Please wait a minute...
浙江大学学报(医学版)  2018, Vol. 47 Issue (2): 201-206    DOI: 10.3785/j.issn.1008-9292.2018.04.15
综述     
脊髓电刺激对心肌缺血和心肌梗死作用的研究进展
何玉贤1(),郑良荣2,*()
1. 浙江大学医学院, 浙江 杭州 310016
2. 浙江大学医学院附属第一医院心血管内科, 浙江 杭州 310003
Effect of spinal cord stimulation on myocardial ischemia/infarction
HE Yuxian1(),ZHENG Liangrong2,*()
1. Zhejiang University School of Medicine, Hangzhou 310016, China
2. Department of Cardiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
 全文: PDF(957 KB)   HTML( 7 )
摘要:

心肌缺血和心肌梗死后致死性心律失常、心力衰竭和心脏性猝死严重威胁人类健康。近年来研究资料显示,脊髓电刺激可平衡自主神经活性,抑制损伤心肌结构重构,改善缺血心肌的血流量,有效降低心肌缺血和心肌梗死后心律失常、心力衰竭和心脏性猝死的发生率,但其具体机制尚未完全阐明。脊髓电刺激改善心功能的机制可能是抑制神经重构,也可能是改善结构重构和电重构。本文就脊髓电刺激在心肌缺血和心肌梗死中的作用及其机制的研究进展进行综述。

关键词: 电刺激脊髓心律失常心肌缺血心肌梗死自主神经系统/病理生理学综述    
Abstract:

Fatal arrhythmias, heart failure, and sudden cardiac death after myocardial ischemia/infarction are serious threats to human health. In recent years, studies have shown that spinal cord stimulation (SCS) can balance autonomic activity, inhibit myocardial structural remodeling, improve blood flow to ischemic myocardium, effectively reduce the incidence of arrhythmia, heart failure and sudden cardiac death after myocardial ischemia/infarction, but its specific mechanism has not yet been fully elucidated. The effect of SCS on cardiac function may be achieved by inhibiting neural remodeling, or by ameliorating structural remodeling and electrical remodeling. This article reviews the progress on the role and mechanism of SCS in myocardial ischemia/infarction.

Key words: Electric stimulation    Spinal cord    Arrhythmias    Myocardial ischemia    Myocardial infarction    Autonomic nervous system/physiopathology    Review
收稿日期: 2017-12-10 出版日期: 2018-07-24
:  R541  
基金资助: 国家重点研发计划(2016YFC1301003)
通讯作者: 郑良荣     E-mail: 1508027621@qq.com;1191066@zju.edu.cn
作者简介: 何玉贤(1991-), 女, 硕士研究生, 主要从事脊髓电刺激对心血管疾病的作用研究; E-mail:1508027621@qq.com; https://orcid.org/0000-0002-8719-1545
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
何玉贤
郑良荣

引用本文:

何玉贤,郑良荣. 脊髓电刺激对心肌缺血和心肌梗死作用的研究进展[J]. 浙江大学学报(医学版), 2018, 47(2): 201-206.

HE Yuxian,ZHENG Liangrong. Effect of spinal cord stimulation on myocardial ischemia/infarction. J Zhejiang Univ (Med Sci), 2018, 47(2): 201-206.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2018.04.15        http://www.zjujournals.com/med/CN/Y2018/V47/I2/201

