting semaphorin-plexin signaling[J]. Proc Natl Acad Sci U S A, 2009, 106 (33): 13933- 13938
doi: 10.1073/pnas.0904744106
40 CHRISTIANSEN J , DYCK J D , ELYAS B G et al. Chromosome 1q21.1 contiguous gene deletion is associated with congenital heart disease[J]. Circ Res, 2004, 94 (11): 1429- 1435
doi: 10.1161/01.RES.0000130528.72330.5c
41 COOPER G M , COE B P , GIRIRAJAN S et al. A copy number variation morbidity map of developmental delay[J]. Nat Genet, 2011, 43 (9): 838- 846
doi: 10.1038/ng.909
42 ZHAO Y , SAMAL E , SRIVASTAVA D . Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis[J]. Nature, 2005, 436 (7048): 214- 220
doi: 10.1038/nature03817
43 SRIVASTAVA D , THOMAS T , LIN Q et al. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND[J]. Nat Genet, 1997, 16 (2): 154- 160
doi: 10.1038/ng0697-154
44 CHANG S , MCKINSEY T A , ZHANG C L et al. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development[J]. Mol Cell Biol, 2004, 24 (19): 8467- 8476
doi: 10.1128/MCB.24.19.8467-8476.2004
45 JORDAN V K , ROSENFELD J A , LALANI S R et al. Duplication of HEY2 in cardiac and neurologic development[J]. Am J Med Genet A, 2015, 167A (9): 2145- 2149
46 AOKI Y , NIIHORI T , KAWAME H et al. Germline mutations in HRAS proto-oncogene cause Costello syndrome[J]. Nat Genet, 2005, 37 (10): 1038- 1040
doi: 10.1038/ng1641
47 CHENG Z , WANG J , SU D et al. Two novel mutations of the IRX4 gene in patients with congenital heart disease[J]. Hum Genet, 2011, 130 (5): 657- 662
doi: 10.1007/s00439-011-0996-7
48 KRANTZ I D , SMITH R , COLLITON R P et al. Jagged1 mutations in patients ascertained with isolated congenital heart defects[J]. Am J Med Genet, 1999, 84 (1): 56- 60
doi: 10.1002/(ISSN)1096-8628
49 ELDADAH Z A , HAMOSH A , BIERY N J et al. Familial Tetralogy of Fallot caused by mutation in the jagged1 gene[J]. Hum Mol Genet, 2001, 10 (2): 163- 169
doi: 10.1093/hmg/10.2.163
50 SCHUBBERT S , ZENKER M , ROWE S L et al. Germline KRAS mutations cause Noonan syndrome[J]. Nat Genet, 2006, 38 (3): 331- 336
doi: 10.1038/ng1748
51 SCHULZ A L , ALBRECHT B , ARICI C et al. Mutation and phenotypic spectrum in patients with cardio-facio-cutaneous and Costello syndrome[J]. Clin Genet, 2008, 73 (1): 62- 70
52 MUNCKE N , JUNG C , RVDIGER H et al. Missense mutations and gene interruption in PROSIT240, a novel TRAP240-like gene, in patients with congenital heart defect(transposition of the great arteries)[J]. Circulation, 2003, 108 (23): 2843- 2850
doi: 10.1161/01.CIR.0000103684.77636.CD
53 ZAHKA K , KALIDAS K , SIMPSON M A et al. Homozygous mutation of MYBPC3 associated with severe infantile hypertrophic cardiomyopathy at high frequency among the Amish[J]. Heart, 2008, 94 (10): 1326- 1330
54 XIN B , PUFFENBERGER E , TUMBUSH J et al. Homozygosity for a novel splice site mutation in the cardiac myosin-binding protein C gene causes severe neonatal hypertrophic cardiomyopathy[J]. Am J Med Genet A, 2007, 143A (22): 2662- 2667
doi: 10.1002/ajmg.a.v143a:22
55 LEKANNE D R H , MUURLING-VLIETMAN J J , HRUDA J et al. Two cases of severe neonatal hypertrophic cardiomyopathy caused by compound heterozygous mutations in the MYBPC3 gene[J]. J Med Genet, 2006, 43 (10): 829- 832
doi: 10.1136/jmg.2005.040329
56 QIAO X H , WANG F , ZHANG X L et al. MEF2C loss-of-function mutation contributes to congenital heart defects[J]. Int J Med Sci, 2017, 14 (11): 1143- 1153
doi: 10.7150/ijms.21353
57 ZHANG M , LI F X , LIU X Y et al. MESP1 loss-of-function mutation contributes to double outlet right ventricle[J]. Molecular Medicine Reports, 2017, 16 (3): 2747- 2754
