综述 |
|
|
|
|
受体相互作用蛋白家族在炎症中的作用研究进展 |
丁京京( ),卢韵碧*( ) |
浙江大学医学院药理学系, 浙江 杭州 310058 |
|
Research progress on receptor interacting proteins in inflammation |
DING Jingjing( ),LU Yunbi*( ) |
Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China |
1 |
OGAWA Y , CALHOUN W J . The role of leukotrienes in airway inflammation[J]. J Allergy Clin Immunol, 2006, 118 (4): 789- 798
doi: 10.1016/j.jaci.2006.08.009
|
2 |
LAMKANFI M , DIXIT V M . Manipulation of host cell death pathways during microbial infections[J]. Cell Host Microbe, 2010, 8 (1): 44- 54
doi: 10.1016/j.chom.2010.06.007
|
3 |
SONENSHINE D E , MACALUSO K R . Microbial invasion vs. tick immune regulation[J]. Front Cell Infect Microbiol, 2017, 7 390
doi: 10.3389/fcimb.2017.00390
|
4 |
NOGUSA S , SLIFKER M J , INGRAM J P et al. RIPK3 is largely dispensable for RIG-I-like receptor-and type Ⅰ interferon-driven transcriptional responses to influenza A virus in murine fibroblasts[J]. PLoS One, 2016, 11 (7): e0158774
doi: 10.1371/journal.pone.0158774
|
5 |
SALEH D , DEGTEREV A . Emerging roles for RIPK1 and RIPK3 in pathogen-induced cell death and host immunity[J]. Curr Top Microbiol Immunol, 2017, 403 37- 75
|
6 |
SILKE J , RICKARD J A , GERLIC M . The diverse role of RIP kinases in necroptosis and inflammation[J]. Nat Immunol, 2015, 16 689- 697
doi: 10.1038/ni.3206
|
7 |
PEIXOTO M S , DE OLIVEIRA GALV?O M F , DE MEDEIROS S R B . Cell death pathways of particulate matter toxicity[J]. Chemosphere, 2017, 188 32- 48
doi: 10.1016/j.chemosphere.2017.08.076
|
8 |
MORIWAKI K , CHAN F K . Necroptosis-independent signaling by the RIP kinases in inflammation[J]. Cell Mol Life Sci, 2016, 73 (11-12): 2325- 2334
doi: 10.1007/s00018-016-2203-4
|
9 |
NEWTON K . RIPK1 and RIPK3:critical regulators of inflammation and cell death[J]. Trends Cell Biol, 2015, 25 (6): 347- 353
doi: 10.1016/j.tcb.2015.01.001
|
10 |
ZHANG D , LIN J , HAN J . Receptor-interacting protein (RIP) kinase family[J]. Cell Mol Immunol, 2010, 7 (4): 243- 249
doi: 10.1038/cmi.2010.10
|
11 |
CABAL-HIERRO L , O'DWYER P J . TNF Signaling through RIP1 kinase enhances SN38-induced death in colon adenocarcinoma[J]. Mol Cancer Res, 2017, 15 (4): 395- 404
doi: 10.1158/1541-7786.MCR-16-0329
|
12 |
DE ALMAGRO M C , GONCHAROV T , NEWTON K et al. Cellular IAP proteins and LUBAC differentially regulate necrosome-associated RIP1 ubiquitination[J]. Cell Death Dis, 2015, 6 e1800
doi: 10.1038/cddis.2015.158
|
13 |
ALVAREZ S E , HARIKUMAR K B , HAIT N C et al. Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2[J]. Nature, 2010, 465 (7301): 1084- 1088
doi: 10.1038/nature09128
|
14 |
LIN X , CHEN Q , HUANG C et al. CYLD promotes TNF-alpha-induced cell necrosis mediated by RIP-1 in human lung cancer cells[J]. Mediators Inflamm, 2016, 2016 1542786
|
15 |
GUO X , YIN H , CHEN Y et al. TAK1 regulates caspase 8 activation and necroptotic signaling via multiple cell death checkpoints[J]. Cell Death Dis, 2016, 7 (9): e2381
doi: 10.1038/cddis.2016.294
|
16 |
SALEH D , NAJJAR M , ZELIC M et al. Kinase activities of RIPK1 and RIPK3 can direct IFN-beta synthesis induced by lipopolysaccharide[J]. J Immunol, 2017, 198 (11): 4435- 4447
doi: 10.4049/jimmunol.1601717
|
17 |