1 SWISSA M , ZHOU S , GONZALEZ-GOMEZ I et al. Long-term subthreshold electrical stimulation of the left stellate ganglion and a canine model of sudden cardiac death[J]. J Am Coll Cardiol, 2004, 43 (5): 858- 864
doi: 10.1016/j.jacc.2003.07.053
2 HOWARD-QUIJANO K , TAKAMIYA T , DALE E A et al. Spinal cord stimulation reduces ventricular arrhythmias during acute ischemia by attenuation of regional myocardial excitability[J]. Am J Physiol Heart Circ Physiol, 2017, 313 (2): H421- H431
doi: 10.1152/ajpheart.00129.2017
3 CHEN P S , CHEN L S , CAO J M et al. Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death[J]. Cardiovasc Res, 2001, 50 (2): 409- 416
doi: 10.1016/S0008-6363(00)00308-4
4 NGUYEN B L , LI H , FISHBEIN M C et al. Acute myocardial infarction induces bilateral stellate ganglia neural remodeling in rabbits[J]. Cardiovasc Pathol, 2012, 21 (3): 143- 148
doi: 10.1016/j.carpath.2011.08.001
5 ZHOU S , CHEN L S , MIYAUCHI Y et al. Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs[J]. Circ Res, 2004, 95 (1): 76- 83
doi: 10.1161/01.RES.0000133678.22968.e3
6 CAO J M , FISHBEIN M C , HAN J B et al. Relationship between regional cardiac hyperinnervation and ventricular arrhythmia[J]. Circulation, 2000, 101 (16): 1960- 1969
doi: 10.1161/01.CIR.101.16.1960
7 HARDWICK J C , RYAN S E , BEAUMONT E et al. Dynamic remodeling of the guinea pig intrinsic cardiac plexus induced by chronic myocardial infarction[J]. Auton Neurosci, 2014, 181 4- 12
doi: 10.1016/j.autneu.2013.10.008
8 FALLEN E L , COATES G , NAHMIAS C et al. Recovery rates of regional sympathetic reinnervation and myocardial blood flow after acute myocardial infarction[J]. Am Heart J, 1999, 137 (5): 863- 869
doi: 10.1016/S0002-8703(99)70410-2
9 PELLEGRINO M J , HABECKER B A . STAT3 integrates cytokine and neurotrophin signals to promote sympathetic axon regeneration[J]. Mol Cell Neurosci, 2013, 56 272- 282
doi: 10.1016/j.mcn.2013.06.005
10 IEDA M , FUKUDA K , HISAKA Y et al. Endothelin-1 regulates cardiac sympathetic innervation in the rodent heart by controlling nerve growth factor expression[J]. J Clin Invest, 2004, 113 (6): 876- 884
doi: 10.1172/JCI200419480
11 LEE T M , CHANG N C , LIN S Z . Inhibition of infarction-induced sympathetic innervation with endothelin receptor antagonism via a PI3K/GSK-3beta-dependent pathway[J]. Lab Invest, 2017, 97 (3): 243- 255
doi: 10.1038/labinvest.2016.138
12 LAI X , ZHONG L , FU H X et al. Effects of neuregulin-1 on autonomic nervous system remodeling post-myocardial infarction in a rat model[J]. Neural Regen Res, 2017, 12 (11): 1905- 1910
doi: 10.4103/1673-5374.219054
13 LIEW R , CHIAM P T . Risk stratification for sudden cardiac death after acute myocardial infarction[J]. Ann Acad Med Singapore, 2010, 39 (3): 237- 246
14 LIU Y , YUE W S , LIAO S Y et al. Thoracic spinal cord stimulation improves cardiac contractile function and myocardial oxygen consumption in a porcine model of ischemic heart failure[J]. J Cardiovasc Electrophysiol, 2012, 23 (5): 534- 540
doi: 10.1111/jce.2012.23.issue-5
15 QIU Y , LI T , LI H et al. Continuous spinal cord stimulation reduced cardiac ischaemia/reperfusion injury in a rat model[J]. Heart Lung Circ, 2012, 21 (9): 564- 571