doi: 10.3892/mmr.2017.6875
58 GRANADOS-RIVERON J T , GHOSH T K , POPE M et al. Alpha-cardiac myosin heavy chain (MYH6) mutations affecting myofibril formation are associated with congenital heart defects[J]. Hum Mol Genet, 2010, 19 (20): 4007- 4016
doi: 10.1093/hmg/ddq315
59 POSTMA A V , VAN ENGELEN K , VAN DE MEERAKKER J et al. Mutations in the sarcomere gene MYH7 in Ebstein anomaly[J]. Circ Cardiovasc Genet, 2011, 4 (1): 43- 50
doi: 10.1161/CIRCGENETICS.110.957985
60 SCHOTT J J , BENSON D W , BASSON C T et al. Congenital heart disease caused by mutations in the transcription factor NKX2-5[J]. Science, 1998, 281 (5373): 108- 111
doi: 10.1126/science.281.5373.108
61 GOLDMUNTZ E , GEIGER E , BENSON D W . NKX2.5 mutations in patients with tetralogy of fallot[J]. Circulation, 2001, 104 (21): 2565- 2568
doi: 10.1161/hc4601.098427
62 MCELHINNEY D B , GEIGER E , BLINDER J et al. NKX2.5 mutations in patients with congenital heart disease[J]. J Am Coll Cardiol, 2003, 42 (9): 1650- 1655
doi: 10.1016/j.jacc.2003.05.004
63 PENG T , WANG L , ZHOU S F et al. Mutations of the GATA4 and NKX2.5 genes in Chinese pediatric patients with non-familial congenital heart disease[J]. Genetica, 2010, 138 (11-12): 1231- 1240
doi: 10.1007/s10709-010-9522-4
64 WANG J , XIN Y F , LIU X Y et al. A novel NKX2-5 mutation in familial ventricular septal defect[J]. Int J Mol Med, 2011, 27 (3): 369- 375
65 HEATHCOTE K , BRAYBROOK C , ABUSHABAN L et al. Common arterial trunk associated with a homeodomain mutation of NKX2.6[J]. Hum Mol Genet, 2005, 14 (5): 585- 593
doi: 10.1093/hmg/ddi055
66 MOHAPATRA B , CASEY B , LI H et al. Identification and functional characterization of NODAL rare variants in heterotaxy and isolated cardiovascular malformations[J]. Hum Mol Genet, 2009, 18 (5): 861- 871
doi: 10.1093/hmg/ddn411
67 ROESSLER E , PEI W , OUSPENSKAIA M V et al. Cumulative ligand activity of NODAL mutations and modifiers are linked to human heart defects and holoprosencephaly[J]. Mol Genet Metab, 2009, 98 (1-2): 225- 234
doi: 10.1016/j.ymgme.2009.05.005
68 GARG V , MUTH A N , RANSOM J F et al. Mutations in NOTCH1 cause aortic valve disease[J]. Nature, 2005, 437 (7056): 270- 274
doi: 10.1038/nature03940
69 RICHARDS A A , GARG V . Genetics of congenital heart disease[J]. Curr Cardiol Rev, 2010, 6 (2): 91- 97
doi: 10.2174/157340310791162703
70 Al T S , MANICKARAJ A K , MERCER C L et al. Rare variants in NR2F2 cause congenital heart defects in humans[J]. Am J Hum Genet, 2014, 94 (4): 574- 585
doi: 10.1016/j.ajhg.2014.03.007
71 TARTAGLIA M , MEHLER E L , GOLDBERG R et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome[J]. Nat Genet, 2001, 29 (4): 465- 468
doi: 10.1038/ng772
72 PANDIT B , SARKOZY A , PENNACCHIO L A et al. Gain-of-function RAF1 mutations cause Noonan and LEOPARD syndromes with hypertrophic cardiomyopathy[J]. Nat Genet, 2007, 39 (8): 1007- 1012
doi: 10.1038/ng2073
73 DU Z , FEI T , VERHAAK R G et al. Integrative genomic analyses reveal clinically relevant long noncoding RNAs in human cancer[J]. Nat Struct Mol Biol, 2013, 20 (7): 908- 913
doi: 10.1038/nsmb.2591
74 AOKI Y , NⅡHORI T , BANJO T et al. Gain-of-function mutations in RIT1 cause Noonan syndrome, a RAS/MAPK pathway syndrome[J]. Am J Hum Genet, 2013, 93 (1): 173- 180
doi: 10.1016/j.ajhg.2013.05.021
75 LALANI S R, SAFIULLAH A M, MOLINARI L M, et al. SEMA3E mutation in a patient with CHARGE syndrome[J/OL]. J Med Genet, 2004, 41(7): e94.
