精准影像医学专题 |
|
|
|
|
影像学在肿瘤精准医疗时代的机遇和挑战 |
许晶晶, 谭延斌, 张敏鸣 |
浙江大学医学院附属第二医院放射科, 浙江 杭州 310009 |
|
Medical imaging in tumor precision medicine: opportunities and challenges |
XU Jingjing, TAN Yanbin, ZHANG Minming |
Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China |
[1] |
GARRAWAY L A, VERWEIJ J, BALLMAN K V. Precision oncology:an overview[J]. J Clin Onc,2013,31(15):1803-1805.
|
[2] |
MENDELSOHN J. Personalizing oncology:perspectives and prospects[J]. J Clin Oncol,2013,31(15):1904-1911.
|
[3] |
CHEN C, HE M, ZHU Y, et al. Five critical elements to ensure the precision medicine[J]. Cancer Metastasis Rev,2015,34(2):313-318.
|
[4] |
ABRAMS J, CONLEY B, MOONEY M, et al. National Cancer Institute's Precision Medicine Initiatives for the new National Clinical Trials Network[J]. Am Soc Clin Oncol Educ Book,2014:71-76.
|
[5] |
FASS L. Imaging and cancer:a review[J]. Mol Oncol,2008,2(2):115-152.
|
[6] |
RENZ D M, BÖTTCHER J, DIEKMANN F, et al. Detection and classification of contrast-enhancing masses by a fully automatic computer-assisted diagnosis system for breast MRI[J]. J Magn Reson Imaging,2012,35(5):1077-1088.
|
[7] |
ZENG J Y, YE H H, YANG S X, et al. Clinical application of a novel computer-aided detection system based on three-dimensional CT images on pulmonary nodule[J]. Int J Clin Exp Med,2015,8(9):16077-16082.
|
[8] |
WANG S Y, CHEN X X, LI Y, et al. Application of multimodality imaging fusion technology in diagnosis and treatment of malignant tumors under the precision medicine plan[J]. Chin Med J (Engl),2016,129(24):2991-2997.
|
[9] |
RUTMAN A M, KUO M D. Radiogenomics:creating a link between molecular diagnostics and diagnostic imaging[J]. Eur J Radiol,2009,70(2):232-241.
|
[10] |
SEGAL E, SIRLIN C B, OOI C, et al. Decoding global gene expression programs in liver cancer by noninvasive imaging[J]. Nat Biotechnol,2007,25(6):675-680.
|
[11] |
HOBBS S K, SHI G, HOMER R, et al. Magnetic resonance image-guided proteomics of human glioblastoma multiforme[J]. J Magn Reson Imaging,2003,18(5):530-536.
|
[12] |
DIEHN M, NARDINI C, WANG D S, et al. Identification of noninvasive imaging surrogates for brain tumor gene-expression modules[J]. Proc Natl Acad Sci U S A,2008,105(13):5213-5218.
|
[13] |
CAMPBELL P J, YACHIDA S, MUDIE L J, et al. The patterns and dynamics of genomic instability in metastatic pancreatic cancer[J]. Nature,2010,467(7319):1109-1113.
|
[14] |
KUO M D, GOLLUB J, SIRLIN C B, et al. Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma[J]. J Vasc Interv Radiol,2007,18(7):821-831.
|
[15] |
RIZZO S, PETRELLA F, BUSCARINO V, et al. CT radiogenomic characterization of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer[J]. Eur Radiol,2016,26(1):32-42.
|
[16] |
PAEZ J G, JÄNNE P A, LEE J C, et al. EGFR mutations in lung cancer:correlation with clinical response to gefitinib therapy[J]. Science,2004,304(5676):1497-1500.
|
[17] |
GEVAERT O, XU J, HOANG C D, et al. Non-small cell lung cancer:identifying prognostic imaging biomarkers by leveraging public gene expression microarray data-methods and preliminary results[J]. Radiology,2012,264(2):387-396.
|
[18] |
GROSSMANN P, GUTMAN D A, DUNN W D, et al. Imaging-genomics reveals driving pathways of MRI derived volumetric tumor phenotype features in Glioblastoma[J]. BMC Cancer,2016,16:611.
|
[19] |
AERTS H J, VELAZQUEZ E R, LEIJENAAR R T, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach[J]. Nat Commun,2014,5:4006.
|
[20] |
LAMBIN P, RIOS-VELAZQUEZ E, LEIJENAAR R, et al. Radiomics:extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer,2012,48(4):441-446.
|
[21] |
KUMAR V, GU Y, BASU S, et al. Radiomics:the process and the challenges[J]. Magn Reson Imaging,2012,30(9):1234-1248.
|
[22] |
GILLIES R J, KINAHAN P E, HRICAK H. Radiomics:images are more than pictures, they are data[J]. Radiology,2016,278(2):563-577.
|
[23] |
O'CONNOR O J, PRAKASH P, CRONIN C G, et al. PET/CT in the imaging of ovarian cancer[J]. Front Biosci (Elite Ed),2013,5:141-153.
|
[24] |
FAVE X, MACKIN D, YANG J, et al. Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer?[J]. Med Phys,2015,42(12):6784-6797.
|
[25] |
GAO X, CHU C, LI Y, et al. The method and efficacy of support vector machine classifiers based on texture features and multi-resolution histogram from (18)F-FDG PET-CT images for the evaluation of mediastinal lymph nodes in patients with lung cancer[J]. Eur J Radiol,2015,84(2):312-317.
