Please wait a minute...
浙江大学学报(医学版)  2017, Vol. 46 Issue (5): 455-461    DOI: 10.3785/j.issn.1008-9292.2017.10.01
许晶晶, 谭延斌, 张敏鸣
浙江大学医学院附属第二医院放射科, 浙江 杭州 310009
Medical imaging in tumor precision medicine: opportunities and challenges
XU Jingjing, TAN Yanbin, ZHANG Minming
Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
 全文: PDF(932 KB)  


关键词: 肿瘤人工智能诊断显像综述治疗,计算机辅助基因组学    

Tumor precision medicine is an emerging approach for tumor diagnosis, treatment and prevention, which takes account of individual variability of environment, lifestyle and genetic information. Tumor precision medicine is built up on the medical imaging innovations developed during the past decades, including the new hardware, new imaging agents, standardized protocols, image analysis and multimodal imaging fusion technology. Also the development of automated and reproducible analysis algorithm has extracted large amount of information from image-based features. With the continuous development and mining of tumor clinical and imaging databases, the radiogenomics, radiomics and artificial intelligence have been flourishing. Therefore, these new technological advances bring new opportunities and challenges to the application of imaging in tumor precision medicine.

Key words: Artificial intelligence    Therapy,computer-assisted    Diagnostic imaging    Review    Genomics    Neoplasms
收稿日期: 2017-09-30 出版日期: 2017-10-25
CLC:  R445  


通讯作者: 张敏鸣(1957-),女,博士,教授,主任医师,博士生导师,主要从事神经退行性疾病的多模态影像和肿瘤精准影像学研究;;     E-mail:
作者简介: 许晶晶(1985-),女,博士研究生,主治医师,主要从事放射诊断和研究;;
E-mail Alert


许晶晶 等. 影像学在肿瘤精准医疗时代的机遇和挑战[J]. 浙江大学学报(医学版), 2017, 46(5): 455-461.

XU Jingjing, TAN Yanbin, ZHANG Minming. Medical imaging in tumor precision medicine: opportunities and challenges. Journal of ZheJiang University(Medical Science), 2017, 46(5): 455-461.