76 TAN H L , GLEN E , T?PF A et al. Nonsynonymous variants in the SMAD6 gene predispose to congenital cardiovascular malformation[J]. Hum Mutat, 2012, 33 (4): 720- 727
doi: 10.1002/humu.22030
77 PARK C Y , PIERCE S A , VON D M et al. skNAC, a Smyd1-interacting transcription factor, is involved in cardiac development and skeletal muscle growth and regeneration[J]. Proc Natl Acad Sci U S A, 2010, 107 (48): 20750- 20755
doi: 10.1073/pnas.1013493107
78 ROBERTS A E , ARAKI T , SWANSON K D et al. Germline gain-of-function mutations in SOS1 cause Noonan syndrome[J]. Nat Genet, 2007, 39 (1): 70- 74
doi: 10.1038/ng1926
79 AKIYAMA H , CHABOISSIER M C , BEHRINGER R R et al. Essential role of Sox9 in the pathway that controls formation of cardiac valves and septa[J]. Proc Natl Acad Sci U S A, 2004, 101 (17): 6502- 6507
doi: 10.1073/pnas.0401711101
80 CHENG H L , MOSTOSLAVSKY R , SAITO S et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice[J]. Proc Natl Acad Sci U S A, 2003, 100 (19): 10794- 10799
doi: 10.1073/pnas.1934713100
81 JEROME L A , PAPAIOANNOU V E . DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1[J]. Nat Genet, 2001, 27 (3): 286- 291
doi: 10.1038/85845
82 GONG W, GOTTLIEB S, COLLINS J, et al. Mutation analysis of TBX1 in non-deleted patients with features of DGS/VCFS or isolated cardiovascular defects[J/OL]. J Med Genet, 2001, 38(12): E45.
83 JONES J W , TRACY M , PERRYMAN M et al. Airway anomalies in patients with 22q11.2 deletion syndrome:a 5-year review[J]. Ann Otol Rhinol Laryngol, 2018, 127 (6): 384- 389
doi: 10.1177/0003489418771711
84 BASSON C T , HUANG T , LIN R C et al. Different TBX5 interactions in heart and limb defined by Holt-Oram syndrome mutations[J]. Proc Natl Acad Sci U S A, 1999, 96 (6): 2919- 2924
doi: 10.1073/pnas.96.6.2919
85 KIRK E P , SUNDE M , COSTA M W et al. Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy[J]. Am J Hum Genet, 2007, 81 (2): 280- 291
doi: 10.1086/519530
86 POSCH M G , GRAMLICH M , SUNDE M et al. A gain-of-function TBX20 mutation causes congenital atrial septal defects, patent foramen ovale and cardiac valve defects[J]. J Med Genet, 2010, 47 (4): 230- 235
doi: 10.1136/jmg.2009.069997
87 NIMURA K , URA K , SHIRATORI H et al. A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome[J]. Nature, 2009, 460 (7252): 287- 291
doi: 10.1038/nature08086
88 IZZUTI A , SARKOZY A , NEWTON A L et al. Mutations of ZFPM2/FOG2 gene in sporadic cases of tetralogy of Fallot[J]. Hum Mutat, 2003, 22 (5): 372- 377
doi: 10.1002/(ISSN)1098-1004
89 MéGARBANé A , SALEM N , STEPHAN E et al. X-linked transposition of the great arteries and incomplete penetrance among males with a nonsense mutation in ZIC3[J]. Eur J Hum Genet, 2000, 8 (9): 704- 708
doi: 10.1038/sj.ejhg.5200526
90 WARE S M , PENG J , ZHU L et al. Identification and functional analysis of ZIC3 mutations in heterotaxy and related congenital heart defects[J]. Am J Hum Genet, 2004, 74 (1): 93- 105
doi: 10.1086/380998
91 CHHIN B , HATAYAMA M , BOZON D et al. Elucidation of penetrance variability of a ZIC3 mutation in a family with complex heart defects and functional analysis of ZIC3 mutations in the first zinc finger domain[J]. Hum Mutat, 2007, 28 (6): 563- 570
doi: 10.1002/humu.v28:6
92 HUANG J B , LIU Y L , LV X D . Pathogenic mechanisms of congenital heart disease[J]. Fetal Pediatr Pathol, 2010, 29 (5): 359- 372
doi: 10.3109/15513811003789628
93 BRUNEAU B G . The developmental genetics of congenital heart disease[J]. Nature, 2008, 451 (7181): 943- 948
doi: 10.1038/nature06801
94 LUXáN G, D'AMATO G, MACGROGAN D, et al. Endocardial notch signaling in cardiac development and disease[J/OL]. Circ Res, 2016, 118(1): e1-e18.
