Please wait a minute...
浙江大学学报(医学版)  2017, Vol. 46 Issue (6): 593-599    DOI: 10.3785/j.issn.1008-9292.2017.12.04
骨组织代谢及再生专题     
RGD接枝壳聚糖纳米短纤维增强型磷酸钙骨水泥的生物学性能研究
黄杨(),孔劲松,宫小康,郑鑫,王海宝,阮建伟*()
浙江省台州市立医院骨科中心, 浙江 台州 318000
Biomechanical and biocompatible enhancement of reinforced calcium phosphate cement via RGD peptide grafted chitosan nanofibers
HUANG Yang(),KONG Jinsong,GONG Xiaokang,ZHENG Xin,WANG Haibao,RUAN Jianwei*()
Orthopaedics Center, Taizhou Municipal Hospital, Taizhou 318000, Zhejiang Province, China
 全文: PDF(1178 KB)   HTML( 9 )
摘要:

目的: 分析壳聚糖纳米短纤维(CSNF)和RGD对磷酸钙骨水泥(CPC)生物力学和生物相容性的影响。方法: 采用静电纺丝法制备壳聚糖纳米纤维膜,通过高速剪切形成纳米短纤维,并对CSNF进行RGD基团接枝修饰。采用Biocement D法制备钙磷摩尔比为1.5:1的CPC。通过红外光谱、X射线衍射、扫描电镜对CPC、CSNF、RGD接枝CSNF(CSNF-RGD)、CSNF增强型骨水泥(CPC-CSNF)、RGD接枝CPC-CSNF(CPC-CSNF-RGD)进行成分分析和结构观察,利用万能力学试验机检测其生物力学特性,采用免疫荧光染色和MTT法检测成骨细胞(MC3T3)在上述材料上的黏附和增殖情况。结果: 扫描电镜观察发现,CSNF和CSNF-RGD呈现出分散均匀的多孔结构;红外图谱中CSNF在波长为1637和1579 nm处的吸收峰位移至波长1633和1585 nm处,说明RGD成功接枝到CSNF上;X射线衍射图谱显示CPC具有一定的可固化性;应力应变曲线统计分析结果显示,CPC-CSNF和CPC-CSNF-RGD断裂强度分别为(17.74±0.54)MPa和(16.67±0.56)MPa,均高于CPC(均P < 0.05);实验材料与成骨细胞复合培养240 min后,CPC-CSNF-RGD上细胞数量均明显多于CPC和CPC-CSNF(均P < 0.05)。结论: CSNF和RGD的加入改善了CPC的生物力学性能和生物相容性。

关键词: 甘氨酸精氨酸天冬氨酸肽类壳聚糖纳米复合物磷酸钙类生物力学生物相容性材料    
Abstract:

Objective: To analysis the biomechanical and biocompatible properties of calcium phosphate cement (CPC) enhanced by chitosan short nanofibers(CSNF) and Arg-Gly-Asp (RGD). Methods: Chitosan nanofibers were prepared by electrospinning, and cut into short fibers by high speed dispersion. CPC with calcium phosphorus ratio of 1.5:1 was prepared by Biocement D method. The composition and structure of CPC, CSNF, RGD modified CSNF (CSNF-RGD), CSNF enhanced CPC (CPC-CSNF), RGD modified CPC-CSNF (CPC-CSNF-RGD) were observed by infrared spectrum, X-ray diffraction (XRD) and scan electron microscopy (SEM). The mechanical properties were measured by universal mechanical testing instrument. The adhesion and proliferation of MC3T3 cells were assessed using immunofluorescence staining and MTT method. Results: The distribution of CSNF in the scaffold was homogeneous, and the porous structure between the nanofibers was observed by SEM. The infrared spectrum showed the characteristic peaks at 1633 nm and 1585 nm, indicating that RGD was successfully grafted on chitosan nanofibers. The XRD pattern showed that the bone cement had a certain curability. The stain-stress test showed that break strengths were (17.74±0.54) MPa for CPC-CSNF and (16.67±0.56) MPa for CPCP-CSNF-RGD, both were higher than that of CPC(all P < 0.05). The immunofluorescence staining and MTT results: indicated that MC3T3 cells grew better on CPC-CSNF-RGD after 240 min of culture(all P < 0.05). Conclusion: CSNF-RGD can improve the biomechanical property and biocompatibility of CPC, indicating its potential application in bone tissue repair.

