Please wait a minute...
浙江大学学报(医学版)  2017, Vol. 46 Issue (4): 364-370    DOI: 10.3785/j.issn.1008-9292.2017.08.04
乳腺癌分子医学专题     
长链非编码RNA RP11-770J1.3和跨膜蛋白25对紫杉醇耐药人乳腺癌细胞株耐药性的影响
李钰1, 王月月1, 王海凤1, 张凌宇1, 丁勇兴2, 陈素莲3, 杨清玲3, 陈昌杰3
1. 蚌埠医学院临床检验诊断学实验中心, 安徽 蚌埠 233000;
2. 蚌埠市第三人民医院普外肿瘤科, 安徽 蚌埠 233000;
3. 蚌埠医学院生物化学与分子生物学教研室, 安徽 蚌埠 233000
Effects of lncRNA RP11-770J1.3 and TMEM25 expression on paclitaxel resistance in human breast cancer cells
LI Yu1, WANG Yueyue1, WANG Haifeng1, ZHANG Lingyu1, DING Yongxing2, CHEN Sulian3, YANG Qingling3, CHEN Changjie3
1. Clinical Testing and Diagnose Experimental Center, Bengbu Medical College, Bengbu 233000, China;
2. Department of Oncology, the Third People's Hospital of Bengbu, Bengbu 233000, China;
3. Department of Biochemistry & Molecular Biology, Bengbu Medical College, Bengbu 233000, China
 全文: PDF(2245 KB)  
摘要:

目的:探讨长链非编码RNA(lncRNA)RP11-770J1.3和跨膜蛋白25(TMEM25)对紫杉醇耐药人乳腺癌细胞株耐药性的影响。方法:利用实时定量PCR检测lncRNA RP11-770J1.3和TMEM25在人乳腺癌细胞MCF-7和紫杉醇耐药细胞株(MCF-7/PR)中的表达。在MCF-7/PR中转染lncRNA RP11-770J1.3和TMEM25的干扰片段,磺酰罗丹明B法检测MCF-7/PR对紫杉醇药物敏感性的变化,并运用实时定量PCR和蛋白质印迹法检测多药耐药相关蛋白(MRP)、乳腺癌耐药蛋白(BCRP)、多药耐药基因1(MDR1)及其编码产物P-gp mRNA和蛋白水平的改变。结果:lncRNA RP11-770J1.3和TMEM25在MCF-7/PR中表达上调(P<0.05或P<0.01)。与空白对照组和紫杉醇阴性对照组比较,干扰lncRNA RP11-770J1.3和TMEM25的表达可以提高MCF-7/PR对紫杉醇的药物敏感性,并下调耐药相关基因MRP、BCRP、MDR1及其编码产物P-gp的表达(均P<0.05);与单独干扰lncRNA RP11-770J1.3或TMEM25比较,同时干扰lncRNA RP11-770J1.3和TMEM25的作用更加明显(P<0.05)。结论:MCF-7/PR中lncRNA RP11-770J1.3和TMEM25的表达上调,联合干扰lncRNA RP11-770J1.3和TMEM25的表达可以提高MCF-7/PR对紫杉醇的敏感性。

关键词: RNA膜蛋白质类/代谢乳腺肿瘤/病理生理聚合酶链反应紫杉酚/药理学细胞系,肿瘤/病理学肿瘤细胞,培养的抗药性,肿瘤    
Abstract:

Objective:To investigate the effects of long non-coding RNA(lncRNA) RP11-770J1.3 and transmembrane protein 25 (TMEM25) on paclitaxel resistance in human breast cancer MCF-7/PR cell line. Methods:The expression of lncRNA RP11-770J1.3 and TMEM25 in human breast cancer MCF-7(paclitaxel sensitive) and MCF-7/PR(paclitaxel resistant) cells were detected by quantitative RT-PCR. The synthetic interfering fragments of lncRNA RP11-770J1.3 and TMEM25 were transfected into MCF-7/PR cells. Sulforhodamine B assay was used to detect the sensitivity of MCF-7/PR cells to paclitaxel after interference of lncRNA RP11-770J1.3 and TMEM25. The expression of multidrug-resistance genes and proteins were detected by qRT-PCR and Western blot, respectively. Results:lncRNA RP11-770J1.3 and TMEM25 were highly expressed in MCF-7/PR cells, and were significantly down-regulated after transfection of synthetic interfering fragments. Down-regulation of lncRNA RP11-770J1.3 and TMEM25 enhanced the sensitivity of MCF-7/PR cells to paclitaxel, and inhibited the expression of MRP, BCRP and MDR1/P-gp (all P<0.05). Such effects were more significant when lncRNA RP11-770J1.3 and TMEM25 were both down-regulated (all P<0.05). Conclusion:lncRNA RP11-770J1.3 and TMEM25 are highly expressed in MCF-7/PR cells, and the down-regulation of lncRNA RP11-770J1.3 and TMEM25 can enhance paclitaxel sensitivity in MCF-7/PR cells.

