Please wait a minute...
浙江大学学报(医学版)  2017, Vol. 46 Issue (6): 600-608    DOI: 10.3785/j.issn.1008-9292.2017.12.05
骨组织代谢及再生专题     
力学增强型生物玻璃—陶瓷支架材料促进骨再生修复性能研究
陈立峰1(),杨贤燕2,马锐1,*(),朱玲华3
1. 浙江大学校医院外科, 浙江 杭州 310027
2. 浙江加州国际纳米技术研究院, 浙江 杭州 310058
3. 浙江大学医学院附属邵逸夫医院外科, 浙江 杭州 310016
Application of mechanically reinforced 45S5 Bioglass®-derived bioactive glass-ceramic porous scaffolds for bone defect repairing in rabbits
CHEN Lifeng1(),YANG Xianyan2,MA Rui1,*(),ZHU Linghua3
1. Department of General Surgery, Zhejiang University Hospital, Hangzhou 310027, China
2. Zhejiang California International NanoSystems Institute, Zhejiang University, Hangzhou 310058, China
3. Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
 全文: PDF(1339 KB)   HTML( 5 )
摘要:

目的: 构建一种低熔点含硼、锌生物玻璃(BG-ZnB)力学增强型生物玻璃-陶瓷的多孔支架材料,并探究BG-ZnB含量对支架的结构、力学性能和骨再生效率的影响。方法: 将质量分数为0%、2%、4%的BG-ZnB复合45S5生物活性玻璃通过石蜡微球造孔成型,经900℃烧结分别形成45S5/ZB0、45S5/ZB2、45S5/ZB4三种玻璃-陶瓷多孔支架;测定三种玻璃-陶瓷多孔支架的物相组成、孔隙率和压缩性能。36只雄性新西兰大白兔随机分为45S5/ZnB0组、45S5/ZnB2组和45S5/ZnB4组,将三种多孔支架置入兔骨缺损模型中,分别在第6周和第16周通过X射线摄片、显微CT三维结构重建和组织切片染色等方法检测大白兔骨缺损模型支架的骨再生效率;采用HE染色、Masson三色染色和EnVision二步法染色分析新生骨内生长情况。结果: 力学增强型生物玻璃-陶瓷与45S5生物活性玻璃的物相基本一致,但烧结后的支架在外观上有细微变形。45S5/ZnB2组和45S5/ZnB4支架骨架表面晶粒烧结更为致密,抗压强度较45S5/ZnB0支架明显提高(均P < 0.05)。支架植入后6周和16周时,45S5/ZnB2组和45S5/ZnB4组成骨率和骨小梁密度高于45S5/ZnB0组(均P < 0.05),新生骨、Ⅰ型胶原蛋白和骨钙素表达量较45S5/ZnB0组增加。结论: 低熔点高活性BG-ZnB助烧结工艺能构建出力学增强型生物玻璃-陶瓷多孔支架材料,可为研发骨损伤修复材料奠定实验基础。

关键词: 股骨/损伤骨代用品玻璃二氧化硅生物相容性材料材料试验陶瓷制品骨再生胶原生物力学    
Abstract:

Objective: To evaluate the application of mechanically reinforced 45S5 Bioglass®-derived glass ceramic porous scaffolds for repair of bone defect in rabbits. Methods: The BG-ZnB powders were added into the 45S5 Bioglass® powder/paraffin microsphere mixtures and were sintered at 900℃ to obtain porous scaffolds with highly bioactive BG-ZnB of 0%, 2% or 4% of mass fraction (denoted as 45S5/ZnB0, 45S5/ZnB2, 45S5/ZnB4). Phase composition, porosity and compression properties of three kinds of as-sintered scaffolds were characterized by X-ray analysis, mercury porosimetry, and mechanical test. Thirty-six male New Zealand rabbits with critical-sized femoral bone defects were randomly divided into three groups (45S5/ZnB0 group, 45S5/ZnB2 group and 45S5/ZnB4 group, 12 for each), and were implanted with three kinds of porous scaffolds respectively. X-ray, micro-CT three-dimensional reconstruction and tissue slice staining were used to detected the efficiency of bone regeneration at 6 and 16 weeks after operation. The growth of newly formed bone was observed using HE, Masson staining and EnVision method. Results: Phase compositions of 45S5/ZnB2 and 45S5/ZnB4 were the same with 45S5/ZnB0, but the average pore size and porosity of the scaffolds were decreased with the increase of BG-ZnB content. 45S5/ZnB2 and 45S5/ZnB4 scaffolds exhibited higher compressive strength, osteogenesis and trabecular density than those of the 45S5/ZnB0 scaffold (all P < 0.05). With the mechanical reinforcement of BG-ZnB increased, the content of new bone, collagen type I and osteocalcin increased. Conclusion: Low-melt BG-ZnB-assisted sintering is a promising approach to improve the mechanical strength of 45S5 Bioglass®.

