Please wait a minute...
浙江大学学报(医学版)  2017, Vol. 46 Issue (4): 357-363    DOI: 10.3785/j.issn.1008-9292.2017.08.03
乳腺癌分子医学专题     
CXC趋化因子受体4通过S期激酶相关蛋白2调控乳腺癌细胞周期的机制
王海凤1, 陈天天1, 王月月1, 李钰1, 张凌宇1, 丁勇兴2, 陈素莲3, 王文锐4, 杨清玲3, 陈昌杰3
1. 蚌埠医学院临床检验诊断学实验中心, 安徽 蚌埠 233000;
2. 蚌埠市第三人民医院普外肿瘤科, 安徽 蚌埠 233000;
3. 蚌埠医学院生物化学与分子生物学教研室, 安徽 蚌埠 233000;
4. 蚌埠医学院生物技术教研室, 安徽 蚌埠 233000
CXC chemokine receptor 4 regulates breast cancer cell cycle through S phase kinase associated protein 2
WANG Haifeng1, CHEN Tiantian1, WANG Yueyue1, LI Yu1, ZHANG Lingyu1, DING Yongxing2, CHEN Sulian3, WANG Wenrui4, YANG Qingling3, CHEN Changjie3
1. Clinical Testing and Diagnosis Center, Bengbu Medical College, Bengbu 233000, China;
2. Department of Surgical Oncology, Bengbu Third People's Hospital, Bengbu 233000, China;
3. Department of Biochemistry & Molecular Biology, Bengbu Medical College, Bengbu 233000, China;
4. Department of Biotechnology, Bengbu Medical College, Bengbu 233000, China
 全文: PDF(3532 KB)  
摘要:

目的:探讨CXC趋化因子受体4(CXCR4)通过PI3K/Akt和ERK信号通路调控S期激酶相关蛋白2(Skp2)的表达,进而影响乳腺癌细胞周期的机制。方法:利用干扰及过表达技术下调或上调CXCR4的表达后,通过实时定量PCR和蛋白质印迹法检测CXCR4与Skp2调控的关联性;蛋白质印迹法检测CXCR4干扰及过表达后对信号蛋白及Skp2下游相关基因表达的影响;通过碘化丙啶(PI)染色法检测CXCR4、PI3K/Akt通路抑制剂LY294002及ERK通路抑制剂U0126对乳腺癌细胞周期的影响。结果:干扰CXCR4后,Skp2表达下调;过表达CXCR4后,Skp2表达上调。CXCR4可通过对信号蛋白的调控影响Skp2及Skp2下游相关基因的表达。干扰CXCR4后,G0/G1期细胞比例增加,S期细胞比例相应减少,CXCR4与LY294002及U0126联合作用对细胞周期的阻断更加明显。结论:CXCR4能够通过对信号蛋白PI3K/Akt及ERK的调控,影响Skp2及Skp2下游相关基因的表达,阻断CXCR4/Akt/Skp2或CXCR4/ERK/Skp2信号通路后可有效诱导细胞周期阻滞,从而抑制乳腺癌细胞的增殖。

关键词: 乳腺肿瘤/病理生理学受体CXCR4/生物合成受体CXCR4/遗传学S期激酶相关蛋白质类/代谢细胞系肿瘤/代谢细胞增殖细胞周期    
Abstract:

Objective:To investigate the effect of CXC chemokine receptor 4 (CXCR4) on cell cycle of breast cancer and its molecular mechanisms. Methods:The expression of CXCR4 and S phase kinase associated protein 2 (Skp2) was detected by real-time fluorescence quantitative PCR (fqRT-PCR) and Western blot in breast cancer cells. The expression of signal proteins and the downstream genes of Skp2 was detected by Western blot. The effect of CXCR4, PI3K/Akt pathway inhibitor LY294002 and ERK pathway inhibitor U0126 on cell cycle of breast cancer was detected by propidium iodide staining. Results:Skp2 was significantly down-regulated in CXCR4-downregulated cells and up-regulated in CXCR4-upregulated cells. CXCR4 also regulated the expression of Skp2 and other downstream genes by signaling protein. The proportion of cells in G0/G1 phase increased and that in S phase declined in CXCR4-downregulated cell, and the effect was more significant when combined with the use of LY294002 or U0126. Conclusion:CXCR4 can affect cell cycle and inhibit the proliferation of breast cancer cells by regulating Skp2 gene expression through PI3K/Akt and ERK signaling pathway.