|
[26] |
EL NAQA I, GRIGSBY P, APTE A, et al. Exploring feature-based approaches in PET images for predicting cancer treatment outcomes[J]. Pattern Recognit,2009,42(6):1162-1171.
|
[27] |
VAN ROSSUM P S, FRIED D V, ZHANG L, et al. The incremental value of subjective and quantitative assessment of 18F-FDG PET for the prediction of pathologic complete response to preoperative chemoradiotherapy in esophageal cancer[J]. J Nucl Med,2016,57(5):691-700.
|
[28] |
HUANG Y Q, LIANG C H, HE L, et al. Development and validation of a radiomics nomogram for preoperative prediction of lymph node metastasis in colorectal cancer[J]. J Clin Oncol,2016,34(18):2157-2164.
|
[29] |
LI H, ZHU Y, BURNSIDE E S, et al. MR imaging radiomics signatures for predicting the risk of breast cancer recurrence as given by research versions of MammaPrint, Oncotype DX, and PAM50 gene assays[J]. Radiology,2016,281(2):382-391.
|
[30] |
HUANG Y, LIU Z, HEL, et al. Radiomics signature:a potential biomarker for the prediction of disease-free survival in early-stage (I or Ⅱ) non-small cell lung cancer[J]. Radiology,2016,281(3):947-957.
|
[31] |
HAWKINS S, WANG H, LIU Y, et al. Predicting malignant nodules from screening CT scans[J]. J Thorac Oncol,2016,11(12):2120-2128.
|
[32] |
ROBERTSON S P, QUON H, KIESS A P, et al. A data-mining framework for large scale analysis of dose-outcome relationships in a database of irradiated head and neck cancer patients[J]. Med Phys,2015,42(7):4329-4337.
|
[33] |
DREYER K J, GEIS J R. When machines think:radiology's next frontier[J]. Radiology,2017,285(3):713-718.
|
[34] |
BIBAULT J E, GIRAUD P, BURGUN A. Big data and machine learning in radiation oncology:state of the art and future prospects[J]. Cancer Lett,2016,382(1):110-117.
|
[35] |
KANG J, SCHWARTZ R, FLICKINGER J, et al. Machine learning approaches for predicting radiation therapy outcomes:a clinician's perspective[J]. Int J Radiat Oncol Biol Phys,2015,93(5):1127-1135.
|
[36] |
SHIN H C, ROTH H R, GAO M, et al. Deep convolutional neural networks for computer-aided detection:CNN architectures, dataset characteristics and transfer learning[J]. IEEE Trans Med Imaging,2016,35(5):1285-1298.
|
[37] |
GULLIFORD S L, WEBB S, ROWBOTTOM C G, et al. Use of artificial neural networks to predict biological outcomes for patients receiving radical radiotherapy of the prostate[J]. Radiother Oncol,2004,71(1):3-12.
|
[38] |
CRUZ J A, WISHART D S. Applications of machine learning in cancer prediction and prognosis[J]. Cancer Inform,2007,2:59-77.
|
[39] |
SHEN D, WU G, SUK H I. Deep learning in medical image analysis[J]. Annu Rev Biomed Eng,2017,19:221-248.
|
[40] |
ESTEVA A, KUPREL B, NOVOA R A, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature,2017,542(7639):115-118.
|
[41] |
HAZLETT H C, GU H, MUNSELL B C,et al. Early brain development in infants at high risk for autism spectrum disorder[J]. Nature,2017,542(7641):348-351.
|
[42] |
SHEN W, ZHOU M, YANG F, et al. Multi-scale convolutional neural networks for lung nodule classification[J]. Inf Process Med Imaging,2015,24:588-599.
|
[43] |
PELLA A, CAMBRIA R, RIBOLDI M, et al. Use of machine learning methods for prediction of acute toxicity in organs at risk following prostate radiotherapy[J]. Med Phys,2011,38(6):2859-2867.
|
[44] |
ZHOU M, SCOTT J, CHAUDHURY B, et al. Radiomics in brain tumor:image assessment, quantitative feature descriptors, and machine-learning approaches[J]. AJNR Am J Neuroradiol,2017.[Epub ahead of print]
|
[45] |
CHEN R C, GABRIEL P E, KAVANAGH B D, et al. How will big data impact clinical decision making and precision medicine in radiation therapy?[J]. Int J Radiat Oncol Biol Phys,2016,95(3):880-884.
|
[46] |
JIANG Y, MA D, SEIBERLICH N, et al. MR fingerprinting using fast imaging with steady state precession (FISP) with spiral readout[J]. Magn Reson Med,2015,74(6):1621-1631.
|
[47] |
CHRISTEN T, PANNETIER N A, NI W W, et al. MR vascular fingerprinting:a new approach to compute cerebral blood volume, mean vessel radius, and oxygenation maps in the human brain[J]. Neuroimage,2014,89:262-270.
|
[48] |
European Society of Radiology (ESR). Magnetic Resonance Fingerprinting-a promising new approach to obtain standardized imaging biomarkers from MRI[J]. Insights Imaging,2015,6(2):163-165.
|
[49] |
BADVE C, YU A, DASTMALCHIAN S, et al. MR Fingerprinting of Adult Brain Tumors:Initial Experience[J]. AJNR Am J Neuroradiol,2017,38(3):492-499.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|