Please wait a minute...
浙江大学学报(医学版)  2017, Vol. 46 Issue (3): 279-284    DOI: 10.3785/j.issn.1008-9292.2017.06.09
出生缺陷预防专题     
借助辅助生殖技术出生子代的安全性研究进展
王丽雅, 钱叶青, 金帆
浙江大学医学院附属妇产科医院生殖遗传科 生殖遗传教育部重点实验室, 浙江 杭州 310006
Research progress on the safety of offsprings conceived by assisted reproductive technology
WANG Liya, QIAN Yeqing, JIN Fan
Department of Reproductive Genetics, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Genetics, Ministry of Education, Hangzhou 310006, China
 全文: PDF(977 KB)  
摘要:

现代辅助生殖技术通过药物刺激实现多个卵子同步成熟,利用体外培养和显微操作完成精子和卵子受精结合以及早期胚胎的生长发育,在消除患者生殖障碍病因的同时,干涉了生殖细胞增殖、受精、发育乃至分化的多个过程,存在影响生殖细胞正常生长发育的可能性。本文结合国内外相关研究,从临床和基础两方面综述借助辅助生殖技术出生子代的安全性研究。研究显示,借助辅助生殖技术出生的子代出生缺陷的发生率增加。辅助生殖技术所包含的多项技术可能通过调节胚胎发育过程中基因的表观遗传信息进而影响子代的生长发育,并且某些影响可能传递到子二代,但这些变化对出生子代的潜在影响仍需进一步探索。

关键词: 胚胎发育/遗传学儿童发育/遗传学亲子关系生殖技术辅助/副作用遗传学安全综述    
Abstract:

Assisted reproductive technology (ART) employs superovulation, in vitro culture and other micromanipulation to complete oocyte maturation, fertilization and early embryo development. Although these techniques have been successfully applied to solve infertility problems, the process may interfere in cell proliferation, differentiation and growth. The clinical and laboratory studies on the safety issue of ART are reviewed in this article. Studies found that the incidence of birth defects increased in ART offspring. Superovulation, in vitro culture and intracytoplasmic sperm injection may induce epigenetic aberrations during embryo development, which would influence the development of ART conceived children. The epigenetic susceptibility related to ART might be transmitted to subsequent generations, and the potential impact on ART offspring still need further investigation. In addition, ART treatments may also increase the risk of genetic diseases.

Key words: Embryonic development/genetics    Child development/genetics    Parent-child relations    Reproductive techniques, assisted/adverse effects    Genetics    Safety    Review
收稿日期: 2017-02-15 出版日期: 2017-06-25
CLC:  R714  
基金资助:

国家自然科学基金(81571500,81370760,81300532);浙江省自然科学基金(LZ15H040001,LZ13H040001,LQ17H040001,LY14H040009);国家重点基础研究发展计划(973计划)(2012CB944901,2014CB943302);浙江省医药卫生科技计划(2016KYA120)

通讯作者: 金帆(1958-),男,硕士,教授,主任医师,博士生导师,主要从事生殖遗传学研究;E-mail:jinfan@zju.edu.cn     E-mail: jinfan@zju.edu.cn
作者简介: 王丽雅(1982-),女,博士,助理研究员,主要从事生殖遗传学研究;E-mail:wangliya@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王丽雅 等. 借助辅助生殖技术出生子代的安全性研究进展[J]. 浙江大学学报(医学版), 2017, 46(3): 279-284.

WANG Liya, QIAN Yeqing, JIN Fan. Research progress on the safety of offsprings conceived by assisted reproductive technology. Journal of ZheJiang University(Medical Science), 2017, 46(3): 279-284.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2017.06.09        http://www.zjujournals.com/xueshu/med/CN/Y2017/V46/I3/279