Key words: Breast neoplasms/physiopathology    Receptors, CXCR4/biosynthesis    Receptors, CXCR4/genetics    S-phase kinase-associated proteins/metabolism    Cell line, tumor/metabolism    Cell proliferation    Cell cycle
收稿日期: 2017-02-16 出版日期: 2017-08-25
CLC:  R737.9  
基金资助:

安徽省教育厅自然科学重大项目(KJ2015ZD29,KJ2016SD37);安徽省自然科学基金(1508085MH159);安徽省高校学科(专业)拔尖人才学术资助重点项目(gxbjZD2016069);安徽省蚌埠市科技计划项目(20150309);蚌埠医学院研究生创新项目(Byycxz1607)

通讯作者: 陈昌杰(1968-),男,博士,教授,硕士生导师,主要从事肿瘤分子生物学研究;E-mail:tochenchangjie@163.com;http://orcid.org/0000-0001-9646-320X     E-mail: tochenchangjie@163.com
作者简介: 王海凤(1992-),女,硕士研究生,主要从事乳腺癌发生发展及其机制研究;E-mail:350103266@qq.com;http://orcid.org/0000-0003-3466-0384
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王海凤 等. CXC趋化因子受体4通过S期激酶相关蛋白2调控乳腺癌细胞周期的机制[J]. 浙江大学学报(医学版), 2017, 46(4): 357-363.

WANG Haifeng, CHEN Tiantian, WANG Yueyue, LI Yu, ZHANG Lingyu, DING Yongxing, CHEN Sulian, WANG Wenrui, YANG Qingling, CHEN Changjie. CXC chemokine receptor 4 regulates breast cancer cell cycle through S phase kinase associated protein 2. Journal of ZheJiang University(Medical Science), 2017, 46(4): 357-363.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2017.08.03        http://www.zjujournals.com/xueshu/med/CN/Y2017/V46/I4/357

