Please wait a minute...
浙江大学学报(医学版)  2017, Vol. 46 Issue (4): 449-453    DOI: 10.3785/j.issn.1008-9292.2017.08.17
综述     
NLRP3炎症小体与儿童自身炎症性疾病研究进展
李艳蝶, 卢美萍
浙江大学医学院附属儿童医院风湿免疫变态反应科, 浙江 杭州 310003
Progress on the study of NLRP3 inflammasome in autoinflammatory diseases of children
LI Yandie, LU Meiping
Department of Rheumatology Immunology & Allergy, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
 全文: PDF(975 KB)  
摘要:

儿童自身炎症性疾病(AID)是难治性疾病之一,发病机制尚未完全明确。近年来大量研究表明,NLRP3炎症小体失调在儿童AID的发生、发展中具有重要作用。NLRP3炎症小体是细胞内的一种多蛋白复合物,它能激活半胱氨酸天冬氨酸特异蛋白酶1(caspase-1),进一步促进炎症因子IL-1β和IL-18的成熟和分泌,从而促进细胞凋亡,调节固有免疫应答。IL-1受体拮抗剂(Anakinra)和IL-1β单克隆抗体(Canakinumab)治疗儿童AID取得了较好的疗效。本文就NLRP3炎症小体在该类疾病发病机制中的研究进展作一综述。

关键词: 多蛋白复合物自身免疫疾病白细胞介素1β染色体障碍综述    
Abstract:

Autoinflammatory diseases (AID) in childhood is one of refractory diseases, whose pathogenesis is not completely clear. In recent years, a large number of studies have shown that NLRP3 inflammasome plays an important role in the development of AIDs in children. Inflammasome is a cytosolic multiprotein complex that can activate cysteinyl aspartate-specific protease-1 (caspase-1), to further promote the maturation and secretion of proinflammatory cytokines IL-1β and IL-18 as well as pyroptosis and regulate innate immune response. IL-1 receptor antagonist (Anakinra) and IL-1β monoclonal antibody (Canakinumab) have good therapeutic effects in children with AIDs. This article reviews the research progress of NLRP3 inflammasome in the pathogenesis of autoinflammatory diseases.

Key words: Multiprotein complexes    Autoimmune diseases    Interleukin-1 beta    Chromosome disorders    Review
收稿日期: 2017-04-28 出版日期: 2017-08-25
CLC:  R725.9  
基金资助:

浙江省科学技术厅公益性技术应用研究计划(2013C37025)

通讯作者: 卢美萍(1966-),女,博士,主任医师,博士生导师,主要从事呼吸系统、风湿免疫过敏性疾病研究;E-mail:meipinglu@zju.edu.cn;http://orcid.org/0000-0002-3264-6397     E-mail: meipinglu@zju.edu.cn
作者简介: 李艳蝶(1990-),女,硕士研究生,主要从事风湿免疫过敏性疾病研究;E-mail:21518290@zju.edu.cn;http://orcid.org/0000-0003-2082-6101
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李艳蝶 等. NLRP3炎症小体与儿童自身炎症性疾病研究进展[J]. 浙江大学学报(医学版), 2017, 46(4): 449-453.

LI Yandie, LU Meiping. Progress on the study of NLRP3 inflammasome in autoinflammatory diseases of children. Journal of ZheJiang University(Medical Science), 2017, 46(4): 449-453.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2017.08.17        http://www.zjujournals.com/xueshu/med/CN/Y2017/V46/I4/449