Key words: RNA    Membrane proteins/metabolism    Breast neoplasms/physiopathology    Polymerase chain reaction    Paclitaxel/pharmacology    Cell line, tumor/pathology    Tumor cells, cultured    Drug resistance, neoplasm
收稿日期: 2017-05-05 出版日期: 2017-08-25
CLC:  R737.9  
基金资助:

安徽省教育厅自然科学重大项目(KJ2015ZD29,KJ2016SD37);安徽省自然科学基金(1508085MH159);安徽省高校学科(专业)拔尖人才学术资助重点项目(gxbjZD2016069);安徽省蚌埠市科技计划项目(20150309);蚌埠医学院研究生创新项目(Byycxz1607,Byycx1607,Byycx1615)

通讯作者: 陈昌杰(1968-),男,博士,教授,硕士生导师,主要从事肿瘤分子生物学研究;E-mail:tochenchangjie@163.com;http://orcid.org/0000-0001-9646-320X     E-mail: tochenchangjie@163.com
作者简介: 李钰(1991-),女,硕士研究生,主要从事感染性疾病分子生物学机制研究;E-mail:liyu1234july@163.com;http://orcid.org/0000-0002-8465-6183
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

李钰 等. 长链非编码RNA RP11-770J1.3和跨膜蛋白25对紫杉醇耐药人乳腺癌细胞株耐药性的影响[J]. 浙江大学学报(医学版), 2017, 46(4): 364-370.

LI Yu, WANG Yueyue, WANG Haifeng, ZHANG Lingyu, DING Yongxing, CHEN Sulian, YANG Qingling, CHEN Changjie. Effects of lncRNA RP11-770J1.3 and TMEM25 expression on paclitaxel resistance in human breast cancer cells. Journal of ZheJiang University(Medical Science), 2017, 46(4): 364-370.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2017.08.04        http://www.zjujournals.com/xueshu/med/CN/Y2017/V46/I4/364

[1] DESANTIS C, MA J, BRYAN L, et al. Breast cancer statistics, 2013[J]. CA Cancer J Clin,2014,64(1):52-62.
[2] SAKAMOTO J, MATSUI T, KODERA Y. Paclitaxel chemotherapy for the treatment of gastric cancer[J]. Gastric Cancer,2009,12(2):69-78.
[3] FOJO T, MENEFEE M. Mechanisms of multidrug resistance:the potential role of microtubule-stabilizing agents[J]. Ann Oncol,2007,18 Suppl 5:v3-8.
[4] SI X, ZANG R, ZHANG E, et al. LncRNA H19 confers chemoresistance in ERα-positive breast cancer through epigenetic silencing of the pro-apoptotic gene BIK[J]. Oncotarget,2016,7(49):81452-81462.
[5] LIU W, MA J, CHENG Y, et al. HMMR antisense RNA1, a novel long noncoding RNA, regulates the progression of basal-like breast cancer cells[J]. Breast Cancer(Dove Med Press),2016,8(1):223-229.
[6] HRAŠOVEC S, HAUPTMAN N, GLAVAC D, et al. TMEM25 is a candidate biomarker methylated and down-regulated in colorectal cancer[J]. Dis Markers,2013,34(2):93-104.
[7] DOOLAN P, CLYNES M, KENNEDY S, et al. TMEM25, REPS2 and Meis 1:favourable prognostic and predictive biomarkers for breast cancer[J]. Tumour Biol,2009,30(4):200-209.
[8] YANG Q L, HUANG J, WU Q, et al. Acquisition of epithelial-mesenchymal transition is associated with Skp2 expression in paclitaxel-resistant breast cancer cells[J]. Br J Cancer,2014,110(8):1958-1967.
[9] DINIC J, PODOLSKI-RENIC A, STANKOVIC T, et al. New approaches with natural product drugs for overcoming multidrug resistance in cancer[J]. Curr Pharm Des,2015,21(38):5589-5604.
[10] TSANG W P, KWOK T T. Riboregulator H19 induction of MDR1-associated drug resistance in human hepatocellular carcinoma cells[J]. Oncogene,2007,26(33):4877-4881.
[11] LIU H, WANG G, YANG L, et al. Knockdown of long non-coding RNA UCA1 increases the tamoxifen sensitivity of breast cancer cells through inhibition of Wnt/β-Catenin pathway[J/OL]. PLoS One,2016,11(12):e0168406.
[12] YANG Y, JIANG Y, WAN Y, et al. UCA1 functions as a competing endogenous RNA to suppress epithelial ovarian cancer metastasis[J]. Tumour Biol,2016,37(8):10633-10641.
[13] LIU Y, XU N, LIU B, et al. Long noncoding RNA RP11-838N2.4 enhances the cytotoxic effects of temozolomide by inhibiting the functions of miR-10a in glioblastoma cell lines[J]. Oncotarget,2016,7(28):43835-43851.
[14] DE VRIES N A, ZHAO J, KROON E, et al. P-glycoprotein and breast cancer resistance protein:two dominant transporters working together in limiting the brain penetration of topotecan[J]. Clin Cancer Res,2007,13(21):6440-6449.
[15] DIAH S K, SMITHERMAN P K, ALDRIDGE J, et al. Resistance to mitoxantrone in multidrug-resistant MCF7 breast cancer cells:evaluation of mitoxantrone transport and the role of multidrug resistance protein family proteins[J]. Cancer Res,2001,61(14):5461-5467.
[16] NAGASHIMA S, SODA H, OKA M, et al. BCRP/ABCG2 levels account for the resistance to topoisomerase I inhibitors and reversal effects by gefitinib in non-small cell lung cancer[J]. Cancer Chemother Pharmacol,2006,58(5):594-600.
[17] 易娟,陈静,孙静,等.白血病K562/ADM细胞耐药性与白血病干细胞及耐药蛋白表达的关系[J].中华医学杂志,2009,89(25):1741-1744. YI Juan, CHEN Jing, SUN Jing, et al.The relationship between multi-drug resistance and proportion of leukemia stem cells and expression of drug transporters in drug-resistant leukemia K562/ADM cells[J]. National Medical Journal of China,2009,89(25):1741-1744. (in Chinese)
[18] 赵遵兰,蔡颖,王洋洋,等.微小RNA-21对人乳腺癌细胞株紫杉醇耐药性的影响及其机制[J].浙江大学学报(医学版),2015,44(4):400-405. ZHAO Zunlan, CAI Yin, WANG Yangyang, et al. Effect of miRNA-21 on paclitaxel-resistance in human breast cancer cells[J]. Journal of Zhejiang University:Medical Sciences,2015,44(4):400-405. (in Chinese)