[1] OOKI S. Maternal age and birth defects after the use of assisted reproductive technology in Japan, 2004-2010[J]. Int J Womens Health,2013,5:65-77.
[2] REEFHUIS J, HONEIN M A, SCHIEVE L A, et al. Assisted reproductive technology and major structural birth defects in the United States[J]. Hum Reprod,2009,24(2):360-366.
[3] YIN L, HANG F, GU L J, et al. Analysis of birth defects among children 3 years after conception through assisted reproductive technology in China[J]. Birth Defects Res A Clin Mol Teratol,2013,97(11):744-749.
[4] HANSEN M, KURINCZUK J J, MILNE E, et al. Assisted reproductive technology and birth defects:a systematic review and meta-analysis[J]. Hum Reprod Update,2013,19(4):330-353.
[5] LEDFORD H. Language:disputed definitions[J]. Nature,2008,455(7216):1023-1028.
[6] GUO F, YAN L, GUO H, et al. The transcriptome and DNA methylome landscapes of human primordial germ cells[J]. Cell,2015,161(6):1437-1452.
[7] GUO H, ZHU P, YAN L, et al. The DNA methylation landscape of human early embryos[J]. Nature,2014,511(7511):606-610.
[8] AMOR D J, HALLIDAY J. A review of known imprinting syndromes and their association with assisted reproduction technologies[J]. Hum Reprod,2008,23(12):2826-2834.
[9] RIVERA R M, STEIN P, WEAVER J R, et al. Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development[J]. Hum Mol Genet,2008,17(1):1-14.
[10] PIEDRAHITA J A. The role of imprinted genes in fetal growth abnormalities[J]. Birth Defects Res A Clin Mol Teratol,2011,91(8):682-692.
[11] KERJEAN A, COUVERT P, HEAMS T, et al. In vitro follicular growth affects oocyte imprinting establishment in mice[J]. Eur J Hum Genet,2003,11(7):493-496.
[12] BORGHOL N, LORNAGE J, BLACHERE T, et al. Epigenetic status of the H19 locus in human oocytes following in vitro maturation[J]. Genomics,2006,87(3):417-426.
[13] LIU X, ZHAO D, ZHENG Y, et al. Expression of histone acetyltransferase GCN5 and histone deacetylase 1 in the cultured mouse preimplantation embryos[J]. Curr Pharm Des,2014,20(11):1772-1777.
[14] HALLIDAY J, OKE K, BREHENY S, et al. Beckwith-Wiedemann syndrome and IVF:a case-control study[J]. Am J Hum Genet,2004,75(3):526-528.
[15] BELTRAND J, NICOLESCU R, KAGUELIDOU F, et al. Catch-up growth following fetal growth restriction promotes rapid restoration of fat mass but without metabolic consequences at one year of age[J/OL]. PLoS One,2009,4(4):e5343.
[16] BARKER D J. The fetal and infant origins of adult disease[J]. BMJ,1990,301(6761):1111.
[17] GOSDEN R, TRASLER J, LUCIFERO D, et al. Rare congenital disorders, imprinted genes, and assisted reproductive technology[J]. Lancet,2003,361(9373):1975-1977.
[18] WANG N, REN C E, LOU Y Y, et al. Inter-generational effects of the in vitro maturation technique on pregnancy outcomes, early development, and cognition of offspring in mouse model[J]. Clin Chim Acta,2017,473:218-227.
[19] LI L, LE F, WANG L Y, et al. Normal epigenetic inheritance in mice conceived by in vitro fertilization and embryo transfer[J]. J Zhejiang Univ Sci B,2011,12(10):796-804.
[20] LE F, WANG L Y, WANG N, et al. In vitro fertilization alters growth and expression of Igf2/H19 and their epigenetic mechanisms in the liver and skeletal muscle of newborn and elder mice[J]. Biol Reprod,2013,88(3):75.
[21] WANG N, WANG L, LE F, et al. Altered expression of Armet and Mrlp51 in the oocyte, preimplantation embryo, and brain of mice following oocyte in vitro maturation but postnatal brain development and cognitive function are normal[J]. Reproduction,2011,142(3):401-408.
[22] WANG L Y, WANG N, LE F, et al. Persistence and intergenerational transmission of differentially expressed genes in the testes of intracytoplasmic sperm injection conceived mice[J]. J Zhejiang Univ Sci B,2013,14(5):372-381.
[23] XU X R, FU R G, WANG L Y, et al. Epigenetic inheritance of paternally expressed imprinted genes in the testes of ICSI mice[J]. Curr Pharm Des,2014,20(11):1764-1771.
[24] LI L, WANG L, XU X, et al. Genome-wide DNA methylation patterns in IVF-conceived mice and their progeny:a putative model for ART-conceived humans[J]. Reprod Toxicol,2011,32(1):98-105.
[25] WANG N, FANG L, LIU X, et al. Altered expressions and DNA methylation of imprinted genes in chromosome 7 in brain of mouse offspring conceived from in vitro maturation[J]. Reprod Toxicol,2012,34(3):420-428.
[26] CLEMENTINI E, PALKA C, IEZZI I, et al. Prevalence of chromosomal abnormalities in 2078 infertile couples referred for assisted reproductive techniques[J]. Hum Reprod,2005,20(2):437-442.
[27] BONDUELLE M, CAMUS M, DE VOS A, et al. Seven years of intracytoplasmic sperm injection and follow-up of 1987 subsequent children[J]. Hum Reprod,1999,14 Suppl 1:243-264.
[28] BONDUELLE M, LIEBAERS I, DEKETELAERE V, et al. Neonatal data on a cohort of 2889 infants born after ICSI (1991-1999) and of 2995 infants born after IVF (1983-1999)[J]. Hum Reprod,2002,17(3):671-694.
[29] FUJIMOTO S, PAHLAVAN N, DUKELOW W R. Chromosome abnormalities in rabbit preimplantation blastocysts induced by superovulation[J]. J Reprod Fertil,1974,40(1):177-181.
[30] IMREH M P, GERTOW K, CEDERVALL J, et al. In vitro culture conditions favoring selection of chromosomal abnormalities in human ES cells[J]. J Cell Biochem,2006,99(2):508-516.
[31] FORSYTH N R, MUSIO A, VEZZONI P, et al. Physiologic oxygen enhances human embryonic stem cell clonal recovery and reduces chromosomal abnormalities[J]. Cloning Stem Cells,2006,8(1):16-23.
[32] TATENO H. Chromosome aberrations in mouse embryos and fetuses produced by assisted reproductive technology[J]. Mutat Res,2008,657(1):26-31.
[33] WANG W H, MENG L, HACKETT R J, et al. Limited recovery of meiotic spindles in living human oocytes after cooling-rewarming observed using polarized light microscopy[J]. Hum Reprod,2001,16(11):2374-2378.
[34] HASTINGS P J, LUPSKI J R, ROSENBERG S M, et al. Mechanisms of change in gene copy number[J]. Nat Rev Genet,2009,10(8):551-564.
[35] ZHENG Y M, LI L, ZHOU L M, et al. Alterations in the frequency of trinucleotide repeat dynamic mutations in offspring conceived through assisted reproductive technology[J]. Hum Reprod,2013,28(9):2570-2580.