YANG S , WANG B , TANG L S et al. Pellino3 targets RIP1 and regulates the pro-apoptotic effects of TNF-alpha[J]. Nat Commun, 2013, 4 2583
doi: 10.1038/ncomms3583
|
18 |
JIN G , LAN Y , HAN F et al. Smac mimetic induced caspase independent necroptosis requires RIP1 in breast cancer[J]. Mol Med Rep, 2016, 13 (1): 359- 366
doi: 10.3892/mmr.2015.4542
|
19 |
NAJJAR M , SALEH D , ZELIC M et al. RIPK1 and RIPK3 kinases promote cell-death-independent inflammation by Toll-like receptor 4[J]. Immunity, 2016, 45 (1): 46- 59
doi: 10.1016/j.immuni.2016.06.007
|
20 |
RUIZ J , KANAGAVELU S , FLORES C et al. Systemic activation of TLR3-dependent TRIF signaling confers host defense against gram-negative bacteria in the intestine[J]. Front Cell Infect Microbiol, 2015, 5 105
|
21 |
LAWLOR K E , FELTHAM R , YABAL M et al. XIAP loss triggers RIPK3-and caspase-8-driven IL-1beta activation and cell death as a consequence of TLR-MyD88-induced cIAP1-TRAF2 degradation[J]. Cell Rep, 2017, 20 (3): 668- 682
doi: 10.1016/j.celrep.2017.06.073
|
22 |
WANG X , MAJUMDAR T , KESSLER P et al. STING requires the adaptor TRIF to trigger innate immune responses to microbial infection[J]. Cell Host Microbe, 2017, 21 (6): 788
doi: 10.1016/j.chom.2017.05.007
|
23 |
KANG S , FERNANDES-ALNEMRI T , ROGERS C et al. Caspase-8 scaffolding function and MLKL regulate NLRP3 inflammasome activation downstream of TLR3[J]. Nat Commun, 2015, 6 7515
doi: 10.1038/ncomms8515
|
24 |
HUMPHRIES F , YANG S , WANG B et al. RIP kinases:key decision makers in cell death and innate immunity[J]. Cell Death Differ, 2015, 22 (2): 225- 236
doi: 10.1038/cdd.2014.126
|
25 |
NIKSERESHT S , KHODAGHOLI F , NATEGH M et al. RIP1 inhibition rescues from LPS-induced RIP3-mediated programmed cell death, distributed energy metabolism and spatial memory impairment[J]. J Mol Neurosci, 2015, 57 (2): 219- 230
doi: 10.1007/s12031-015-0609-3
|
26 |
HE S , HUANG S , SHEN Z . Biomarkers for the detection of necroptosis[J]. Cell Mol Life Sci, 2016, 73 (11-12): 2177- 2181
doi: 10.1007/s00018-016-2192-3
|
27 |
OROZCO S , YATIM N , WERNER M R et al. RIPK1 both positively and negatively regulates RIPK3 oligomerization and necroptosis[J]. Cell Death Differ, 2014, 21 (10): 1511- 1521
doi: 10.1038/cdd.2014.76
|
28 |
ZHANG J , YANG Y , HE W et al. Necrosome core machinery:MLKL[J]. Cell Mol Life Sci, 2016, 73 (11-12): 2153- 2163
doi: 10.1007/s00018-016-2190-5
|
29 |
O'DONNELL M A , HASE H , LEGARDA D et al. NEMO inhibits programmed necrosis in an NFkappaB-independent manner by restraining RIP1[J]. PLoS One, 2012, 7 e41238
doi: 10.1371/journal.pone.0041238
|
30 |
WU X N , YANG Z H , WANG X K et al. Distinct roles of RIP1-RIP3 hetero-and RIP3-RIP3 homo-interaction in mediating necroptosis[J]. Cell Death Differ, 2014, 21 (11): 1709- 1720
doi: 10.1038/cdd.2014.77
|
31 |
NOGUSA S , THAPA R J , DILLON C P et al. RIPK3 activates parallel pathways of MLKL-driven necroptosis and FADD-mediated apoptosis to protect against influenza A virus[J]. Cell Host Microbe, 2016, 20 (1): 13- 24
doi: 10.1016/j.chom.2016.05.011
|
32 |
SHEN C , WANG C , HAN S et al. Aldehyde dehydrogenase 2 deficiency negates chronic low-to-moderate alcohol consumption-induced cardio-protecion possibly via ROS-dependent apoptosis and RIP1/RIP3/MLKL-mediated necroptosis[J]. Biochim Biophys Acta, 2017, 1863 (8): 1912- 1918
