Please wait a minute...
浙江大学学报(医学版)  2017, Vol. 46 Issue (5): 468-472    DOI: 10.3785/j.issn.1008-9292.2017.10.03
精准影像医学专题     
CT和磁共振参数反应图在肿瘤精准疗效评估中的研究进展
张思影, 陈峰
浙江大学医学院附属第一医院放射科, 浙江 杭州 310003
Research progress of CT/MRI parametric response map in precision evaluation of therapeutic response of cancer patients
ZHANG Siying, CHEN Feng
Department of Radiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
 全文: PDF(969 KB)  
摘要:

传统影像学方法在评估肿瘤疗效时忽略了肿瘤内部空间反应的异质性,而基于逐个体素分析的CT和磁共振参数反应图通过对比肿瘤治疗前与治疗后(中)的功能参数差异,能较及时、客观、准确地评价肿瘤对治疗的反应,提高了肿瘤治疗相关变化的影像监测及其空间分辨的敏感度,有助于患者治疗方案的改进和预后评估。本文主要对CT和磁共振参数反应图及其在肿瘤精准疗效评估中的研究进展进行综述。

关键词: 磁共振成像体层摄影术,X线计算机诊断显像治疗结果综述肿瘤图像解释,计算机辅助    
Abstract:

Intratumor spatial heterogeneity has been ignored in evaluating tumor therapeutic effect with conventional imaging methods. The voxel-based parametric response map (PRM) derived from CT or MRI may accurately, objectively and timely evaluate the tumor response to therapy, by comparing changes of the functional parameters before and after treatment. This approach may improve the imaging monitoring and the sensitivity of spatial resolution related to tumor changes after treatment. Thus, PRM may help to improve the treatment plan and prognosis evaluation for patients. This article reviews progress on CT/MRI PRM in precision evaluation of therapeutic response of cancer patients.

Key words: Tomography,X-ray computed    Image interpretation,computer-assisted    Neoplasms    Treatment outcome    Diagnostic imaging    Review    Magnetic resonance imaging
收稿日期: 2017-05-22 出版日期: 2017-10-25
CLC:  R445  
基金资助:

国家自然科学基金(30670603);浙江省医药卫生科技计划(2014PYA009)

通讯作者: 陈峰(1961-),男,博士,主任医师,博士生导师,主要从事医学分子影像学研究;E-mail:chenfenghz@zju.edu.cn;http://orcid.org/0000-0003-4402-4955     E-mail: chenfenghz@zju.edu.cn
作者简介: 张思影(1992-),女,硕士研究生,主要从事医学分子影像学研究;E-mail:21518003@zju.edu.cn;https://orcid.org/0000-0002-0052-2824
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张思影 等. CT和磁共振参数反应图在肿瘤精准疗效评估中的研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 468-472.

ZHANG Siying, CHEN Feng. Research progress of CT/MRI parametric response map in precision evaluation of therapeutic response of cancer patients. Journal of ZheJiang University(Medical Science), 2017, 46(5): 468-472.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2017.10.03        http://www.zjujournals.com/xueshu/med/CN/Y2017/V46/I5/468