Key words: Glycine    Arginine    Aspartic acid    Peptides    Chitosan    Nanocomposites    Calcium phosphates    Biomechanics    Biocompatible materials
收稿日期: 2017-04-19 出版日期: 2017-12-25
CLC:  R681  
基金资助: 浙江省中医药科技计划(2016ZA204);浙江省医药卫生科技计划(2014KYA229);台州市科学技术局社会发展类一般项目(15YW04);台州市椒江区科技计划(142067)
通讯作者: 阮建伟     E-mail: docter_veasal@163.com;ruan_jianwei@163.com
作者简介: 黄杨(1982-), 男, 硕士, 主治医师, 主要从事骨损伤研究; E-mail:docter_veasal@163.com; https://orcid.org/0000-0002-5901-7489
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
黄杨
孔劲松
宫小康
郑鑫
王海宝
阮建伟

引用本文:

黄杨,孔劲松,宫小康,郑鑫,王海宝,阮建伟. RGD接枝壳聚糖纳米短纤维增强型磷酸钙骨水泥的生物学性能研究[J]. 浙江大学学报(医学版), 2017, 46(6): 593-599.

HUANG Yang,KONG Jinsong,GONG Xiaokang,ZHENG Xin,WANG Haibao,RUAN Jianwei. Biomechanical and biocompatible enhancement of reinforced calcium phosphate cement via RGD peptide grafted chitosan nanofibers. J Zhejiang Univ (Med Sci), 2017, 46(6): 593-599.

链接本文:

http://www.zjujournals.com/med/CN/10.3785/j.issn.1008-9292.2017.12.04        http://www.zjujournals.com/med/CN/Y2017/V46/I6/593