Key words: Femur/injuries    Bone substitutes    Boron    Zinc    Glass    Silicon dioxide    Biocompatible materials    Materials testing    Ceramics    Bone regeneration    Collagen    Biomechanics
收稿日期: 2017-01-18 出版日期: 2017-12-25
CLC:  R318.08  
基金资助: 浙江省教育厅科研项目(Y201533880);浙江省自然科学基金(LY15H030011);浙江省医药卫生科技计划(2018KY650)
通讯作者: 马锐     E-mail: clf007@126.com;0013419@zju.edu.cn
作者简介: 陈立峰(1971-), 男, 硕士, 副主任医师, 主要从事骨再生和功能重建方面的研究; E-mail:clf007@126.com; https://orcid.org/0000-0001-5188-8589
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈立峰
杨贤燕
马锐
朱玲华

引用本文:

陈立峰,杨贤燕,马锐,朱玲华. 力学增强型生物玻璃—陶瓷支架材料促进骨再生修复性能研究[J]. 浙江大学学报(医学版), 2017, 46(6): 600-608.

CHEN Lifeng,YANG Xianyan,MA Rui,ZHU Linghua. Application of mechanically reinforced 45S5 Bioglass®-derived bioactive glass-ceramic porous scaffolds for bone defect repairing in rabbits. J Zhejiang Univ (Med Sci), 2017, 46(6): 600-608.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2017.12.05        http://www.zjujournals.com/med/CN/Y2017/V46/I6/600