doi: 10.1016/j.hlc.2012.05.007
16 LIAO S Y , LIU Y , ZUO M et al. Remodelling of cardiac sympathetic re-innervation with thoracic spinal cord stimulation improves left ventricular function in a porcine model of heart failure[J]. Europace, 2015, 17 (12): 1875- 1883
doi: 10.1093/europace/euu409
17 ODENSTEDT J , LINDEROTH B , BERGFELDT L et al. Spinal cord stimulation effects on myocardial ischemia, infarct size, ventricular arrhythmia, and noninvasive electrophysiology in a porcine ischemia-reperfusion model[J]. Heart Rhythm, 2011, 8 (6): 892- 898
doi: 10.1016/j.hrthm.2011.01.029
18 ISSA Z F , ZHOU X , UJHELYI M R et al. Thoracic spinal cord stimulation reduces the risk of ischemic ventricular arrhythmias in a postinfarction heart failure canine model[J]. Circulation, 2005, 111 (24): 3217- 3220
doi: 10.1161/CIRCULATIONAHA.104.507897
19 LOPSHIRE J C , ZHOU X , DUSA C et al. Spinal cord stimulation improves ventricular function and reduces ventricular arrhythmias in a canine postinfarction heart failure model[J]. Circulation, 2009, 120 (4): 286- 294
doi: 10.1161/CIRCULATIONAHA.108.812412
20 MELZACK R , WALL P D . Pain mechanisms:a new theory[J]. Science, 1965, 150 (3699): 971- 979
doi: 10.1126/science.150.3699.971
21 SHEALY C N , MORTIMER J T , RESWICK J B . Electrical inhibition of pain by stimulation of the dorsal columns:preliminary clinical report[J]. Anesth Analg, 1967, 46 (4): 489- 491
22 SAGHER O , HUANG D L . Effects of cervical spinal cord stimulation on cerebral blood flow in the rat[J]. J Neurosurg, 2000, 93 (1 Suppl): 71- 76
23 SAGHER O , HUANG D L , KEEP R F . Spinal cord stimulation reducing infarct volume in a model of focal cerebral ischemia in rats[J]. J Neurosurg, 2003, 99 (1): 131- 137
doi: 10.3171/jns.2003.99.1.0131
24 LEE J Y , HUANG D L , KEEP R et al. Effect of electrical stimulation of the cervical spinal cord on blood flow following subarachnoid hemorrhage[J]. J Neurosurg, 2008, 109 (6): 1148- 1154
doi: 10.3171/JNS.2008.109.12.1148
25 HOSOBUCHI Y . Electrical stimulation of the cervical spinal cord increases cerebral blood flow in humans[J]. Appl Neurophysiol, 1985, 48 (1-6): 372- 376
26 NORRSELL H , ELIASSON T , MANNHEIMER C et al. Effects of pacing-induced myocardial stress and spinal cord stimulation on whole body and cardiac norepinephrine spillover[J]. Eur Heart J, 1997, 18 (12): 1890- 1896
doi: 10.1093/oxfordjournals.eurheartj.a015197
27 MANNHEIMER C , ELIASSON T , ANDERSSON B et al. Effects of spinal cord stimulation in angina pectoris induced by pacing and possible mechanisms of action[J]. BMJ, 1993, 307 (6902): 477- 480
doi: 10.1136/bmj.307.6902.477
28 FOREMAN R D , LINDEROTH B , ARDELL J L et al. Modulation of intrinsic cardiac neurons by spinal cord stimulation:implications for its therapeutic use in angina pectoris[J]. Cardiovasc Res, 2000, 47 (2): 367- 375
doi: 10.1016/S0008-6363(00)00095-X
29 JACQUES F , CARDINAL R , YIN Y et al. Spinal cord stimulation causes potentiation of right vagus nerve effects on atrial chronotropic function and repolarization in canines[J]. J Cardiovasc Electrophysiol, 2011, 22 (4): 440- 447