95 LI Y J , YANG Y Q . An update on the molecular diagnosis of congenital heart disease:focus on loss-of-function mutations[J]. Expert Rev Mol Diagn, 2017, 17 (4): 393- 401
doi: 10.1080/14737159.2017.1300062
96 HITZ M P, LEMIEUX-PERREAULT L P, MARSHALL C, et al. Rare copy number variants contribute to congenital left-sided heart disease[J/OL]. PLoS Genet, 2012, 8(9): e1002903.
97 PRIEST J R , GIRIRAJAN S , VU T H et al. Rare copy number variants in isolated sporadic and syndromic atrioventricular septal defects[J]. Am J Med Genet A, 2012, 158A (6): 1279- 1284
doi: 10.1002/ajmg.a.35315
98 SILVERSIDES C K , LIONEL A C , COSTAIN G et al. Rare copy number variations in adults with tetralogy of Fallot implicate novel risk gene pathways[J]. PLoS Genet, 2012, 8 (8): e1002843
doi: 10.1371/journal.pgen.1002843
99 SOEMEDI R , WILSON I J , BENTHAM J et al. Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease[J]. Am J Hum Genet, 2012, 91 (3): 489- 501
doi: 10.1016/j.ajhg.2012.08.003
100 TOMITA-MITCHELL A , MAHNKE D K , STRUBLE C A et al. Human gene copy number spectra analysis in congenital heart malformations[J]. Physiol Genomics, 2012, 44 (9): 518- 541
doi: 10.1152/physiolgenomics.00013.2012
101 XIE L, CHEN J L, ZHANG W Z, et al. Rare de novo copy number variants in patients with congenital pulmonary atresia[J/OL]. PLoS One, 2014, 9(5): e96471.
102 AN Y , DUAN W , HUANG G et al. Genome-wide copy number variant analysis for congenital ventricular septal defects in Chinese Han population[J]. BMC Med Genomics, 2016, 9 2
103 KASPARIAN N A , DE ABREU LOURENCO R , WINLAW D S et al. Tell me once, tell me soon:parents' preferences for clinical genetics services for congenital heart disease[J]. Genet Med, 2018,
104 PEYVANDI S , LUPO P J , GARBARINI J et al. 22q11.2 deletions in patients with conotruncal defects:data from 1, 610 consecutive cases[J]. Pediatr Cardiol, 2013, 34 (7): 1687- 1694
doi: 10.1007/s00246-013-0694-4
105 WANG W , REIN B , ZHANG F et al. Chemogenetic activation of prefrontal cortex rescues synaptic and behavioral deficits in a mouse model of 16p11.2 deletion syndrome[J]. J Neurosci, 2018, 38 (26): 5939- 5948
doi: 10.1523/JNEUROSCI.0149-18.2018
106 SCAMBLER P J . 22q11 deletion syndrome:a role for TBX1 in pharyngeal and cardiovascular development[J]. Pediatr Cardiol, 2010, 31 (3): 378- 390
doi: 10.1007/s00246-009-9613-0
107 RACEDO S E , MCDONALD-MCGINN D M , CHUNG J H et al. Mouse and human CRKL is dosage sensitive for cardiac outflow tract formation[J]. Am J Hum Genet, 2015, 96 (2): 235- 244
doi: 10.1016/j.ajhg.2014.12.025
108 CHAPNIK E , SASSON V , BLELLOCH R et al. Dgcr8 controls neural crest cells survival in cardiovascular development[J]. Dev Biol, 2012, 362 (1): 50- 56
doi: 10.1016/j.ydbio.2011.11.008
109 BASSETT A S , CHOW E W , HUSTED J et al. Clinical features of 78 adults with 22q11 Deletion Syndrome[J]. Am J Med Genet A, 2005, 138 (4): 307- 313
110 SOEMEDI R , WILSON I J , BENTHAM J et al. Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease[J]. Am J Hum Genet, 2012, 91 (3): 489- 501
doi: 10.1016/j.ajhg.2012.08.003
111 NAKANISHI T , MARKWALD R R , BALDWIN H S et al. Etiology and morphogenesis of congenital heart disease:from gene function and cellular interaction to morphology[M]. Tokyo: Springer, 2016.
