Please wait a minute...
浙江大学学报(医学版)  2018, Vol. 47 Issue (2): 194-200    DOI: 10.3785/j.issn.1008-9292.2018.04.14
综述     
结直肠癌高危人群多因素风险预测模型及评价
蒋曦依1(),李璐2,唐慧娟1,陈天辉1,3,*()
1. 浙江省医学科学院职业病防治研究所分子流行病学与癌症精准预防研究组, 浙江 杭州 310013
2. 浙江中医药大学基础医学院, 浙江 杭州 310053
3. 宁波大学医学院, 浙江 宁波 315211
Multiple risk factors prediction models for high risk population of colorectal cancer
JIANG Xiyi1(),LI Lu2,TANG Huijuan1,CHEN Tianhui1,3,*()
1. Group of Molecular Epidemiology & Cancer Precision Prevention, Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
2. School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
3. Medical School of Ningbo University, Ningbo 315211, China
 全文: PDF(961 KB)   HTML( 36 )
摘要:

结直肠癌的发生是遗传因素和环境因素共同作用的结果。国内外学者已尝试建立多种结直肠癌风险预测模型用于识别危险因素、筛选高危人群及评估发病风险,从而为不同风险人群提供个性化的筛查方案,有效降低结直肠癌的发病率和病死率。现有的典型结直肠癌风险预测模型的建立多基于病例对照研究和队列研究。欧美地区和亚洲地区(除中国外)模型仅纳入常见风险因素;中国的模型在常见风险因素的基础上,还纳入了遗传因素。然而,各模型的建立和验证多基于本地区人群,是否适用于外部人群尚待验证。本文就各种模型的建立、验证和评价进行综述,为进一步建立精确的风险预测模型提供依据。

关键词: 结直肠肿瘤/流行病学预测模型, 统计学危险因素综述    
Abstract:

Colorectal cancer is caused by the interaction of genetic and environment factors. Domestic and foreign scholars have attempted to develop several colorectal cancer risk prediction models, in order to identity risk factors, to screen for high risk population and evaluate the risk of developing colorectal cancer, so as to provide personalized screening protocols for individuals with different risk, and eventually reduce the incidence and mortality rate of colorectal cancer. Currently, the common colorectal cancer risk prediction models were mainly developed based on case-control study and cohort study. Models developed in European and American regions and Asia (excluding China) only include common risk factors, while Chinese models also include hereditary factors on the bases of common risk factors. However, the development and verification of each model are mainly based on local population, whether it can be applied for other population need to be determined. This article reviews the development, validation and evaluation of the risk prediction models, in order to provide a basis for developing more precise risk prediction models for colorectal cancer.

Key words: Colorectal neoplasms/epidemiology    Forecasting    Models, statistical    Risk factors    Review
收稿日期: 2018-01-04 出版日期: 2018-07-24
:  R181.2  
基金资助: “十三五”国家重点研发计划(2017YFC0908200);国家外国专家局重点项目(20173300013)
通讯作者: 陈天辉     E-mail: jiangxy@zjams.com.cn;t.chen@zjams.com.cn
作者简介: 蒋曦依(1991-), 女, 硕士, 研究实习员, 主要从事肿瘤流行病学研究; E-mail:jiangxy@zjams.com.cn; https://orcid.org/0000-0002-5560-0316
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
蒋曦依
李璐
唐慧娟
陈天辉

引用本文:

蒋曦依,李璐,唐慧娟,陈天辉. 结直肠癌高危人群多因素风险预测模型及评价[J]. 浙江大学学报(医学版), 2018, 47(2): 194-200.