图 1  三种支架及其主要成分的X射线衍射图谱
图 2  三种支架内部断面电镜所见
($\bar x \pm s$)
支架种类 45S5:BG-ZnB 石蜡/BG-ZnB 致孔剂尺寸(μm) 平均孔径(μm) 孔隙率(%) 贯通孔(>50 μm,%) 抗压强度(MPa)
与45S5/ZnB0比较,*P < 0.05.BG-ZnB:低熔点含锌、硼生物玻璃.
45S5/ZnB0 100:0 65:35 350 327±3 75.1±2.5 38.2±2.1 3.3±1.8
45S5/ZnB2 98:2 65:35 350 323±5 72.6±1.7 37.7±1.1 15.6±2.3*
45S5/ZnB4 96:4 65:35 500 315±7 71.2±1.8 37.5±1.5 13.6±2.4*
表 1  三种支架的材料组成、孔结构参数和抗压强度
图 3  置入不同支架6周和16周时股骨缺损部位X射线图像
图 4  置入不同支架6周和16周时股骨缺损部位显微CT重建的三维图像
图 5  术后6周和16周时置入不同支架组显微CT定量分析缺损骨再生情况比较
图 6  置入不同支架6周和16周时缺损骨组织学表现(HE染色)
图 7  置入不同支架6周和16周时缺损骨组织学表现(Masson三色染色)
图 8  置入不同支架6周和16周时缺损骨组织中骨钙素表达(EnVision二步法染色)
1 SHIN K , ACRI T , GEARY S et al. Biomimetic mineralization of biomaterials using simulated body fluids for bone tissue engineering and regenerative medicine[J]. Tissue Eng Part A, 2017, 23 (19-20): 1169- 1180
doi: 10.1089/ten.tea.2016.0556
2 HENCH L L , WEST J K . Biological applications of bioactive glasses[J]. Life Chem Reports, 1996, 13 187- 241
3 GORUSTOVICH A A , ROETHER J A , BOCCACCINI A R . Effect of bioactive glasses on angiogenesis:a review of in vitro and in vivo evidences[J]. Tissue Eng Part B Rev, 2010, 16 (2): 199- 207
doi: 10.1089/ten.teb.2009.0416
4 HOPPE A , GVLDAL N S , BOCCACCINI A R . A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics[J]. Biomaterials, 2011, 32 (11): 2757- 2774
doi: 10.1016/j.biomaterials.2011.01.004
5 JELL G , STEVENS M M . Gene activation by bioactive glasses[J]. J Mater Sci Mater Med, 2006, 17 (11): 997- 1002
doi: 10.1007/s10856-006-0435-9
6 FU Q , SAIZ E , RAHAMAN M N et al. Bioactive glass scaffolds for bone tissue engineering:state of the art and future perspectives[J]. Mater Sci Eng C Mater Biol Appl, 2011, 31 (7): 1245- 1256
doi: 10.1016/j.msec.2011.04.022
7 BAINO F , VITALE-BROVARONE C . Three-dimensional glass-derived scaffolds for bone tissue engineering:current trends and forecasts for the future[J]. J Biomed Mater Res A, 2011, 97 (4): 514- 535
8 LIN L , ZHANG L , WANG J et al. Low-temperature sintering of 45S5 Bioglass?-based glass ceramics:effect of biphasic mixing approach on the mechanical and biological properties[J]. Mat Lett, 2014, 126 154- 158
doi: 10.1016/j.matlet.2014.04.028
9 BOCCACCINI A R , CHEN Q , LEFEBVRE L et al. Sintering, crystallisation and biodegradation behaviour of Bioglass-derived glass-ceramics[J]. Faraday Discuss, 2007, 136 27- 44
doi: 10.1039/b616539g
10 JONES J R . Review of bioactive glass:from Hench to hybrids[J]. Acta Biomater, 2013, 9 (1): 4457- 4486
doi: 10.1016/j.actbio.2012.08.023
11 YANG G , YANG X , LI Z et al. Counterionic biopolymers-reinforced bioactive glass scaffolds with improved mechanical properties in wet state[J]. Mater Lett, 2012, 75 80- 83
doi: 10.1016/j.matlet.2012.01.122
12 RAHAMAN M N , DAY D E , BAL B S et al. Bioactive glass in tissue engineering[J]. Acta Biomater, 2011, 7 (6): 2355- 2373
doi: 10.1016/j.actbio.2011.03.016
13 SARAVANAPAVAN P , JONES J R , PRYCE R S et al. Bioactivity of gel-glass powders in the CaO-SiO2 system:a comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O)[J]. J Biomed Mater Res A, 2003, 66 (1): 110- 119
14 SEPULVEDA P , JONES J R , HENCH L L . In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses[J]. J Biomed Mater Res, 2002, 61 (2): 301- 311
doi: 10.1002/(ISSN)1097-4636
15 HENCH L L , POLAK J M . Third-generation biomedical materials[J]. Science, 2002, 295 (5557): 1014- 1017
doi: 10.1126/science.1067404