112 CAREY A S , LIANG L , EDWARDS J et al. Effect of copy number variants on outcomes for infants with single ventricle heart defects[J]. Circ Cardiovasc Genet, 2013, 6 (5): 444- 451
doi: 10.1161/CIRCGENETICS.113.000189
113 OSOEGAWA K , IOVANNISCI D M , LIN B et al. Identification of novel candidate gene loci and increased sex chromosome aneuploidy among infants with conotruncal heart defects[J]. Am J Med Genet A, 2014, 164A (2): 397- 406
114 GARG V , KATHIRIYA I S , BARNES R et al. GATA4 mutations cause human congenital heart defects and reveal an interaction with TBX5[J]. Nature, 2003, 424 (6947): 443- 447
doi: 10.1038/nature01827
115 SERRA-JUHé C , CUSCó I , HOMS A et al. DNA methylation abnormalities in congenital heart disease[J]. Epigenetics, 2015, 10 (2): 167- 177
doi: 10.1080/15592294.2014.998536
116 STRAUSSMAN R , NEJMAN D , ROBERTS D et al. Developmental programming of CpG island methylation profiles in the human genome[J]. Nat Struct Mol Biol, 2009, 16 (5): 564- 571
doi: 10.1038/nsmb.1594
117 SHENG W , QIAN Y , WANG H et al. Association between mRNA levels of DNMT1, DNMT3A, DNMT3B, MBD2 and LINE-1 methylation status in infants with tetralogy of Fallot[J]. Int J Mol Med, 2013, 32 (3): 694- 702
doi: 10.3892/ijmm.2013.1427
118 BARRINGHAUS K G , ZAMORE P D . MicroRNAs:regulating a change of heart[J]. Circulation, 2009, 119 (16): 2217- 2224
doi: 10.1161/CIRCULATIONAHA.107.715839
119 ZHOU J , DONG X , ZHOU Q et al. microRNA expression profiling of heart tissue during fetal development[J]. Int J Mol Med, 2014, 33 (5): 1250- 1260
doi: 10.3892/ijmm.2014.1691
120 WU K H , XIAO Q R , YANG Y et al. MicroRNA-34a modulates the Notch signaling pathway in mice with congenital heart disease and its role in heart development[J]. J Mol Cell Cardiol, 2018, 114 300- 308
doi: 10.1016/j.yjmcc.2017.11.015
121 GILSBACH R , PREISSL S , GRVNING B A et al. Dynamic DNA methylation orchestrates cardiomyocyte development, maturation and disease[J]. Nat Commun, 2014, 5 5288
doi: 10.1038/ncomms6288
122 CHAMBERLAIN A A, LIN M, LISTER R L, et al. DNA methylation is developmentally regulated for genes essential for cardiogenesis[J/OL]. J Am Heart Assoc, 2014, 3(3): e000976.