JIANG Xiyi,LI Lu,TANG Huijuan,CHEN Tianhui. Multiple risk factors prediction models for high risk population of colorectal cancer. J Zhejiang Univ (Med Sci), 2018, 47(2): 194-200.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2018.04.14        http://www.zjujournals.com/med/CN/Y2018/V47/I2/194

模型 国别 模型验证方式 建模(研究设计,样本数/结直肠癌数) 验证(研究设计,样本数/结直肠癌数) 纳入的因素 模型预测价值(AUC/c指数)
“—”无相关数据;HPFS:健康专业人士随访研究;NHS:护士健康研究;a包括rs1983891、rs869736、rs3214050、rs10411210、rs3731055、rs231775、rs1412829、rs1572072、rs6983267、rs1799782、rs712221、rs160277、rs11721827、rs2736100、rs3135967、rs1760944;b包括rs647161、rs10505477、rs6983267、rs10795668、rs7229639、rs4939827、rs242327.
哈佛癌症风险指数模型[9-11] 美国 外部验证 文献查阅、总结归纳 队列研究HPFS队列:38 953/230;NHS队列:52 668/244 一级亲属结肠癌史、体质指数、筛查史(粪潜血试验、结肠镜检查)、阿司匹林使用史、炎性肠疾病史、叶酸摄入史、饮食(红肉、蔬菜、水果、纤维、脂肪)、吸烟、饮酒、身高、体力活动和雌激素替代治疗史 男性:0.71女性:0.67
Freedman模型[12-13] 美国 外部验证 病例对照研究病例:2263对照:2833 队列研究男:155 345/2093;女:108 057/832 男性:过去10年息肉史、一级亲属结直肠癌史、阿司匹林及非甾体抗炎药使用史、吸烟、体质指数、体力活动和蔬菜摄入;女性:结肠镜检查史、息肉史、一级亲属结直肠癌史、阿司匹林及非甾体抗炎药使用史、体力活动、蔬菜摄入、激素替代治疗史和绝经期雌激素暴露史 男性:0.61女性:0.61
Tao模型[14] 德国 外部验证 队列研究7891/107 横断面研究3519/29 性别、年龄、吸烟、一级亲属结肠癌史、饮酒、息肉史、红肉摄入、非甾体抗炎药使用史、结肠镜检查史 0.68
Imperiale模型[15] 印度 外部验证 横断面研究1994/67 横断面研究1031/15 年龄、性别、远端结肠病变 0.74
Ma模型[16] 日本 外部验证 队列研究28 115/543 队列研究18 256/389 年龄、体质指数、体力活动、吸烟、饮酒 0.64
Shin模型[17] 韩国 外部验证 队列研究男:846 559/6492;女:479 449/2655 队列研究男:547 874/3555女:415 875/1969 男性:年龄、身高、体质指数、空腹血糖、血清总胆固醇、肿瘤家族史、饮酒和肉类摄入;女性:年龄、身高、肿瘤家族史、空腹血糖和肉类摄入 男性:0.78女性:0.73
Cai模型[18] 中国 外部验证 队列研究5229/332 队列研究2312/147 性别、年龄、吸烟、糖尿病、绿色蔬菜、腌制食品、油炸食品和白肉摄入 0.74
Chen模型[19] 中国 内部验证 横断面研究905/48 自助抽样法 年龄、性别、冠心病、鸡蛋摄入、排便频率 0.75
Wang模型[20] 中国 内部验证 病例对照研究病例:218对照:315 五折交叉验证法 16个单核苷酸多态性位点a 0.72
李娇元模型[21] 中国 病例对照研究病例:1066对照:3880 性别、年龄、吸烟、饮酒、7个单核苷酸多态性位点b 0.59
表 1  目前已建立的比较典型的结直肠癌风险预测模型一览
1 FERLAY J , SOERJOMATARAM I , DIKSHIT R et al. Cancer incidence and mortality worldwide:Sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136 (5): E359- E386
doi: 10.1002/ijc.29210
2 CHEN W , ZHENG R , BAADE P D et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66 (2): 115- 132
doi: 10.3322/caac.21338
3 GONG J , HUTTER C , BARON J A et al. A pooled analysis of smoking and colorectal cancer:timing of exposure and interactions with environmental factors[J]. Cancer Epidemiol Biomarkers Prev, 2012, 21 (11): 1974- 1985
doi: 10.1158/1055-9965.EPI-12-0692
4 BOYLE T , FRITSCHI L , TABATABAEI S M et al. Smoking, alcohol, diabetes, obesity, socioeconomic status, and the risk of colorectal cancer in a population-based case-control study[J]. Cancer Causes Control, 2014, 25 (12): 1659- 1668
