Please wait a minute...
浙江大学学报(医学版)  2017, Vol. 46 Issue (5): 473-480    DOI: 10.3785/j.issn.1008-9292.2017.10.04
精准影像医学专题     
PET-CT与乳腺癌分子病理分型、治疗反应及预后的相关性研究进展
潘静颖, 何梦烨, 柯蔚, 胡梦琳, 王美芳, 沈朋
浙江大学医学院附属第一医院肿瘤内科, 浙江 杭州 310003
Advances on correlation of PET-CT findings with breast cancer molecular subtypes, treatment response and prognosis
PAN Jingying, HE Mengye, KE Wei, HU Menglin, WANG Meifang, SHEN Peng
Department of Medical Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
 全文: PDF(951 KB)  
摘要:

近年来,PET-CT在乳腺癌诊疗中的作用受到越来越多的关注。PET-CT可以作为一种无创诊断乳腺癌分子病理分型的检查手段,并且可以用于预测患者的治疗效果和预后。在乳腺癌的分子病理分型方面,luminal A型乳腺癌氟脱氧葡萄糖(FDG) PET-CT检查最大标准摄取值(SUVmax)最低,其次是luminal B型,最高的是三阴性或人类表皮生长因子受体2(HER2)过表达型乳腺癌,但SUVmax诊断乳腺癌分子病理分型的敏感度和特异度均不高,临床应用价值有限。在预测治疗效果和患者的预后方面,FDG PET-CT检查中FDG摄取值下降越多,治疗效果越好,且标准摄取值越低的患者预后越好。新型示踪剂18F-氟雌二醇(18F-FES)和[89Zr]曲妥珠单抗的应用可为乳腺癌患者的诊疗提供更多的信息。18F-FES PET-CT可以有效评估乳腺癌病灶的雌激素受体(ER)状态及患者对内分泌治疗的反应;[89Zr]曲妥珠单抗PET-CT可以显示HER2阳性的病灶,但是其特异度和敏感度较低。本文对近年来PET-CT在乳腺癌分子病理分型的判断、患者对治疗的应答及预后的预测相关研究进展进行综述。

关键词: 乳腺肿瘤/放射性核素显像综述治疗结果乳腺肿瘤/病理学正电子发射断层显像术预后    
Abstract:

In recent years, PET-CT has an increasing importance in the diagnosis and treatment of breast cancer. PET-CT scan can be used as a noninvasive method for molecular subtyping of breast cancer, and prediction of therapeutic effect and prognosis of patients. Studies have revealed that luminal A subtype has a significantly lower maximum standard intake value (SUVmax) than the other subtypes; triple-negative and human epidermal growth factor receptor 2 (HER2) positive tumors have relatively high SUVmax than luminal B subtype, but the specificity and sensitivity of SUVmax in diagnosis of molecular subtypes are very low, so its clinical application is limited. In predicting the effectiveness of the treatment and the prognosis of the patients, the decreased uptake of fluorodeoxyglucose (FDG) is correlated with better therapeutic effect. In addition, patients with high FDG uptake have worse survival outcomes. New tracers, such as 18F-fluoroestradiol (18F-FES) and[89Zr]trastuzumab play an important role in molecular subtyping of breast cancer. 18F-FES PET-CT can effectively evaluate the estrogen receptor (ER) status of breast cancer and the response to endocrine therapy.[89Zr]trastuzumab PET-CT can evaluate the expression of HER2 and localization of HER2-overexpressing tumors, but their specificities and sensitivities are also low. In this article, we review the recent advances on the correlation of PET-CT findings with molecular subtypes, treatment response and prognosis of breast cancer.

Key words: Breast neoplasms/pathology    Prognosis    Treatment outcome    Review    Breast neoplasms/radionuclide imaging    Positron-emission tomography
收稿日期: 2017-07-07 出版日期: 2017-10-25
CLC:  R445  
基金资助:

浙江省公益性技术应用研究计划(2013C37025)

通讯作者: 沈朋(1962-),女,硕士,主任医师,硕士生导师,主要从事乳腺癌的诊疗研究;E-mail:shenp@zju.edu.cn;http://orcid.org/0000-0002-1123-9848     E-mail: shenp@zju.edu.cn
作者简介: 潘静颖(1992-),女,硕士研究生,主要从事乳腺癌的诊疗研究;E-mail:jsczpjy@sina.cn;http://orcid.org/0000-0002-6804-7951
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

潘静颖 等. PET-CT与乳腺癌分子病理分型、治疗反应及预后的相关性研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 473-480.