123 QIAN Y , XIAO D , GUO X et al. Hypomethylation and decreased expression of BRG1 in the myocardium of patients with congenital heart disease[J]. Birth Defects Res, 2017, 109 (15): 1183- 1195
doi: 10.1002/bdr2.v109.15
124 YODH J . ATP-dependent chromatin remodeling[J]. Adv Exp Med Biol, 2013, 767 263- 295
125 VAN DER HARST P , DE WINDT L J , CHAMBERS J C . Translational perspective on epigenetics in cardiovascular disease[J]. J Am Coll Cardiol, 2017, 70 (5): 590- 606
doi: 10.1016/j.jacc.2017.05.067
126 BARTEL D P . MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116 (2): 281- 297
doi: 10.1016/S0092-8674(04)00045-5
127 YATES L A , NORBURY C J , GILBERT R J . The long and short of microRNA[J]. Cell, 2013, 153 (3): 516- 519
doi: 10.1016/j.cell.2013.04.003
128 LIU N , OLSON E N . MicroRNA regulatory networks in cardiovascular development[J]. Dev Cell, 2010, 18 (4): 510- 525
doi: 10.1016/j.devcel.2010.03.010
129 O'BRIEN J E , KIBIRYEVA N , ZHOU X G et al. Noncoding RNA expression in myocardium from infants with tetralogy of Fallot[J]. Circ Cardiovasc Genet, 2012, 5 (3): 279- 286
doi: 10.1161/CIRCGENETICS.111.961474
130 CHINCHILLA A , LOZANO E , DAIMI H et al. MicroRNA profiling during mouse ventricular maturation:a role for miR-27 modulating Mef2c expression[J]. Cardiovasc Res, 2011, 89 (1): 98- 108
doi: 10.1093/cvr/cvq264
131 WANG L , TIAN D , HU J et al. MiRNA-145 regulates the development of congenital heart disease through targeting FXN[J]. Pediatr Cardiol, 2016, 37 (4): 629- 636
doi: 10.1007/s00246-015-1325-z
[1] 王伟,刘振,刘军,甄平,李旭升,宋明甲. 全膝关节置换术中是否需要保留后交叉韧带?[J]. 浙江大学学报(医学版), 2018, 47(3): 313-319.
[2] 陈挺,赵正言,蒋萍萍,舒强. 高苯丙氨酸血症表型与基因型研究进展[J]. 浙江大学学报(医学版), 2018, 47(3): 219-226.
[3] 钱波,张彦玲,莫绪明. 先天性食管闭锁相关转录因子及信号通路研究进展[J]. 浙江大学学报(医学版), 2018, 47(3): 239-243.
[4] 张小燕,康利军. 秀丽隐杆线虫嗅觉适应性的分子细胞生物学机制[J]. 浙江大学学报(医学版), 2018, 47(3): 307-312.
[5] 李福山,房冉,饶琳,孟飞龙,赵小立. 外泌体在心血管疾病诊疗中的作用研究进展[J]. 浙江大学学报(医学版), 2018, 47(3): 320-326.
[6] 何玉贤,郑良荣. 脊髓电刺激对心肌缺血和心肌梗死作用的研究进展[J]. 浙江大学学报(医学版), 2018, 47(2): 201-206.
[7] 吕丹丹,应可净. 自噬在肺动脉高压发生和发展中的调节作用[J]. 浙江大学学报(医学版), 2018, 47(2): 207-212.
[8] 蒋曦依,李璐,唐慧娟,陈天辉. 结直肠癌高危人群多因素风险预测模型及评价[J]. 浙江大学学报(医学版), 2018, 47(2): 194-200.
[9] 唐慧娟,蒋曦依,楼建林,陈天辉. 基于人群的肿瘤登记数据评估患者生存的方法学研究进展[J]. 浙江大学学报(医学版), 2018, 47(1): 104-109.
[10] 张毓川,陈玮. Vav1对T细胞的调控作用及其与相关疾病的关系[J]. 浙江大学学报(医学版), 2018, 47(1): 75-81.
[11] 王佳静,谷海瀛. 幽门螺杆菌的基因分型技术及其应用[J]. 浙江大学学报(医学版), 2018, 47(1): 97-103.
[12] 凌静,李红蕊,陈玮琳. 蛋白泛素化修饰调控炎性肠疾病发生和发展的研究进展[J]. 浙江大学学报(医学版), 2018, 47(1): 82-88.
[13] 丁京京,卢韵碧. 受体相互作用蛋白家族在炎症中的作用研究进展[J]. 浙江大学学报(医学版), 2018, 47(1): 89-96.
[14] 冯梦宇,张太平,赵玉沛. 加速康复外科在胰腺外科中的应用[J]. 浙江大学学报(医学版), 2017, 46(6): 666-674.
[15] 张谊,张璃,张启瑜,洪炜龙,林孝华. 微小RNA222靶向调控基质金属蛋白酶1促进增生性瘢痕组织成纤维细胞生长[J]. 浙江大学学报(医学版), 2017, 46(6): 609-617.