[1] PADHANI A R, MILES K A. Multiparametric imaging of tumor response to therapy[J]. Radiology,2010,256(2):348-364.
[2] THOENY H C, DE KEYZER F, CHEN F, et al. Diffusion-weighted MR imaging in monitoring the effect of a vascular targeting agent on rhabdomyosarcoma in rats[J]. Radiology,2005,234(3):756-764.
[3] KANG Y, CHOI S H, KIM Y J, et al. Gliomas:Histogram analysis of apparent diffusion coefficient maps with standard-or high-b-value diffusion-weighted MR imaging-correlation with tumor grade[J]. Radiology,2011,261(3):882-890.
[4] FOZOUNI N, CHOPP M, NEJAD-DAVARANIS P, et al. Characterizing brain structures and remodeling after TBI based on information content, diffusion entropy[J/OL]. PLoS One,2013,8(10):e76343.
[5] BAEK H J, KIM H S, KIM N, et al. Percent change of perfusion skewness and kurtosis:a potential imaging biomarker for early treatment response in patients with newly diagnosed glioblastomas[J]. Radiology,2012,264(3):834-843.
[6] MOFFAT B A, CHENEVERT T L, LAWRENCE T S, et al. Functional diffusion map:a noninvasive MRI biomarker for early stratification of clinical brain tumor response[J]. Proc Natl Acad Sci U S A,2005,102(15):5524-5529.
[7] GALBÁN C J, CHENEVERT T L, MEYER C R, et al. The parametric response map is an imaging biomarker for early cancer treatment outcome[J]. Nat Med,2009,15(5):572-576.
[8] GALBÁN C J, MUKHERJI S K, CHENEVERT T L, et al. A feasibility study of parametric response map analysis of diffusion-weighted magnetic resonance imaging scans of head and neck cancer patients for providing early detection of therapeutic efficacy[J]. Transl Oncol,2009,2(3):184-190.
[9] ALIC L, VAN VLIET M, VAN DIJKE C F, et al. Heterogeneity in DCE-MRI parametric maps:a biomarker for treatment response?[J]. Phys Med Biol,2011,56(6):1601-1616.
[10] GALBÁN C J, CHENEVERT T L, MEYER C R, et al. Prospective analysis of parametric response map-derived MRI biomarkers:identification of early and distinct glioma response patterns not predicted by standard radiographic assessment[J]. Clin Cancer Res,2011,17(14):4751-4760.
[11] CHOI S J, KIM J, SEO J, et al. Parametric response mapping of dynamic CT as an imaging biomarker to distinguish viability of hepatocellular carcinoma treated with transcatheter arterial chemoembolization[J]. Abdom Imaging,2014,39(3):518-525.
[12] LI X, KANG H, ARLINGHAUSL R, et al. Analyzing spatial heterogeneity in DCE-and DW-MRI parametric maps to optimize prediction of pathologic response to neoadjuvant chemotherapy in breast cancer[J]. Transl Oncol,2014,7(1):14-22.
[13] LONGO D L, DASTRÙ W, CONSOLINO L, et al. Cluster analysis of quantitative parametric maps from DCE-MRI:application in evaluating heterogeneity of tumor response to antiangiogenic treatment[J]. Magn Reson Imaging,2015,33(6):725-736.
[14] CESCHIN R, KURLAND B F, ABBERBOCK S R, et al. Parametric response mapping of apparent diffusion coefficient as an imaging biomarker to distinguish pseudoprogression from true tumor progression in peptide-based vaccine therapy for pediatric diffuse intrinsic pontine glioma[J]. AJNR Am J Neuroradiol,2015,36(11):2170-2176.