[1] 许晶晶 等. 影像学在肿瘤精准医疗时代的机遇和挑战[J]. 浙江大学学报(医学版), 2017, 46(5): 455-461.
[2] 潘静颖 等. PET-CT与乳腺癌分子病理分型、治疗反应及预后的相关性研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 473-480.
[3] 张思影 等. CT和磁共振参数反应图在肿瘤精准疗效评估中的研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 468-472.
[4] 潘瑶 等. 胰腺癌的影像学精准诊断与评估[J]. 浙江大学学报(医学版), 2017, 46(5): 462-467.
[5] 王梦嫣 等. 耶氏肺孢子菌对磺胺类药物耐药相关基因突变的研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 563-569.
[6] 王海凤 等. CXC趋化因子受体4通过S期激酶相关蛋白2调控乳腺癌细胞周期的机制[J]. 浙江大学学报(医学版), 2017, 46(4): 357-363.
[7] 葛玉梅 等. 解甘露醇罗尔斯顿菌的耐药性和原卟啉亚铁螯合酶毒力因子研究[J]. 浙江大学学报(医学版), 2017, 46(4): 413-420.
[8] 李艳蝶 等. NLRP3炎症小体与儿童自身炎症性疾病研究进展[J]. 浙江大学学报(医学版), 2017, 46(4): 449-453.
[9] 邹丽霞 等. 人源化白细胞介素-6受体抗体治疗全身型幼年特发性关节炎的疗效及安全性[J]. 浙江大学学报(医学版), 2017, 46(4): 421-426.
[10] 沈丹 等. 多囊卵巢综合征患者子代发生的远期改变[J]. 浙江大学学报(医学版), 2017, 46(3): 300-304.
[11] 傅晓华 等. 棕色脂肪组织及其与多囊卵巢综合征关系的研究进展[J]. 浙江大学学报(医学版), 2017, 46(3): 315-320.
[12] 傅燕玲 等. 肽类激素Kisspeptin在生殖内分泌领域的应用前景[J]. 浙江大学学报(医学版), 2017, 46(3): 328-333.
[13] 钱叶青 等. 高通量测序技术在临床遗传学中的应用[J]. 浙江大学学报(医学版), 2017, 46(3): 334-337.
[14] 洪芳 等. 浙江省新生儿有机酸尿症筛查及随访分析[J]. 浙江大学学报(医学版), 2017, 46(3): 240-247.
[15] 严恺 等. 出生缺陷相关遗传病产前诊断技术新进展[J]. 浙江大学学报(医学版), 2017, 46(3): 227-232.