doi: 10.1007/s10552-014-0470-7
5 MA Y, YANG Y, WANG F, et al. Obesity and risk of colorectal cancer:a systematic review of prospective studies[J/OL]. PLoS One, 2013, 8(1):e53916.
6 AZEEM S , GILLANI S W , SIDDIQUI A et al. Diet and colorectal cancer risk in Asia-a systematic review[J]. Asian Pac J Cancer Prev, 2015, 16 (13): 5389- 5396
doi: 10.7314/APJCP.2015.16.13.5389
7 CHO E , LEE J E , RIMM E B et al. Alcohol consumption and the risk of colon cancer by family history of colorectal cancer[J]. Am J Clin Nutr, 2012, 95 (2): 413- 419
doi: 10.3945/ajcn.111.022145
8 SHROFF J , THOSANI N , BATRA S et al. Reduced incidence and mortality from colorectal cancer with flexible-sigmoidoscopy screening:a meta-analysis[J]. World J Gastroenterol, 2014, 20 (48): 18466- 18476
doi: 10.3748/wjg.v20.i48.18466
9 COLDITZ G A , ATWOOD K A , EMMONS K et al. Harvard report on cancer prevention volume 4:Harvard Cancer Risk Index. Risk Index Working Group, Harvard Center for Cancer Prevention[J]. Cancer Causes Control, 2000, 11 (6): 477- 488
doi: 10.1023/A:1008984432272
10 EMMONS K M , KOCH-WESER S , ATWOOD K et al. A qualitative evaluation of the Harvard Cancer Risk Index[J]. J Health Commun, 1999, 4 (3): 181- 193
doi: 10.1080/108107399126904
11 KIM D J , ROCKHILL B , COLDITZ G A . Validation of the Harvard Cancer Risk Index:a prediction tool for individual cancer risk[J]. J Clin Epidemiol, 2004, 57 (4): 332- 340
doi: 10.1016/j.jclinepi.2003.08.013
12 FREEDMAN A N , SLATTERY M L , BALLARD-BARBASH R et al. Colorectal cancer risk prediction tool for white men and women without known susceptibility[J]. J Clin Oncol, 2009, 27 (5): 686- 693
doi: 10.1200/JCO.2008.17.4797
13 PARK Y , FREEDMAN A N , GAIL M H et al. Validation of a colorectal cancer risk prediction model among white patients age 50 years and older[J]. J Clin Oncol, 2009, 27 (5): 694- 698
doi: 10.1200/JCO.2008.17.4813
14 TAO S , HOFFMEISTER M , BRENNER H . Development and validation of a scoring system to identify individuals at high risk for advanced colorectal neoplasms who should undergo colonoscopy screening[J]. Clin Gastroenterol H, 2014, 12 (3): 478- 485
doi: 10.1016/j.cgh.2013.08.042
15 IMPERIALE T F , WAGNER D R , LIN C Y et al. Using risk for advanced proximal colonic neoplasia to tailor endoscopic screening for colorectal cancer[J]. Ann Intern Med, 2003, 139 (12): 959- 965
doi: 10.7326/0003-4819-139-12-200312160-00005
16 MA E , SASAZUKI S , IWASAKI M et al. 10-year risk of colorectal cancer:development and validation of a prediction model in middle-aged Japanese men[J]. Cancer Epidemiol, 2010, 34 (5): 534- 541