doi: 10.1111/j.1540-8167.2010.01915.x
30 NAAR J , JAYE D , LINDE C et al. Effects of spinal cord stimulation on cardiac sympathetic nerve activity in patients with heart failure[J]. Pacing Clin Electrophysiol, 2017, 40 (5): 504- 513
doi: 10.1111/pace.2017.40.issue-5
31 ZIPES D P , NEUZIL P , THERES H et al. Determining the feasibility of spinal cord neuromodulation for the treatment of chronic systolic heart failure:the DEFEAT-HF study[J]. JACC Heart Fail, 2016, 4 (2): 129- 136
doi: 10.1016/j.jchf.2015.10.006
32 NAAR J , JAYE D , LINDE C et al. Spinal cord stimulation in heart failure:effect on disease-associated biomarkers[J]. Eur J Heart Fail, 2017, 19 (2): 283- 286
doi: 10.1002/ejhf.2017.19.issue-2
33 SMITH F M , VERMEULEN M , CARDINAL R . Long-term spinal cord stimulation modifies canine intrinsic cardiac neuronal properties and ganglionic transmission during high-frequency repetitive activation[J]. Physiol Rep, 2016, 4 (13):
34 WANG S , ZHOU X , HUANG B et al. Spinal cord stimulation protects against ventricular arrhythmias by suppressing left stellate ganglion neural activity in an acute myocardial infarction canine model[J]. Heart Rhythm, 2015, 12 (7): 1628- 1635
doi: 10.1016/j.hrthm.2015.03.023
35 YU L , HUANG B , HE W et al. Spinal cord stimulation suppresses focal rapid firing-induced atrial fibrillation by inhibiting atrial ganglionated plexus activity[J]. J Cardiovasc Pharmacol, 2014, 64 (6): 554- 559
doi: 10.1097/FJC.0000000000000154
36 WANG S , ZHOU X , HUANG B et al. Spinal cord stimulation suppresses atrial fibrillation by inhibiting autonomic remodeling[J]. Heart Rhythm, 2016, 13 (1): 274- 281
doi: 10.1016/j.hrthm.2015.08.018
37 RAJENDRAN P S , NAKAMURA K , AJIJOLA O A et al. Myocardial infarction induces structural and functional remodelling of the intrinsic cardiac nervous system[J]. J Physiol, 2016, 594 (2): 321- 341
doi: 10.1113/JP271165
[1] 杜啸添,欧阳宏伟. 组蛋白甲基化水平与骨关节炎病理发展的关联性[J]. 浙江大学学报(医学版), 2019, 48(6): 682-687.
[2] 米爽,吴燕君,洪正华,王章富,冯兴兵,郑光彬. TLR4/MyD88/NF-κB通路基因及相关炎症因子在继发性脊髓损伤患者中的表达[J]. 浙江大学学报(医学版), 2019, 48(6): 609-616.
[3] 李雪,李文斌,封士兰,王荣. 血红蛋白在高原低氧适应中的机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(6): 674-681.
[4] 张圣,胡振杰,叶璐,郑亚如. 决策树分析在急性心肌梗死事件预测中的应用[J]. 浙江大学学报(医学版), 2019, 48(6): 594-602.
[5] 丁怡丹,李文斌,王荣,张建春. 高原低氧对血脑屏障结构及其药物通透性影响的研究进展[J]. 浙江大学学报(医学版), 2019, 48(6): 668-673.
[6] 孔丽敏,陆婧怡,祝华建,张建康. 选择性免疫蛋白酶体抑制剂研究进展[J]. 浙江大学学报(医学版), 2019, 48(6): 688-694.
[7] 徐佳俊,舒强. 三维打印技术在先天性心脏病中的应用[J]. 浙江大学学报(医学版), 2019, 48(5): 573-579.
[8] 张军浩,金静华,杨巍. 自噬调控血管平滑肌细胞功能在颅内动脉瘤形成和破裂中的作用[J]. 浙江大学学报(医学版), 2019, 48(5): 552-559.
[9] 陈钿雨,祁鸣. 单亲二体及其在癌症中的作用研究进展[J]. 浙江大学学报(医学版), 2019, 48(5): 560-566.
[10] 林静,陈志敏. 儿童重症腺病毒肺炎早期识别的研究进展[J]. 浙江大学学报(医学版), 2019, 48(5): 567-572.
[11] 郭丹玲,胡红杰,赵振华,吕桑英,黄亚男,蒋汝红,蒲彩玲,倪虹霞. 心肌瘢痕对慢性心肌梗死后恶性室性心律失常发生的预测价值[J]. 浙江大学学报(医学版), 2019, 48(5): 511-516.
[12] 陈光杰,王晓豪,唐达星. 性别发育异常的评估、诊断和治疗研究进展[J]. 浙江大学学报(医学版), 2019, 48(4): 358-366.
[13] 黄淑敏,赵正言. 重症联合免疫缺陷病新生儿筛查及免疫系统重建研究进展[J]. 浙江大学学报(医学版), 2019, 48(4): 351-357.
[14] 张建民. 缺血性脑血管疾病手术治疗新进展[J]. 浙江大学学报(医学版), 2019, 48(3): 233-240.
[15] 吴雨星, 张世红, 陈忠. 缰核及其神经环路在神经精神疾病中的作用研究进展[J]. 浙江大学学报(医学版), 2019, 48(3): 310-317.