[1] GARRAWAY L A, VERWEIJ J, BALLMAN K V. Precision oncology:an overview[J]. J Clin Onc,2013,31(15):1803-1805.
[2] MENDELSOHN J. Personalizing oncology:perspectives and prospects[J]. J Clin Oncol,2013,31(15):1904-1911.
[3] CHEN C, HE M, ZHU Y, et al. Five critical elements to ensure the precision medicine[J]. Cancer Metastasis Rev,2015,34(2):313-318.
[4] ABRAMS J, CONLEY B, MOONEY M, et al. National Cancer Institute's Precision Medicine Initiatives for the new National Clinical Trials Network[J]. Am Soc Clin Oncol Educ Book,2014:71-76.
[5] FASS L. Imaging and cancer:a review[J]. Mol Oncol,2008,2(2):115-152.
[6] RENZ D M, BÖTTCHER J, DIEKMANN F, et al. Detection and classification of contrast-enhancing masses by a fully automatic computer-assisted diagnosis system for breast MRI[J]. J Magn Reson Imaging,2012,35(5):1077-1088.
[7] ZENG J Y, YE H H, YANG S X, et al. Clinical application of a novel computer-aided detection system based on three-dimensional CT images on pulmonary nodule[J]. Int J Clin Exp Med,2015,8(9):16077-16082.
[8] WANG S Y, CHEN X X, LI Y, et al. Application of multimodality imaging fusion technology in diagnosis and treatment of malignant tumors under the precision medicine plan[J]. Chin Med J (Engl),2016,129(24):2991-2997.
[9] RUTMAN A M, KUO M D. Radiogenomics:creating a link between molecular diagnostics and diagnostic imaging[J]. Eur J Radiol,2009,70(2):232-241.
[10] SEGAL E, SIRLIN C B, OOI C, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging[J]. Nat Biotechnol,2007,25(6):675-680.
[11] HOBBS S K, SHI G, HOMER R, et al. Magnetic resonance image-guided proteomics of human glioblastoma multiforme[J]. J Magn Reson Imaging,2003,18(5):530-536.
[12] DIEHN M, NARDINI C, WANG D S, et al. Identification of noninvasive imaging surrogates for brain tumor gene-expression modules[J]. Proc Natl Acad Sci U S A,2008,105(13):5213-5218.
[13] CAMPBELL P J, YACHIDA S, MUDIE L J, et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer[J]. Nature,2010,467(7319):1109-1113.
[14] KUO M D, GOLLUB J, SIRLIN C B, et al. Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma[J]. J Vasc Interv Radiol,2007,18(7):821-831.
[15] RIZZO S, PETRELLA F, BUSCARINO V, et al. CT radiogenomic characterization of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer[J]. Eur Radiol,2016,26(1):32-42.
[16] PAEZ J G, JÄNNE P A, LEE J C, et al. EGFR mutations in lung cancer:correlation with clinical response to gefitinib therapy[J]. Science,2004,304(5676):1497-1500.
[17] GEVAERT O, XU J, HOANG C D, et al. Non-small cell lung cancer:identifying prognostic imaging biomarkers by leveraging public gene expression microarray data-methods and preliminary results[J]. Radiology,2012,264(2):387-396.
[18] GROSSMANN P, GUTMAN D A, DUNN W D, et al. Imaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in Glioblastoma[J]. BMC Cancer,2016,16:611.
[19] AERTS H J, VELAZQUEZ E R, LEIJENAAR R T, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nat Commun,2014,5:4006.
[20] LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics:extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer,2012,48(4):441-446.
[21] KUMAR V, GU Y, BASU S, et al. Radiomics:the process and the challenges[J]. Magn Reson Imaging,2012,30(9):1234-1248.
[22] GILLIES R J, KINAHAN P E, HRICAK H. Radiomics:images are more than pictures, they are data[J]. Radiology,2016,278(2):563-577.
[23] O'CONNOR O J, PRAKASH P, CRONIN C G, et al. PET/CT in the imaging of ovarian cancer[J]. Front Biosci (Elite Ed),2013,5:141-153.
[24] FAVE X, MACKIN D, YANG J, et al. Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer?[J]. Med Phys,2015,42(12):6784-6797.
[25] GAO X, CHU C, LI Y, et al. The method and efficacy of support vector machine classifiers based on texture features and multi-resolution histogram from (18)F-FDG PET-CT images for the evaluation of mediastinal lymph nodes in patients with lung cancer[J]. Eur J Radiol,2015,84(2):312-317.
[26] EL NAQA I, GRIGSBY P, APTE A, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes[J]. Pattern Recognit,2009,42(6):1162-1171.
[27] VAN ROSSUM P S, FRIED D V, ZHANG L, et al. The incremental value of subjective and quantitative assessment of 18F-FDG PET for the prediction of pathologic complete response to preoperative chemoradiotherapy in esophageal cancer[J]. J Nucl Med,2016,57(5):691-700.
[28] HUANG Y Q, LIANG C H, HE L, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer[J]. J Clin Oncol,2016,34(18):2157-2164.
[29] LI H, ZHU Y, BURNSIDE E S, et al. MR imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of MammaPrint, Oncotype DX, and PAM50 gene assays[J]. Radiology,2016,281(2):382-391.