[1] 田华 等. CD97免疫表位对乳腺癌细胞株MDA-MB231生物学行为的影响[J]. 浙江大学学报(医学版), 2017, 46(4): 341-348.
[2] 陈达华 等. CRISPR/Cas9基因编辑技术构建靶向敲除小鼠微小RNA-101a基因的一体化载体系统[J]. 浙江大学学报(医学版), 2017, 46(4): 427-432.
[3] 姜贻乾 等. 微小RNA-29b对乳腺癌细胞增殖和迁移的影响及其分子生物学机制[J]. 浙江大学学报(医学版), 2017, 46(4): 349-356.
[4] 王海凤 等. CXC趋化因子受体4通过S期激酶相关蛋白2调控乳腺癌细胞周期的机制[J]. 浙江大学学报(医学版), 2017, 46(4): 357-363.
[5] 杨晓红 等. 微RNA-705对MC3T3-E1细胞成骨分化能力的影响[J]. 浙江大学学报(医学版), 2016, 45(6): 575-580.
[6] 吴志华 等. 异基因造血干细胞移植受者T细胞受体β链CDR3谱型表达与巨细胞病毒激活[J]. 浙江大学学报(医学版), 2016, 45(5): 515-521.
[7] 陈晓静 等. 微RNA-let-7e-3p在宫颈上皮内瘤变和宫颈癌组织中的表达及临床意义[J]. 浙江大学学报(医学版), 2016, 45(4): 342-348.
[8] 沈志森 等. RNA干扰沉默DJ-1基因对Hep-2细胞裸鼠移植瘤生长的影响[J]. 浙江大学学报(医学版), 2016, 45(4): 349-355.
[9] 杨肃文 等. 意义未明单克隆免疫球蛋白病及多发性骨髓瘤患者微RNA-221和微RNA-222的表达[J]. 浙江大学学报(医学版), 2016, 45(4): 371-378.
[10] 娄鹏荣 等. 靶向RAD18的小干扰RNA对人食管鳞癌ECA-109细胞增殖和化疗敏感性的影响[J]. 浙江大学学报(医学版), 2016, 45(4): 364-370.
[11] 周琦惠 等. 人类免疫缺陷病毒储存库评估测定技术研究进展[J]. 浙江大学学报(医学版), 2016, 45(3): 256-260.
[12] 王程 等. 微RNA:一类新的椎间盘退变调控因子[J]. 浙江大学学报(医学版), 2016, 45(2): 170-178.
[13] 杨婉花等. MicroRNA-150联合脉搏指示连续性心输出量检测指标判断脓毒症休克患者预后的临床价值[J]. 浙江大学学报(医学版), 2015, 44(6): 659-664.
[14] 谢华, 郝颖, 尹强, 李文斌, 鹿辉, 贾正平, 王荣. 急进高原后大鼠组织高原适应性基因含量的差异性观察[J]. 浙江大学学报(医学版), 2015, 44(5): 571-577.
[15] 赵遵兰等. 微小RNA-21对人乳腺癌细胞株紫杉醇耐药性的影响及其机制[J]. 浙江大学学报(医学版), 2015, 44(4): 400-409.