PAN Jingying, HE Mengye, KE Wei, HU Menglin, WANG Meifang, SHEN Peng. Advances on correlation of PET-CT findings with breast cancer molecular subtypes, treatment response and prognosis. Journal of ZheJiang University(Medical Science), 2017, 46(5): 473-480.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2017.10.04        http://www.zjujournals.com/xueshu/med/CN/Y2017/V46/I5/473

[1] TOSS A, CRISTOFANILLI M. Molecular characterization and targeted therapeutic approaches in breast cancer[J/OL]. Breast Cancer Res,2015,17:60.
[2] TURAL D, KIVRAK S D, MUTLU H, et al. Is there any relation between PET-CT SUVmax value and prognostic factors in locally advanced breast cancer?[J]. J BUON,2015,20(5):1282-1286.
[3] GARCÍA VICENTE A M, SORIANO CASTREJÓN Á, LEÓN MARTÍN A, et al. Molecular subtypes of breast cancer:metabolic correlation with 18F-FDG PET/CT[J]. Eur J Nucl Med Mol Imaging,2013,40(9):1304-1311.
[4] MIYAKE K K, NAKAMOTO Y, KANAO S, et al. Journal club:diagnostic value of (18)F-FDG PET/CT and MRI in predicting the clinicopathologic subtypes of invasive breast cancer[J]. AJR Am J Roentgenol,2014,203(2):272-279.
[5] KITAJIMA K, FUKUSHIMA K, MIYOSHI Y, et al. Association between 18F-FDG uptake and molecular subtype of breast cancer[J]. Eur J Nucl Med Mol Imaging,2015,42(9):1371-1377.
[6] LEE S S, BAE S K, PARK Y S, et al. Correlation of molecular subtypes of invasive ductal carcinoma of breast with glucose metabolism in FDG PET/CT:based on the recommendations of the St. Gallen Consensus Meeting 2013[J]. Nucl Med Mol Imaging,2017,51(1):79-85.
[7] DUFFY M J, HARBECK N, NAP M, et al. Clinical use of biomarkers in breast cancer:Updated guidelines from the European Group on Tumor Markers(EGTM)[J]. Eur J Cancer,2017,75:284-298.
[8] EVANGELISTA L, BARETTA Z, VINANTE L, et al. Tumour markers and FDG PET/CT for prediction of disease relapse in patients with breast cancer[J]. Eur J Nucl Med Mol Imaging,2011,38(2):293-301.
[9] KOO H R, PARK J S, KANG K W, et al. 18F-FDG uptake in breast cancer correlates with immunohistochemically defined subtypes[J]. Eur Radiol,2014,24(3):610-618.
[10] COKMERT S, TANRIVERDI O, KARAPOLAT I, et al. The maximum standardized uptake value of metastatic site in 18F-FDG PET/CT predicts molecular subtypes and survival in metastatic breast cancer:An Izmir Oncology Group study[J]. J BUON,2016,21(6):1410-1418.
[11] GOLDHIRSCH A, WINER E P, COATES A S, et al. Personalizing the treatment of women with early breast cancer:highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013[J]. Ann Oncol,2013,24(9):2206-2223.
[12] KAJÁRY K, TOKÉS T, DANK M, et al. Correlation of the value of 18F-FDG uptake, described by SUVmax, SUVavg, metabolic tumour volume and total lesion glycolysis, to clinicopathological prognostic factors and biological subtypes in breast cancer[J]. Nucl Med Commun,2015,36(1):28-37.
[13] BASU S, CHEN W, TCHOU J, et al. Comparison of triple-negative and estrogen receptor-positive/progesterone receptor-positive/HER2-negative breast carcinoma using quantitative fluorine-18fluorodeoxyglucose/positron emission tomography imaging parameters:a potentially useful method for disease characterization[J]. Cancer,2008,112(5):995-1000.
[14] GARCÍA VICENTE A M, SORIANO CASTREJÓN A, RELEA CALATAYUD F, et al. 18F-FDG semi-quantitative parameters and biological prognostic factors in locally advanced breast cancer[J]. Rev Esp Med Nucl Imagen Mol,2012,31(6):308-314.