[1] CONLEY-LACOMB M K, SALIGANAN A, KANDAGATLA P, et al. PTEN loss mediated Akt activation promotes prostate tumor growth and metastasis via CXCL12/CXCR4 signaling[J]. Mol Cancer,2013,12(1):85.
[2] FENG B, LI K, ZHONG H, et al. RhoE promotes metastasis in gastric cancer through a mechanism dependent on enhanced expression of CXCR4[J/OL]. PLoS One,2013,8(11):e81709.
[3] LIAO Y X, ZHOU C H, ZENG H, et al. The role of the CXCL12-CXCR4/CXCR7 axis in the progression and metastasis of bone sarcomas(review)[J]. Int J Mol Med,2013,32(6):1239-1246.
[4] YANG P, LIANG S X, HUANG W H, et al. Aberrant expression of CXCR4 significantly contributes to metastasis and predicts poor clinical outcome in breast cancer[J]. Curr Mol Med,2014,14(1):174-184.
[5] YANG Q, ZHANG F, DING Y,et al. Antitumour activity of the recombination polypeptide GST-NT21MP is mediated by inhibition of CXCR4 pathway in breast cancer[J]. Br J Cancer,2014,110(5):1288-1297.
[6] SONODA H, INOUE H, OGAWA K, et al.Significance of skp2 expression in primary breast cancer[J]. Clin Cancer Res,2006,12(4):1215-1220.
[7] LU Z, HUNTER T. Ubiquitylation and proteasomal degradation of the p21Cip1, p27Kip1 and p57Kip2 CDK inhibitors[J]. Cell Cycle,2010,9(12):2342-2352.
[8] YANG QL, ZHANG LY, WANG HF, et al. The N-terminal polypeptide derived from viral macrophage inflammatory protein Ⅱ reverses breast cancer epithelial-omesenchymal transition via a PDGFRa-dependent mechanism[J]. Oncotarge,2017,8(23):37448-37463.
[9] CHATTERJEE S, BEHNAM AZAD B, NIMMAGADDA S. The intricate role of CXCR4 in cancer[J]. Adv Cancer Res,2014,124:31-82.
[10] BAJETTO A, BARBIERI F, PATTAROZZI A, et al. CXCR4 and SDF1 expression in human meningiomas:a proliferative role in tumoral meningothelial cells in vitro[J]. Neuro Oncol,2007,9(1):3-11.
[11] ZHENG Q, SHUAI X, YE Y, et al. The role of polymorphisms of stromal derived factor-1 and CXC receptor 4 in acute myeloid leukemia and leukemia cell dissemination[J]. Gene,2016,588(2):103-108.
[12] 袁宏,冯虎,家秀秀,等.CXCR4 shRNA对U87胶质瘤细胞周期和凋亡的影响[J].中国热带医学,2015,15(1):25-27. YUAN Hong, FENG Hu, JIA Xiuxiu, et al. Effects of CXCR4 shRNA on cell cycle and apoptosis of U87 glioma[J]. China Tropical Medicine,2015,15(1):25-27. (in Chinese)
[13] 王艳,刘晓日,谭艳芳,等.RNA干扰沉默CXCR4基因对Jurkat细胞周期和凋亡的影响[J].中国实验血液学杂志,2010,18(3):625-628. WANG Yan, LIU Xiaori, TAN Yanfang, et al. Effects of CXCR4 silence induced by RNA interference on cell cycle distribution and apoptosis of jurkat cells[J]. Journal of Experimental Hematology,2010,18(3):625-628. (in Chinese)
[14] YANG Q, WU H, WANG H, et al. N-terminal polypeptide derived from vMIP-Ⅱ exerts its antitumor activity by inhibiting the CXCR4 pathway in human glioma[J]. Int J Oncol,2017,50(4):1160-1174.
[15] DEMETRICK D J, ZHANG H, BEACH D H. Chromosomal mapping of the genes for the human CDK2/cyclin A-associated proteins p19(SKP1A and SKP1B) and p45(SKP2)[J]. Cytogenet Cell Genet,1996,73(1-2):104-107.
[16] ZHANG H, KOBAYASHI R, GALAKTIONOV K, et al. p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase[J]. Cell,1995,82(6):915-925.
[17] CHAN C H, MORROW J K, ZHANG S, et al. Skp2:a dream target in the coming age of cancer therapy[J]. Cell Cycle,2014,13(5):679-680.
[18] PATERAS I S, APOSTOLOPOULOU K, KOUTSAMI M, et al. Downregulation of the KIP family members p27(KIP1) and p57(KIP2) by SKP2 and the role of methylation in p57(KIP2) inactivation in nonsmall cell lung cancer[J]. Int J Cancer,2006,119(11):2546-2556.
[19] FRESCAS M, PAGANO M. Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP:tipping the scales of cancer[J]. Nat Rev Cancer,2008,8(6):438-449.
[20] ZHOU W, SRINIVASAN S, NAWAZ Z, et al. ERα, SKP2 and E2F-1 form a feed forward loop driving late ERα targets and G1 cell cycle progression[J]. Oncogene,2014,33(18):2341-2353.
[21] WANG G, CHAN C H, GAO Y, et al. Novel roles of Skp2 E3 ligase in cellular senescence, cancer progression, and metastasis[J]. Chin J Cancer,2012,31(4):169-177.
[22] MITREA D M, YOON M K, OU L, et al. Disorder-function relationships for the cell cycle regulatory proteins p21 and p27[J]. Biol Chem,2012,393(4):259-274.
[23] 赵君,杨春鹿,赵苏英.肺癌中细胞S期激酶相关蛋白2的表达及其对预后的影响[J].中华肿瘤杂志,2007,29(4):289-292. ZHAO Jun, YANG Chunlu, ZHAO Suying. Expression of Skp2 protein in lung carcinoma and its implication for prognosis[J]. Chinese Journal of Oncology,2007,29(4):289-292. (in Chinese)
[24] WESTERMANN F, HENRICH K O, WEI J S, et al. High Skp2 expression characterizes high-risk neuroblastomas independent of MYCN status[J]. Clin Cancer Res,2007,13(16):4695-4703.
[25] YANG Q, HUANG J, WU Q, et al.Acquisition of epithelial-mesenchymal transition is associated with Skp2 expression in paclitaxel-resistant breast cancer cells[J]. Br J Cancer,2014,110(8):1958-1967.
[26] DOUGLASS S, MEESON A P, OVERBECK-ZUBRZYCKA D, et al. Breast cancer metastasis:demonstration that FOXP3 regulates CXCR4 expression and the response to CXCL12[J]. J Pathol,2014,234(1):74-85.
[27] LIN H K, WANG G, CHEN Z, et al. Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB[J]. Nat Cell Biol,2009,11(4):420-432.
[28] GAO D, INUZUKA H, TSENG A, et al. Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction[J]. Nat Cell Biol,2009,11(4):397-408.
[29] YANG Q, CHEN C, YANG Z, et al. Suppression of breast cancer proliferation and induction of apoptosis via AKT and ERK1/2 signal transduction pathways by synthetic polypeptide derived from viral macrophage inflammatory protein Ⅱ[J]. J Huazhong Univ Sci Technolog Med Sci,2011,31(4):497-503.