doi: 10.1016/j.bbadis.2016.11.016
|
33 |
SUMI H , INAZUKA M , MORIMOTO M et al. An inhibitor of apoptosis protein antagonist T-3256336 potentiates the antitumor efficacy of the Nedd8-activating enzyme inhibitor pevonedistat (TAK-924/MLN4924)[J]. Biochem Biophys Res Commun, 2016, 480 (3): 380- 386
doi: 10.1016/j.bbrc.2016.10.058
|
34 |
MATHUR A , HAYWARD J A , MAN S M . Molecular mechanisms of inflammasome signaling[J]. J Leukoc Biol, 2018, 103 (2): 233- 257
|
35 |
LAWLOR K E , KHAN N , MILDENHALL A et al. RIPK3 promotes cell death and NLRP3 inflammasome activation in the absence of MLKL[J]. Nat Commun, 2015, 6 6282
doi: 10.1038/ncomms7282
|
36 |
LAMKANFI M , DIXIT V M . Mechanisms and functions of inflammasomes[J]. Cell, 2014, 157 (5): 1013- 1022
doi: 10.1016/j.cell.2014.04.007
|
37 |
MORIWAKI K , BERTIN J , GOUGH P J et al. A RIPK3-caspase 8 complex mediates atypical pro-IL-1beta processing[J]. J Immunol, 2015, 194 (4): 1938- 1944
doi: 10.4049/jimmunol.1402167
|
38 |
CHI W , HUA X , CHEN X et al. Mitochondrial DNA oxidation induces imbalanced activity of NLRP3/NLRP6 inflammasomes by activation of caspase-8 and BRCC36 in dry eye[J]. J Autoimmun, 2017, 80 65- 76
doi: 10.1016/j.jaut.2017.02.006
|
39 |
WONG W W , VINCE J E , LALAOUI N et al. cIAPs and XIAP regulate myelopoiesis through cytokine production in an RIPK1-and RIPK3-dependent manner[J]. Blood, 2014, 123 (16): 2562- 2572
doi: 10.1182/blood-2013-06-510743
|
40 |
CHAVEZ-VALDEZ R , MARTIN L J , FLOCK D L et al. Necrostatin-1 attenuates mitochondrial dysfunction in neurons and astrocytes following neonatal hypoxia-ischemia[J]. Neuroscience, 2012, 219 192- 203
doi: 10.1016/j.neuroscience.2012.05.002
|
41 |
LIN J , LI H , YANG M et al. A role of RIP3-mediated macrophage necrosis in atherosclerosis development[J]. Cell Rep, 2013, 3 (1): 200- 210
doi: 10.1016/j.celrep.2012.12.012
|
42 |
SCHOCK S N , YOUNG J A , HE T H et al. Deletion of FADD in macrophages and granulocytes results in RIP3-and MyD88-dependent systemic inflammation[J]. PLoS One, 2015, 10 (4): e0124391
doi: 10.1371/journal.pone.0124391
|
43 |
NEGRONI A , COLANTONI E , PIERDOMENICO M et al. RIP3 AND pMLKL promote necroptosis-induced inflammation and alter membrane permeability in intestinal epithelial cells[J]. Dig Liver Dis, 2017, 49 (11): 1201- 1210
doi: 10.1016/j.dld.2017.08.017
|
44 |
LI J X , FENG J M , WANG Y et al. The B-Raf(V600E) inhibitor dabrafenib selectively inhibits RIP3 and alleviates acetaminophen-induced liver injury[J]. Cell Death Dis, 2014, 5 e1278
doi: 10.1038/cddis.2014.241
|
45 |
MURAKAMI Y , MATSUMOTO H , ROH M et al. Programmed necrosis, not apoptosis, is a key mediator of cell loss and DAMP-mediated inflammation in dsRNA-induced retinal degeneration[J]. Cell Death Differ, 2014, 21 (2): 270- 277
doi: 10.1038/cdd.2013.109
|
46 |
OFENGEIM D , MAZZITELLI S , ITO Y et al. RIPK1 mediates a disease-associated microglial response in Alzheimer's disease[J]. Proc Natl Acad Sci U S A, 2017, 114 (41): E8788- E8797
doi: 10.1073/pnas.1714175114
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|