[1] ÁLVAREZ-ERRICO D, VENTO-TORMO R, BALLESTAR E. Genetic and epigenetic determinants in autoinflammatory diseases[J]. Front Immunol,2017,8:318.
[2] PARK H, BOURLA A B, KASTNER D L, et al.Lighting the fires within:the cell biology of autoinflammatory diseases[J]. Nat Rev Immunol,2012,12(8):570-580.
[3] 李冀,宋红梅.自身炎症性疾病分类[J]. 协和医学杂志,2014,5(4):450-454. LI Ji, SONG Hongmei. Classification of inflammatory diseases[J]. Medical Journal of Peking Union Medical College Hospital,2014,5(4):450-454. (in Chinese)
[4] HOFFMAN H M, BRODERICK L. The role of the inflammasome in patients with autoinflammatory diseases[J]. J Allergy Clin Immunol,2016,138(1):3-14.
[5] TONG Y, DING Z H, ZHAN F X, et al. The NLRP3 inflammasome and stroke[J]. Int J Clin Exp Med,2015,8(4):4787-4794.
[6] KANG M J, JO S G, KIM D J, et al.NLRP3 inflammasome mediates interleukin-1beta production in immune cells in response to Acinetobacter baumannii and contributes to pulmonary inflammation in mice[J]. Immunology,2017,150(4):495-505.
[7] CUSH J J. Autoinflammatory syndromes[J]. Dermatol Clin,2013,31(3):471-480.
[8] AKSENTIJEVICH I, NOWAK M, MALLAH M, et al. De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory dis-ease (NOMID):a new member of the expanding family of pyrin-associated autoinflammatory diseases[J]. Arthritis Rheum,2012,46(12):3340-3348.
[9] EROGLU F K, KASAPCOPUR O, BESBASN, et al. Genetic and clinical features of cryopyrin-associated periodic syndromes in Turkish children[J]. Clin Exp Rheumatol,2016,34(6 Suppl 102):S115-S120.
[10] SARRABAY G, GRANDEMANGE S, TOUITOU I. Diagnosis of cryopyrin-associated periodic syndrome:challenges, recommendations and emerging concepts[J]. Expert Rev Clin Immunol,2015,11(7):827-835.
[11] NAKAGAWA K, GONZALEZ-ROCA E, SOUTO A, et al. Somatic NLRP3 mosaicism in Muckle-Wells syndrome. A genetic mechanism shared by different phenotypes of cryopyrin-associated periodic syndromes[J]. Ann Rheum Dis,2015,74(3):603-610.
[12] MENSA-VILARO A, TERESA B M, MAGRI G, et al. Brief report:late-onset cryopyrin-associated periodic syndrome due to myeloid-restricted somatic NLRP3 mosaicism[J]. Arthritis Rheumatol,2016,68(12):3035-3041.
[13] BRODERICK L, DE NARDO D, FRANKLIN B S, et al. The inflammasomes and autoinflammatory syndromes[J]. Annu Rev Pathol,2015,10:395-424.
[14] NAZ V E, CARO G D, PINEDOi M F, et al. Muckle-Wells syndrome:a case report with an NLRP3 T348M mutation[J]. Pediatr Dermatol,2016,33(5):e311-e314.
[15] HU J, ZHU Y, ZHANG J Z, et al. A novel mutation in the pyrin domain of the NOD-like receptor family pyrin domain containing protein 3 in Muckle-Wells syndrome[J]. Chin Med J (Engl),2017,130(5):586-593.
[16] STOJANOV S, WEISS M, LOHSE P, et al. A novel CIAS1 mutation and plasma/cerebrospinal fluid cytokine profile in a German patient with neonatal-onset multisystem inflammatory disease responsive to methotrexate therapy[J]. Pediatrics,2004,114(1):e124-e127.
[17] YU J R, LESLIE K S. Cryopyrin-associated periodic syndrome:an update on diagnosis and treatment response[J]. Curr Allergy Asthma Rep,2011,11(1):12-20.
[18] FINETTI M, OMENETTI A, FEDERICI S, et al. Chronic infantile neurological cutaneous and articular (CINCA) syndrome:a review[J]. Orphanet J Rare Dis,2016,11(1):167-177.
[19] NEVEN B, PRIEUR A M, QUARTIER DIT MAIRE P. Cryopyrinopathies:update on pathogenesis and treatment[J]. Nat Clin Pract Rheumatol,2008,4(9):481-489.
[20] ALGHAMDI M. Familial Mediterranean fever, review of the literature[J]. Clin Rheumatol,2017,36(8):1707-1713.
[21] REPA A, BERTSIAS G K, PETRAKI E, et al. Dysregulated production of interleukin-1beta upon activation of the NLRP3 inflammasome in patients with familial Mediterranean fever[J]. Hum Immunol,2015,76(7):488-495.