[15] CHOI S J, KIM J, SEO J, et al. Parametric response mapping of dynamic CT for predicting intrahepatic recurrence of hepatocellular carcinoma after conventional transcatheter arterial chemoembolization[J]. Eur Radiol,2016,26(1):225-234.
[16] YOON R G, KIM H S, KIM D Y, et al. Apparent diffusion coefficient parametric response mapping MRI for follow-up of glioblastoma[J]. Eur Radiol,2016,26(4):1037-1047.
[17] KICKINGEREDER P, RADBRUCH A, BURTH S, et al. MR perfusion-derived hemodynamic parametric response mapping of bevacizumab efficacy in recurrent glioblastoma[J]. Radiology,2016,279(2):542-552.
[18] BAER A H, HOFF B A, SRINIVASAN A, et al. Feasibility analysis of the parametric response map as an early predictor of treatment efficacy in head and neck cancer[J]. AJNR Am J Neuroradiol,2015,36(4):757-762.
[19] HAMSTRA D A, CHENEVERT T L, MOFFAT B A, et al. Evaluation of the functional diffusion map as an early biomarker of time-to-progression and overall survival in high-grade glioma[J]. Proc Natl Acad Sci U S A,2005,102(46):16759-16764.
[20] JUST N. Improving tumour heterogeneity MRI assessment with histograms[J]. Br J Cancer,2014,111(12):2205-2213.
[21] AQUINO D, DI S A L, SCOTTI A, et al. Parametric response maps of perfusion MRI may identify recurrent glioblastomas responsive to bevacizumab and irinotecan[J/OL]. PLoS One,2014,9(3):e90535.
[22] LEMASSON B, GALBÁN C J, BOES J L, et al. Diffusion-weighted MRI as a biomarker of tumor radiation treatment response heterogeneity:a comparative study of whole-volume histogram analysis versus voxel-based functional diffusion map analysis[J]. Transl Oncol,2013,6(5):554-561.
[23] FINK J, BORN D, CHAMBERLAINM C. Pseudoprogression:relevance with respect to treatment of high-grade gliomas[J]. Curr Treat Options Oncol,2011,12(3):240-252.
[1] 许晶晶 等. 影像学在肿瘤精准医疗时代的机遇和挑战[J]. 浙江大学学报(医学版), 2017, 46(5): 455-461.
[2] 潘静颖 等. PET-CT与乳腺癌分子病理分型、治疗反应及预后的相关性研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 473-480.
[3] 杨荣 等. Molday IONTM EverGreen标记大鼠骨髓内皮祖细胞及体外磁共振成像研究[J]. 浙江大学学报(医学版), 2017, 46(5): 481-486.
[4] 傅立平 等. PET-CT诊断ⅠA2~ⅡA期宫颈癌原发灶和盆腔淋巴结转移的价值[J]. 浙江大学学报(医学版), 2017, 46(5): 517-522.
[5] 楼昭涵 等. 义乌市消化道恶性肿瘤空间格局分析[J]. 浙江大学学报(医学版), 2017, 46(5): 537-545.
[6] 叶红柔 等. 双气囊小肠镜和多层螺旋CT对小肠肿瘤的诊断价值[J]. 浙江大学学报(医学版), 2017, 46(5): 557-562.
[7] 潘瑶 等. 胰腺癌的影像学精准诊断与评估[J]. 浙江大学学报(医学版), 2017, 46(5): 462-467.
[8] 李爱静 等. 动态增强磁共振成像参照物模型定量参数与乳腺癌预后因素及分子病理分型的关系[J]. 浙江大学学报(医学版), 2017, 46(5): 505-510.
[9] 张格尔 等. 20例剖宫产术后瘢痕部位妊娠滋养细胞疾病回顾性分析[J]. 浙江大学学报(医学版), 2017, 46(5): 529-536.
[10] 卞巍 等. CT在诊断卵巢转移性肿瘤病理类型和转移灶来源中的应用价值[J]. 浙江大学学报(医学版), 2017, 46(5): 546-551.
[11] 裴磊 等. 磁共振平扫T1加权像脑内核团高信号与钆对比剂注射次数的相关性[J]. 浙江大学学报(医学版), 2017, 46(5): 487-491.
[12] 董飞 等. 磁共振成像强化信号特征预测胶质母细胞瘤EGFR基因扩增状态的影像组学研究[J]. 浙江大学学报(医学版), 2017, 46(5): 492-497.
[13] 王苏波 等. 动态对比增强磁共振药代动力学模型在鉴别富细胞型子宫平滑肌瘤中的应用[J]. 浙江大学学报(医学版), 2017, 46(5): 498-504.
[14] 邝平定 等. 双能量CT对非小细胞肺癌淋巴结转移的诊断价值[J]. 浙江大学学报(医学版), 2017, 46(5): 511-516.
[15] 王梦嫣 等. 耶氏肺孢子菌对磺胺类药物耐药相关基因突变的研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 563-569.