[15] GEMIGNANI M L, PATIL S, SESHAN V E, et al. Feasibility and predictability of perioperative PET and estrogen receptor ligand in patients with invasive breast cancer[J]. J Nucl Med,2013,54(10):1697-1702.
[16] PETERSON L M, MANKOFF D A, LAWTON T, et al. Quantitative imaging of estrogen receptor expression in breast cancer with PET and 18F-fluoroestradiol[J]. J Nucl Med,2008,49(3):367-374.
[17] YANG Z, SUN Y, XU X, et al. The assessment of estrogen receptor status and its intratumoral heterogeneity in patients with breast cancer by using 18F-fluoroestradiol PET/CT[J]. Clin Nucl Med,2017,42(6):421-427.
[18] EVANGELISTA L, GUARNERI V, CONTE P F. 18F-fluoroestradiol positron emission tomography in breast cancer patients:systematic review of the literature & meta-analysis[J]. Curr Radiopharm,2016,9(3):244-257.
[19] MCKEAGE K, PERRY C M. Trastuzumab:a review of its use in the treatment of metastatic breast cancer overexpressing HER2[J]. Drugs,2002,62(1):209-243.
[20] CHANG A J, DESILVA R, JAIN S, et al. 89Zr-radiolabeled trastuzumab imaging in orthotopic and metastatic breast tumors[J]. Pharmaceuticals(Basel),2012,5(1):79-93.
[21] LAFOREST R, LAPI S E, OYAMA R, et al.[89Zr]Trastuzumab:evaluation of radiation dosimetry, safety, and optimal imaging parameters in women with HER2-positive breast cancer[J]. Mol Imaging Biol,2016,18(6):952-959.
[22] GEBHART G, LAMBERTS L E, WIMANA Z, et al. Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine(T-DM1):the ZEPHIR trial[J]. Ann Oncol,2016,27(4):619-624.
[23] NⅡKURA N, LIU J, HAYASHI N, et al. Loss of human epidermal growth factor receptor 2(HER2) expression in metastatic sites of HER2-overexpressing primary breast tumors[J]. J Clin Oncol,2012,30(6):593-599.
[24] ULANER G A, HYMAN D M, ROSS D S, et al. Detection of HER2-positive metastases in patients with HER2-negative primary breast cancer using 89Zr-trastuzumab PET/CT[J]. J Nucl Med,2016,57(10):1523-1528.
[25] MORTIMER J E, DEHDASHTI F, SIEGEL B A, et al. Metabolic flare:indicator of hormone responsiveness in advanced breast cancer[J]. J Clin Oncol,2001,19(11):27-97.
[26] DEHDASHTI F, MORTIMER J E, TRINKAUS K, et al. PET-based estradiol challenge as a predictive biomarker of response to endocrine therapy in women with estrogen-receptor-positive breast cancer[J]. Breast Cancer Res Treat,2009,113(3):509-517.
[27] PETERSON L M, KURLAND B F, SCHUBERT E K, et al. A phase 2 study of 16α-[18F]-fluoro-17β-estradiol positron emission tomography (FES-PET) as a marker of hormone sensitivity in metastatic breast cancer (MBC)[J]. Mol Imaging Biol,2014,16(3):431-440.
[28] LINDEN H M, STEKHOVA S A, LINK J M, et al. Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer[J]. J Clin Oncol,2006,24(18):2793-2799.
[29] VAN KRUCHTEN M, GLAUDEMANS A W J M, DE VRIES E F J, et al. Positron emission tomography of tumour[18F]fluoroestradiol uptake in patients with acquired hormone-resistant metastatic breast cancer prior to oestradiol therapy[J]. Eur J Nucl Med Mol Imaging,2015,42(11):1674-1681.
[30] LIU Q, WANG C, LI P, et al. The role of (18)F-FDG PET/CT and MRI in assessing pathological complete response to neoadjuvant chemotherapy in patients with breast cancer:a systematic review and meta-analysis[J]. Biomed Res Int,2016,37(46):23-32.
[31] WAHL R L, ZASADNY K, HELVIE M, et al. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography:initial evaluation[J]. J Clin Oncol,1993,11(11):2101-2111.