[22] MITROULIS I, KOURTZELIS I, KAMBAS K, et al. Evidence for the involvement of mTOR inhibition and basal autophagy in familial Mediterranean fever phenotype[J]. Hum Immunol,2011,72(2):135-138.
[23] TIMERMAN D, FRANK N Y. Novel double heterozygous mutations in MEFV and NLRP3 genes in a patient with familial Mediterranean fever[J]. J Clin Rheumatol,2013,19(8):452-453.
[24] CHAE J J, CHO Y H, LEE G S, et al. Gain-of-function Pyrin mutations induce NLRP3 protein-independent interleukin-1β activation and severe autoinflammation in mice[J]. Immunity,2011,34(5):755-768.
[25] MANUKYAN G, PETREK M, NAVRATILOVA Z, et al. Transcriptional activity of neutrophils exposed to high doses of colchicine:short communication[J]. J Biol Regul Homeost Agents,2015,29(1):125-130.
[26] BEN-ZVI I, KUKUY O, GIAT E, et al. Anakinra for colchicine-resistant familial mediterranean fever:a randomized, double-blind, placebo-controlled trial[J]. Arthritis Rheumatol,2017,69(4):854-862.
[27] HERSH A O, PRAHALAD S. Immunogenetics of juvenile idiopathic arthritis:a com prehensive review[J]. J Autoimmun,2015,64(1):113-124.
[28] TADAKI H, SAITSU H, NISHIMURA-TDAKI A, et al. De novo 19q13.42 duplications involving NLRP gene cluster in a patient with systemic-onset juvenile idiopathic arthritis[J]. J Hum Genet,2011,56(5):343-347.
[29] HAYEM F, HAYEM G. Still's disease and the mitochondrion:the other face of an old friend?[J]. Med Hypotheses,2012,79(2):136-137.
[30] OHNISHI H, TERAMOTO T, IWATA H, et al. Characterization of NLRP3 variants in Japanese cryopyrin-associated periodic syndrome patients[J]. J Clin Immunol,2012,32(2):221-229.
[31] YANG C A, HUANG S T, CHANG B L. Association of NLRP3 and CARD8 genetic polymorphisms with juvenile idiopathic arthritis in a Taiwanese population[J]. Scand J Rheumatol,2014,43(2):146-152.
[32] DAY T G, RAMANAN A V, HINKS A, et al. Autoinflammatory genes and susceptibility to psoriatic juvenile idiopathic arthritis[J]. Arthritis Rheum,2008,58(7):2142-2146.
[33] LAMOT L, BOROVECKI F, TAMBIC B L, et al. Aberrant expression of shared master-key genes contributes to the immunopathogenesis in patients with juvenile spondyloarthritis[J/OL]. PLoS One,2014,9(12):e115416.
[34] HORNEFF G, PEITZ J, KEKOW J, et al.Canakinumab for first line steroid-free treatment in a child with systemic-onset juvenile idiopathic arthritis[J]. Scand J Rheumatol,2017:1-2.
[35] LORDEN G, GARCIA S I, PABLO N, et al. Lipin-2 regulates NLRP3 inflammasome by affecting P2X7 receptor activation[J]. Exp Med,2017,214(2):511-528.
[36] SCIANARO R, INSALACO A, LAUDIERO L B, et al. Deregulation of the IL-1β axis in chronic recurrent multifocal osteomyelitis[J]. Pediatr Rheumatol,2014,12(30):1-6.
[37] HERLIN T, FⅡGAARD B, BJERRE M, et al.Efficacy of anti-IL-1 treatment in Majeed syndrome[J]. Ann Rheum Dis,2013,72(3):410-413.
[38] SHOHAM N G, CENTOLA M, MANSFIELD E, et al. Pyrin binds the PSTPIP1/CD2BP1 protein, defining familial Mediterranean fever and PAPA syndrome as disorders in the same pathway[J]. Proc Natl Acad Sci U S A,2003,100(23):13501-13506.
[39] CAORSI R, PICCO P, BUONCOMPAGNI A, et al. Osteolytic lesion in PAPA syndrome responding to anti-interleukin 1 treatment[J]. J Rheumatol,2014,41(11):2333-2334.
[40] SALSANOL E, RIZZO A, BEDINI G, et al. An autoinflammatory neurological disease due to interleukin 6 hypersecretion[J]. J Neuroinflammation,2013,10(1):29-36.
[41] LOOCK J, LAMPRECHT P, TIMMANN C, et al. Genetic predisposition (NLRP3 V198M mutation) for IL-1-mediated inflammation in a patient with Schnitzler syndrome[J]. J Allergy Clin Immunol,2010,125(2):500-502.