doi: 10.1016/j.canep.2010.04.021
17 SHIN A, JOO J, YANGH R, et al. Risk prediction model for colorectal cancer: National Health Insurance Corporation study, Korea[J/OL]. PLoS One, 2014, 9(2): e88079.
18 CAI Q C , YU E D , XIAO Y et al. Derivation and validation of a prediction rule for estimating advanced colorectal neoplasm risk in average-risk Chinese[J]. Am J Epidemiol, 2012, 175 (6): 584- 593
doi: 10.1093/aje/kwr337
19 CHEN G , MAO B , PAN Q et al. Prediction rule for estimating advanced colorectal neoplasm risk in average-risk populations in southern Jiangsu Province[J]. Chin J Cancer Res, 2014, 26 (1): 4- 11
20 WANG H M , CHANG T H , LIN F M et al. A new method for post Genome-Wide Association Study (GWAS) analysis of colorectal cancer in Taiwan[J]. Gene, 2013, 518 (1): 107- 113
doi: 10.1016/j.gene.2012.11.067
21 李娇元, 常江, 朱颖 et al. 基于常见遗传变异和传统风险因素的中国南方汉族人群结直肠癌风险预测模型研究[J]. 中华流行病学杂志, 2015, 36 (10): 1053- 1057
LI Jiaoyuan , CHANG Jiang , ZHU Ying et al. Risk prediction of colorectal cancer with common genetic variants and conventional non-genetic factors in a Chinese Han population[J]. Chinese Journal of Epidemiology, 2015, 36 (10): 1053- 1057
doi: 10.3760/cma.j.issn.0254-6450.2015.10.003
[1] 胡琳琳,张睿婷,王淑玥,洪慧,黄沛钰,张敏鸣. 心脑血管疾病高危因素对脑铁沉积影响的磁共振影像学研究[J]. 浙江大学学报(医学版), 2019, 48(6): 644-650.
[2] 杜啸添,欧阳宏伟. 组蛋白甲基化水平与骨关节炎病理发展的关联性[J]. 浙江大学学报(医学版), 2019, 48(6): 682-687.
[3] 李雪,李文斌,封士兰,王荣. 血红蛋白在高原低氧适应中的机制研究进展[J]. 浙江大学学报(医学版), 2019, 48(6): 674-681.
[4] 张圣,胡振杰,叶璐,郑亚如. 决策树分析在急性心肌梗死事件预测中的应用[J]. 浙江大学学报(医学版), 2019, 48(6): 594-602.
[5] 丁怡丹,李文斌,王荣,张建春. 高原低氧对血脑屏障结构及其药物通透性影响的研究进展[J]. 浙江大学学报(医学版), 2019, 48(6): 668-673.
[6] 孔丽敏,陆婧怡,祝华建,张建康. 选择性免疫蛋白酶体抑制剂研究进展[J]. 浙江大学学报(医学版), 2019, 48(6): 688-694.
[7] 徐佳俊,舒强. 三维打印技术在先天性心脏病中的应用[J]. 浙江大学学报(医学版), 2019, 48(5): 573-579.
[8] 麦合木提江·穆扎帕,周敏. 腹主动脉瘤腔内修复术中髂内动脉封堵后盆腔缺血症状发生的危险因素[J]. 浙江大学学报(医学版), 2019, 48(5): 546-551.
[9] 张军浩,金静华,杨巍. 自噬调控血管平滑肌细胞功能在颅内动脉瘤形成和破裂中的作用[J]. 浙江大学学报(医学版), 2019, 48(5): 552-559.
[10] 陈钿雨,祁鸣. 单亲二体及其在癌症中的作用研究进展[J]. 浙江大学学报(医学版), 2019, 48(5): 560-566.
[11] 林静,陈志敏. 儿童重症腺病毒肺炎早期识别的研究进展[J]. 浙江大学学报(医学版), 2019, 48(5): 567-572.
[12] 郭丹玲,胡红杰,赵振华,吕桑英,黄亚男,蒋汝红,蒲彩玲,倪虹霞. 心肌瘢痕对慢性心肌梗死后恶性室性心律失常发生的预测价值[J]. 浙江大学学报(医学版), 2019, 48(5): 511-516.
[13] 陈光杰,王晓豪,唐达星. 性别发育异常的评估、诊断和治疗研究进展[J]. 浙江大学学报(医学版), 2019, 48(4): 358-366.
[14] 黄淑敏,赵正言. 重症联合免疫缺陷病新生儿筛查及免疫系统重建研究进展[J]. 浙江大学学报(医学版), 2019, 48(4): 351-357.
[15] 陶安阳, 王志敏, 陈红芳, 徐冬娟, 胡海芳, 吴承龙, 张晓玲, 马小董, 王亚仙, 胡海涛, 楼敏, 浙江省缺血性脑卒中静脉溶栓的临床行为干预研究协作组 . 合并心房颤动对缺血性脑卒中患者静脉溶栓后颅内出血转化的影响[J]. 浙江大学学报(医学版), 2019, 48(3): 254-259.