[32] HUMBERT O, COCHET A, COUDERT B, et al. Role of positron emission tomography for the monitoring of response to therapy in breast cancer[J]. Oncologist,2015,20(2):94-104.
[33] STAFFORD S E, GRALOW J R, SCHUBERT E K, et al. Use of serial FDG PET to measure the response of bone-dominant breast cancer to therapy[J]. Acad Radiol,2002,9(8):913-921.
[34] DOSE S J, BADER M, JENICKE L, et al. Early prediction of response to chemotherapy in metastatic breast cancer using sequential 18F-FDG PET[J]. J Nucl Med,2005,46(7):1144-1150.
[35] COUTURIER O, JERUSALEM G, N'GUYEN J M, et al. Sequential positron emission tomography using[18F]fluorodeoxyglucose for monitoring response to chemotherapy in metastatic breast cancer[J]. Clin Cancer Res,2006,12(21):6437-6443.
[36] SHIMODA W, HAYASHI M, MURAKAMI K, et al. The relationship between FDG uptake in PET scans and biological behavior in breast cancer[J]. Breast Cancer,2007,14(3):260-268.
[37] AKIMOTO E, KADOYA T, KAJITANI K, et al. Role of 18F-PET/CT in predicting prognosis of patients with breast cancer after neoadjuvant chemotherapy[J]. Clin Breast Cancer,2017, pii:S1526-8209(17)30037-X.
[38] KIM T H, YOON J K, KANG D K, et al. Correlation between F-18 fluorodeoxyglucose positron emission tomography metabolic parameters and dynamic contrast-enhanced MRI-derived perfusion data in patients with invasive ductal breast carcinoma[J]. Ann Surg Oncol,2015,22(12):3866-3872.
[39] AOGI K, KADOYA T, SUGAWARA Y, et al. Utility of 18F FDG-PET/CT for predicting prognosis of luminal-type breast cancer[J]. Breast Cancer Res Treat,2015,150(1):209-217.
[40] NAKAJO M, KAJIYA Y, KANEKO T, et al. FDG PET/CT and diffusion-weighted imaging for breast cancer:prognostic value of maximum standardized uptake values and apparent diffusion coefficient values of the primary lesion[J]. Eur J Nucl Med Mol Imaging,2010,37(11):2011-2020.
[41] SONG B I, HONG C M, LEE H J, et al. Prognostic value of primary tumor uptake on F-18FDG PET/CT in patients with invasive ductal breast cancer[J]. Nucl Med Mol Imaging,2011,45(2):117-124.
[42] YUE Y, CUI X, BOSE S, et al. Stratifying triple-negative breast cancer prognosis using 18F-FDG-PET/CT imaging[J]. Breast Cancer Res Treat,2015,153(3):607-616.
[1] 许晶晶 等. 影像学在肿瘤精准医疗时代的机遇和挑战[J]. 浙江大学学报(医学版), 2017, 46(5): 455-461.
[2] 张思影 等. CT和磁共振参数反应图在肿瘤精准疗效评估中的研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 468-472.
[3] 潘瑶 等. 胰腺癌的影像学精准诊断与评估[J]. 浙江大学学报(医学版), 2017, 46(5): 462-467.
[4] 李爱静 等. 动态增强磁共振成像参照物模型定量参数与乳腺癌预后因素及分子病理分型的关系[J]. 浙江大学学报(医学版), 2017, 46(5): 505-510.
[5] 胡静 等. 记忆T细胞在行放射治疗的非小细胞肺癌患者中的表达及其预后预测价值[J]. 浙江大学学报(医学版), 2017, 46(5): 523-528.
[6] 王梦嫣 等. 耶氏肺孢子菌对磺胺类药物耐药相关基因突变的研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 563-569.
[7] 张美霞 等. 静脉溶栓获益的最大梗死体积阈值与急性缺血性卒中患者发病时间的关系[J]. 浙江大学学报(医学版), 2017, 46(4): 384-389.
[8] 李艳蝶 等. NLRP3炎症小体与儿童自身炎症性疾病研究进展[J]. 浙江大学学报(医学版), 2017, 46(4): 449-453.
[9] 赖针珍 等. 动态CT血管造影评估急性基底动脉闭塞患者侧支血流与再灌注治疗预后的关系[J]. 浙江大学学报(医学版), 2017, 46(4): 371-376.
[10] 冯学问 等. 急性缺血性卒中患者血管内治疗后应用替罗非班的安全性及预后分析[J]. 浙江大学学报(医学版), 2017, 46(4): 397-404.
[11] 陈志强 等. 不同量甲醛固定液对荧光原位杂交法检测乳腺原发性浸润癌HER2基因扩增的影响[J]. 浙江大学学报(医学版), 2017, 46(4): 439-444.
[12] 田华 等. CD97免疫表位对乳腺癌细胞株MDA-MB231生物学行为的影响[J]. 浙江大学学报(医学版), 2017, 46(4): 341-348.
[13] 王庆松 等. 基于CT灌注成像的侧支评分预测急性前循环大血管闭塞患者动脉取栓治疗预后的价值[J]. 浙江大学学报(医学版), 2017, 46(4): 377-383.
[14] 邹丽霞 等. 人源化白细胞介素-6受体抗体治疗全身型幼年特发性关节炎的疗效及安全性[J]. 浙江大学学报(医学版), 2017, 46(4): 421-426.
[15] 沈丹 等. 多囊卵巢综合征患者子代发生的远期改变[J]. 浙江大学学报(医学版), 2017, 46(3): 300-304.