图 1  壳聚糖纳米短纤维及其接枝RGD的扫描电镜图
图 2  壳聚糖纳米短纤维及其接枝RGD的红外谱图
图 3  磷酸钙骨水泥(CPC)和壳聚糖纳米短纤维增强型CPC(CPC-CSNF)的X射线衍射图谱
图 4  三种材质骨水泥的应力应变曲线
图 5  三种材质骨水泥固化后的扫描电镜图
图 6  MC3T3在三种材质骨水泥上培养240 min后细胞荧光染色图
图 7  MC3T3在三种材质骨水泥上培养不同时间增殖情况比较
1 AMBARD A J , MUENINGHOFF L . Calcium phosphate cement:review of mechanical and biological properties[J]. J Prosthodont, 2006, 15 (5): 321- 328
doi: 10.1111/jopr.2006.15.issue-5
2 ZUO Y , YANG F , WOLKE J G et al. Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration[J]. Acta Biomater, 2010, 6 (4): 1238- 1247
doi: 10.1016/j.actbio.2009.10.036
3 AKAY G , BIRCH M A , BOKHARI M A . Microcellular polyHIPE polymer supports osteoblast growth and bone formation in vitro[J]. Biomaterials, 2004, 25 (18): 3991- 4000
doi: 10.1016/j.biomaterials.2003.10.086
4 AMBARD A J , MUENINGHOFF L . Calcium phosphate cement:review of mechanical and biological properties[J]. J Prosthodont, 2006, 15 (5): 321- 328
doi: 10.1111/jopr.2006.15.issue-5
5 MANGANO C , SCARANO A , IEZZI G et al. Maxillary sinus augmentation using an engineered porous hydroxyapatite:a clinical, histological, and transmission electron microscopy study in man[J]. J Oral Implantol, 2006, 32 (3): 122- 131
doi: 10.1563/796.1
6 MOREAU J L , XU H H . Mesenchymal stem cell proliferation and differentiation on an injectable calcium phosphate-chitosan composite scaffold[J]. Biomaterials, 2009, 30 (14): 2675- 2682
doi: 10.1016/j.biomaterials.2009.01.022
7 连芩, 李涤尘, 王臻 et al. 壳聚糖纤维/磷酸钙骨水泥复合材料人工骨的降解性能[J]. 机械工程学报, 2010, 46 (5): 110- 115
LIAN Qin , LI Dichen , WANG Zhen et al. Degradation behavior of chitosan-fiber/cacium phosphate cement composite for artifical bone[J]. Journal of Mechanical Engineering, 2010, 4 (5): 110- 115
8 徐立新, 史雪婷, 王彦平 et al. 聚磷酸钙纤维增强增韧磷酸钙骨水泥的力学效应[J]. 中国组织工程研究与临床康复, 2009, 13 (38): 7474- 7476
XU Lixin , SHI Xueting , WANG Yanping et al. Mechanical effect of calcium polyphosphate fiber on reinforcing calcium phosphate bone cement composites[J]. Journal of Clinical Rehabilitative Tissue Engineering Research, 2009, 13 (38): 7474- 7476
9 XU H H , QUINN J B . Calcium phosphate cement containing resorbable fibers for short-term reinforcement and macroporosity[J]. Biomaterials, 2002, 23 (1): 193- 202
doi: 10.1016/S0142-9612(01)00095-3
10 王丽婷, 周钢, 樊瑜波 . 纳米壳聚糖对MC3T3-E1成骨细胞生长的影响[J]. 中国组织工程研究, 2013, 17 (42): 7375- 7381
WANG Liting , ZHOU Gang , FAN Yubo . Insight into nano chitosan effects on MC3T3-E1 cell growth[J]. Chinese Journal of Tissue Engineering Research, 2013, 17 (42): 7375- 7381
doi: 10.3969/j.issn.2095-4344.2013.42.006
[1] 陈立峰,杨贤燕,马锐,朱玲华. 力学增强型生物玻璃—陶瓷支架材料促进骨再生修复性能研究[J]. 浙江大学学报(医学版), 2017, 46(6): 600-608.
[2] 李文波,贾丁丁,王飞,张超,石杰,张洪,吴路加,高秋明. 外源性L-精氨酸对大鼠背部跨区皮瓣成活的影响[J]. 浙江大学学报(医学版), 2017, 46(6): 656-661.
[3] 傅燕玲 等. 肽类激素Kisspeptin在生殖内分泌领域的应用前景[J]. 浙江大学学报(医学版), 2017, 46(3): 328-333.
[4] 屈涛 等. 丹参素对去势大鼠骨质量的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 587-591.
[5] 周延峰 等. 1.8 mT不同频率正弦电磁场对青年大鼠骨生物力学性能的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 561-567.
[6] 张展 等. 鼠尾Ⅰ型胶原的酸解、纤维重构和仿骨生物矿化研究[J]. 浙江大学学报(医学版), 2016, 45(6): 592-597.
[7] 陈滟珊 等. 转瓶变速培养对微胶囊肝细胞聚集体形成及活性的影响[J]. 浙江大学学报(医学版), 2016, 45(4): 403-409.
[8] 孔祥朋 等. 肌腱干细胞与骨髓间充质干细胞促进髌腱愈合的对比研究[J]. 浙江大学学报(医学版), 2016, 45(2): 112-119.
[9] 邢桂英等. 交联壳聚糖/聚丙烯酸/聚氧化乙烯包埋三七颗粒纳米纤维的制备及其性能研究[J]. 浙江大学学报(医学版), 2015, 44(6): 665-671.
[10] 王健, 朱志文, 徐国华, 安越. 自组装单分子膜技术在医用金属材料中的应用研究进展[J]. 浙江大学学报(医学版), 2015, 44(5): 589-594.
[11] 李耘, 刘雁鸣, 傅涛, 李博. 明胶微粒粒径及含量对明胶微粒与磷酸钙骨水泥复合人工骨材料修复骨缺损的影响[J]. 浙江大学学报(医学版), 2015, 44(3): 293-300.
[12] 张春阳, 祝艳, 冯华松, 陈旭昕. 放射线照射的肺成纤维细胞对人脐带间充质干细胞中经典Wnt/β-catenin通路的影响[J]. 浙江大学学报(医学版), 2015, 44(2): 162-166.
[13] 吕杰敏, 黄迪宇, 林辉, 王先法. 生物补片应用于腹腔镜抗反流手术治疗胃食管反流病疗效观察[J]. 浙江大学学报(医学版), 2015, 44(1): 74-78,84.
[14] 王浩, 耿赵铭, 胡智伟, 王舒燕, 赵冰. 丹皮酚抑制帕金森病模型细胞凋亡的作用[J]. 浙江大学学报(医学版), 2015, 44(1): 30-36.
[15] 缪成贵, 周国梁, 秦梅颂, 陈建中, 李成凤, 张兵. 禹州漏芦总黄酮对类风湿关节炎大鼠治疗机制研究[J]. 浙江大学学报(医学版), 2015, 44(1): 43-48.