16 CHEN G H , TANBG L J , CHEN J et al. Synthesis and characterization of CBS glass/ceramic composites for LTCC application[J]. J Alloys Comp, 2009, 478 (1-2): 858- 862
doi: 10.1016/j.jallcom.2008.11.163
17 SHAO H , YANG X , HE Y et al. Bioactive glass-reinforced bioceramic ink writing scaffolds:sintering, microstructure and mechanical behavior[J]. Biofabrication, 2015, 7 (3): 035010
doi: 10.1088/1758-5090/7/3/035010
18 LEE J H , LEE C K , CHANG B S et al. In vivo study of novel biodegradable and osteoconductive CaO-SiO2-B2O3 glass-ceramics[J]. J Biomed Mater Res A, 2006, 77 (2): 362- 369
19 RYU H S , LEE J K , SEO J H et al. Novel bioactive and biodegradable glass ceramics with high mechanical strength in the CaO-SiO2-B2O3 system[J]. J Biomed Mater Res A, 2004, 68 (1): 79- 89
20 YANG X , ZHANG L , CHEN X et al. Influence of B2O3 on the thermal and bioactive properties of CaO-SiO2-P2O5 system for improving strength of low-temperature co-fired porous glass ceramics[J]. J Non-Crystal Solids, 2012, 358 1171- 1179
doi: 10.1016/j.jnoncrysol.2012.02.005
21 LIU X , HUANG W , FU H et al. Bioactive borosilicate glass scaffolds:in vitro degradation and bioactivity behaviors[J]. J Mater Sci Mater Med, 2009, 20 (6): 1237- 1243
doi: 10.1007/s10856-009-3691-7
22 MASSERA J , FAGERLUND S , HUPA L et al. Crystallization mechanism of the bioactive glasses, 45S5 and S53P4[J]. J Am Ceram Soc, 2012, 95 (2): 607- 613
doi: 10.1111/jace.2012.95.issue-2
23 GOUGH J E , JONES J R , HENCH L L . Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold[J]. Biomaterials, 2004, 25 (11): 2039- 2046
doi: 10.1016/j.biomaterials.2003.07.001
24 GOUGH J E , CLUPPER D C , HENCH L L . Osteoblast responses to tape-cast and sintered bioactive glass ceramics[J]. J Biomed Mater Res A, 2004, 69 (4): 621- 628
25 KAMITAKAHARA M , OHTSUKI C , INADA H et al. Effect of ZnO addition on bioactive CaO-SiO2-P2O5-CaF2 glass-ceramics containing apatite and wollastonite[J]. Acta Biomater, 2006, 2 (4): 467- 471
doi: 10.1016/j.actbio.2006.03.001
26 HAKKI S S , BOZKURT B S , HAKKI E E . Boron regulates mineralized tissue-associated proteins in osteoblasts (MC3T3-E1)[J]. J Trace Elem Med Biol, 2010, 24 (4): 243- 250
doi: 10.1016/j.jtemb.2010.03.003
[1] 黄杨,孔劲松,宫小康,郑鑫,王海宝,阮建伟. RGD接枝壳聚糖纳米短纤维增强型磷酸钙骨水泥的生物学性能研究[J]. 浙江大学学报(医学版), 2017, 46(6): 593-599.
[2] 陆薇,林梦娜,赵士芳,王慧明,何福明. 改良侧壁开窗式上颌窦底提升术治疗上颌后牙区缺牙伴重度骨萎缩患者临床观察[J]. 浙江大学学报(医学版), 2017, 46(6): 630-636.
[3] 张展 等. 鼠尾Ⅰ型胶原的酸解、纤维重构和仿骨生物矿化研究[J]. 浙江大学学报(医学版), 2016, 45(6): 592-597.
[4] 周延峰 等. 1.8 mT不同频率正弦电磁场对青年大鼠骨生物力学性能的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 561-567.
[5] 沈志新 等. 家族遗传性玻璃体变性混浊十例[J]. 浙江大学学报(医学版), 2016, 45(6): 636-640.
[6] 屈涛 等. 丹参素对去势大鼠骨质量的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 587-591.
[7] 刘巧云 等. 锌与自噬[J]. 浙江大学学报(医学版), 2016, 45(3): 308-314.
[8] 余新宁 等. 基于三维打印的钙化层重建生物活性支架制备及其性能研究[J]. 浙江大学学报(医学版), 2016, 45(2): 126-131.
[9] 孔祥朋 等. 肌腱干细胞与骨髓间充质干细胞促进髌腱愈合的对比研究[J]. 浙江大学学报(医学版), 2016, 45(2): 112-119.
[10] 郑泽峰 等. 三维平行胶原支架促进肌腱样胞外基质形成的作用[J]. 浙江大学学报(医学版), 2016, 45(2): 120-125.
[11] 王健, 朱志文, 徐国华, 安越. 自组装单分子膜技术在医用金属材料中的应用研究进展[J]. 浙江大学学报(医学版), 2015, 44(5): 589-594.
[12] 谢艳芳, 王鸣刚, 陈克明, 石文贵, 周建, 高玉海. 淫羊藿苷促进胶原水凝胶三维立体培养成骨细胞的成熟分化[J]. 浙江大学学报(医学版), 2015, 44(3): 301-307.
[13] 李耘, 刘雁鸣, 傅涛, 李博. 明胶微粒粒径及含量对明胶微粒与磷酸钙骨水泥复合人工骨材料修复骨缺损的影响[J]. 浙江大学学报(医学版), 2015, 44(3): 293-300.
[14] 李九可, 金晓红, 方伟, 冯立国, 翟晶, 李毓敏. 重度增殖性糖尿病视网膜病变患者玻璃体切除硅油填充术后出血及其转归分析[J]. 浙江大学学报(医学版), 2015, 44(2): 167-173.
[15] 吕杰敏, 黄迪宇, 林辉, 王先法. 生物补片应用于腹腔镜抗反流手术治疗胃食管反流病疗效观察[J]. 浙江大学学报(医学版), 2015, 44(1): 74-78,84.