[30] HUANG Y, LIU Z, HEL, et al. Radiomics signature:a potential biomarker for the prediction of disease-free survival in early-stage (I or Ⅱ) non-small cell lung cancer[J]. Radiology,2016,281(3):947-957.
[31] HAWKINS S, WANG H, LIU Y, et al. Predicting malignant nodules from screening CT scans[J]. J Thorac Oncol,2016,11(12):2120-2128.
[32] ROBERTSON S P, QUON H, KIESS A P, et al. A data-mining framework for large scale analysis of dose-outcome relationships in a database of irradiated head and neck cancer patients[J]. Med Phys,2015,42(7):4329-4337.
[33] DREYER K J, GEIS J R. When machines think:radiology's next frontier[J]. Radiology,2017,285(3):713-718.
[34] BIBAULT J E, GIRAUD P, BURGUN A. Big data and machine learning in radiation oncology:state of the art and future prospects[J]. Cancer Lett,2016,382(1):110-117.
[35] KANG J, SCHWARTZ R, FLICKINGER J, et al. Machine learning approaches for predicting radiation therapy outcomes:a clinician's perspective[J]. Int J Radiat Oncol Biol Phys,2015,93(5):1127-1135.
[36] SHIN H C, ROTH H R, GAO M, et al. Deep convolutional neural networks for computer-aided detection:CNN architectures, dataset characteristics and transfer learning[J]. IEEE Trans Med Imaging,2016,35(5):1285-1298.
[37] GULLIFORD S L, WEBB S, ROWBOTTOM C G, et al. Use of artificial neural networks to predict biological outcomes for patients receiving radical radiotherapy of the prostate[J]. Radiother Oncol,2004,71(1):3-12.
[38] CRUZ J A, WISHART D S. Applications of machine learning in cancer prediction and prognosis[J]. Cancer Inform,2007,2:59-77.
[39] SHEN D, WU G, SUK H I. Deep learning in medical image analysis[J]. Annu Rev Biomed Eng,2017,19:221-248.
[40] ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature,2017,542(7639):115-118.
[41] HAZLETT H C, GU H, MUNSELL B C,et al. Early brain development in infants at high risk for autism spectrum disorder[J]. Nature,2017,542(7641):348-351.
[42] SHEN W, ZHOU M, YANG F, et al. Multi-scale convolutional neural networks for lung nodule classification[J]. Inf Process Med Imaging,2015,24:588-599.
[43] PELLA A, CAMBRIA R, RIBOLDI M, et al. Use of machine learning methods for prediction of acute toxicity in organs at risk following prostate radiotherapy[J]. Med Phys,2011,38(6):2859-2867.
[44] ZHOU M, SCOTT J, CHAUDHURY B, et al. Radiomics in brain tumor:image assessment, quantitative feature descriptors, and machine-learning approaches[J]. AJNR Am J Neuroradiol,2017.[Epub ahead of print]
[45] CHEN R C, GABRIEL P E, KAVANAGH B D, et al. How will big data impact clinical decision making and precision medicine in radiation therapy?[J]. Int J Radiat Oncol Biol Phys,2016,95(3):880-884.
[46] JIANG Y, MA D, SEIBERLICH N, et al. MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout[J]. Magn Reson Med,2015,74(6):1621-1631.
[47] CHRISTEN T, PANNETIER N A, NI W W, et al. MR vascular fingerprinting:a new approach to compute cerebral blood volume, mean vessel radius, and oxygenation maps in the human brain[J]. Neuroimage,2014,89:262-270.
[48] European Society of Radiology (ESR). Magnetic Resonance Fingerprinting-a promising new approach to obtain standardized imaging biomarkers from MRI[J]. Insights Imaging,2015,6(2):163-165.
[49] BADVE C, YU A, DASTMALCHIAN S, et al. MR Fingerprinting of Adult Brain Tumors:Initial Experience[J]. AJNR Am J Neuroradiol,2017,38(3):492-499.
[1] 潘静颖 等. PET-CT与乳腺癌分子病理分型、治疗反应及预后的相关性研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 473-480.
[2] 傅立平 等. PET-CT诊断ⅠA2~ⅡA期宫颈癌原发灶和盆腔淋巴结转移的价值[J]. 浙江大学学报(医学版), 2017, 46(5): 517-522.
[3] 楼昭涵 等. 义乌市消化道恶性肿瘤空间格局分析[J]. 浙江大学学报(医学版), 2017, 46(5): 537-545.
[4] 叶红柔 等. 双气囊小肠镜和多层螺旋CT对小肠肿瘤的诊断价值[J]. 浙江大学学报(医学版), 2017, 46(5): 557-562.
[5] 张思影 等. CT和磁共振参数反应图在肿瘤精准疗效评估中的研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 468-472.
[6] 潘瑶 等. 胰腺癌的影像学精准诊断与评估[J]. 浙江大学学报(医学版), 2017, 46(5): 462-467.
[7] 李爱静 等. 动态增强磁共振成像参照物模型定量参数与乳腺癌预后因素及分子病理分型的关系[J]. 浙江大学学报(医学版), 2017, 46(5): 505-510.
[8] 张格尔 等. 20例剖宫产术后瘢痕部位妊娠滋养细胞疾病回顾性分析[J]. 浙江大学学报(医学版), 2017, 46(5): 529-536.
[9] 卞巍 等. CT在诊断卵巢转移性肿瘤病理类型和转移灶来源中的应用价值[J]. 浙江大学学报(医学版), 2017, 46(5): 546-551.
[10] 董飞 等. 磁共振成像强化信号特征预测胶质母细胞瘤EGFR基因扩增状态的影像组学研究[J]. 浙江大学学报(医学版), 2017, 46(5): 492-497.
[11] 王苏波 等. 动态对比增强磁共振药代动力学模型在鉴别富细胞型子宫平滑肌瘤中的应用[J]. 浙江大学学报(医学版), 2017, 46(5): 498-504.
[12] 邝平定 等. 双能量CT对非小细胞肺癌淋巴结转移的诊断价值[J]. 浙江大学学报(医学版), 2017, 46(5): 511-516.
[13] 王梦嫣 等. 耶氏肺孢子菌对磺胺类药物耐药相关基因突变的研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 563-569.
[14] 姜贻乾 等. 微小RNA-29b对乳腺癌细胞增殖和迁移的影响及其分子生物学机制[J]. 浙江大学学报(医学版), 2017, 46(4): 349-356.
[15] 王海凤 等. CXC趋化因子受体4通过S期激酶相关蛋白2调控乳腺癌细胞周期的机制[J]. 浙江大学学报(医学版), 2017, 46(4): 357-363.