[1] 董飞 等. 磁共振成像强化信号特征预测胶质母细胞瘤EGFR基因扩增状态的影像组学研究[J]. 浙江大学学报(医学版), 2017, 46(5): 492-497.
[2] 姜贻乾 等. 微小RNA-29b对乳腺癌细胞增殖和迁移的影响及其分子生物学机制[J]. 浙江大学学报(医学版), 2017, 46(4): 349-356.
[3] 李钰 等. 长链非编码RNA RP11-770J1.3和跨膜蛋白25对紫杉醇耐药人乳腺癌细胞株耐药性的影响[J]. 浙江大学学报(医学版), 2017, 46(4): 364-370.
[4] 陈志强 等. 不同量甲醛固定液对荧光原位杂交法检测乳腺原发性浸润癌HER2基因扩增的影响[J]. 浙江大学学报(医学版), 2017, 46(4): 439-444.
[5] 田华 等. CD97免疫表位对乳腺癌细胞株MDA-MB231生物学行为的影响[J]. 浙江大学学报(医学版), 2017, 46(4): 341-348.
[6] 何玉洁,潘建平. 病原菌对NOD样受体及Toll样受体信号通路介导的固有免疫逃逸机制研究进展[J]. 浙江大学学报(医学版), 2017, 46(2): 218-224.
[7] 何玉洁 等. 病原菌对NOD样受体及Toll样受体信号通路介导的固有免疫逃逸机制研究进展[J]. 浙江大学学报(医学版), 2017, 46(2): 218-224.
[8] 王颖,汪仪,陈忠. 中枢胆碱能系统与癫痫关系的研究进展[J]. 浙江大学学报(医学版), 2017, 46(1): 15-21.
[9] 封盛 等. 糖皮质激素受体信号通路在膀胱癌治疗中的作用研究进展[J]. 浙江大学学报(医学版), 2016, 45(6): 655-660.
[10] 夏光发 等. 新辅助化疗前后激素受体变化的乳腺癌患者辅助内分泌治疗的疗效[J]. 浙江大学学报(医学版), 2016, 45(6): 614-619.
[11] 吴志华 等. 异基因造血干细胞移植受者T细胞受体β链CDR3谱型表达与巨细胞病毒激活[J]. 浙江大学学报(医学版), 2016, 45(5): 515-521.
[12] 曹鹏 等. 双氢青蒿素抗肿瘤分子生物学机制研究进展[J]. 浙江大学学报(医学版), 2016, 45(5): 501-507.
[13] 韩瑞 等. 贝伐珠单克隆抗体联合化疗用于Her2阴性乳腺癌患者新辅助治疗的meta分析[J]. 浙江大学学报(医学版), 2016, 45(4): 379-386.
[14] 陈晓静 等. 微RNA-let-7e-3p在宫颈上皮内瘤变和宫颈癌组织中的表达及临床意义[J]. 浙江大学学报(医学版), 2016, 45(4): 342-348.
[15] 娄鹏荣 等. 靶向RAD18的小干扰RNA对人食管鳞癌ECA-109细胞增殖和化疗敏感性的影响[J]. 浙江大学学报(医学版), 2016, 45(4): 364-370.