[1] 许晶晶 等. 影像学在肿瘤精准医疗时代的机遇和挑战[J]. 浙江大学学报(医学版), 2017, 46(5): 455-461.
[2] 潘静颖 等. PET-CT与乳腺癌分子病理分型、治疗反应及预后的相关性研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 473-480.
[3] 张思影 等. CT和磁共振参数反应图在肿瘤精准疗效评估中的研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 468-472.
[4] 潘瑶 等. 胰腺癌的影像学精准诊断与评估[J]. 浙江大学学报(医学版), 2017, 46(5): 462-467.
[5] 王梦嫣 等. 耶氏肺孢子菌对磺胺类药物耐药相关基因突变的研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 563-569.
[6] 严恺 等. 出生缺陷相关遗传病产前诊断技术新进展[J]. 浙江大学学报(医学版), 2017, 46(3): 227-232.
[7] 唐敏悦 等. 半乳糖凝集素1在母胎界面参与胚胎着床和妊娠维持的研究进展[J]. 浙江大学学报(医学版), 2017, 46(3): 321-327.
[8] 王丽雅 等. 借助辅助生殖技术出生子代的安全性研究进展[J]. 浙江大学学报(医学版), 2017, 46(3): 279-284.
[9] 傅晓华 等. 棕色脂肪组织及其与多囊卵巢综合征关系的研究进展[J]. 浙江大学学报(医学版), 2017, 46(3): 315-320.
[10] 傅燕玲 等. 肽类激素Kisspeptin在生殖内分泌领域的应用前景[J]. 浙江大学学报(医学版), 2017, 46(3): 328-333.
[11] 钱叶青 等. 高通量测序技术在临床遗传学中的应用[J]. 浙江大学学报(医学版), 2017, 46(3): 334-337.
[12] 沈丹 等. 多囊卵巢综合征患者子代发生的远期改变[J]. 浙江大学学报(医学版), 2017, 46(3): 300-304.
[13] 何玉洁,潘建平. 病原菌对NOD样受体及Toll样受体信号通路介导的固有免疫逃逸机制研究进展[J]. 浙江大学学报(医学版), 2017, 46(2): 218-224.
[14] 郭峰亮,汤谷平,胡青莲. 纳米材料靶向肿瘤相关巨噬细胞用于肿瘤成像及治疗的研究进展[J]. 浙江大学学报(医学版), 2017, 46(2): 167-172.
[15] 郭峰亮 等. 纳米材料靶向肿瘤相关巨噬细胞用于肿瘤成像及治疗的研究进展[J]. 浙江大学学报(医学版), 2017, 46(2): 167-172.