Please wait a minute...
浙江大学学报(医学版)  2017, Vol. 46 Issue (3): 227-232    DOI: 10.3785/j.issn.1008-9292.2017.06.01
出生缺陷预防专题     
出生缺陷相关遗传病产前诊断技术新进展
严恺, 金帆
浙江大学医学院附属妇产科医院生殖遗传科 生殖遗传教育部重点实验室, 浙江 杭州 310006
Advances on prenatal diagnosis of birth defects associated with genetic disorders
YAN Kai, JIN Fan
Department of Reproductive Genetics, Women's Hospital, Zhejiang University School of Medicine, Key Laboratory of Reproductive Genetics, Ministry of Education, Hangzhou 310006, China
 全文: PDF(972 KB)  
摘要:

出生缺陷由遗传因素、环境因素或两者共同作用所致。产前诊断或植入前诊断是预防遗传病发生、减少或杜绝遗传病患儿出生的主要手段。根据出生缺陷相关遗传病的不同遗传问题,除传统的染色体核型分析技术、荧光原位杂交技术用于染色体非整倍体检测外,以高通量为特点的染色体微阵列分析技术以及第二代测序技术可更好地针对基因组病、单基因遗传病进行检测,从而形成完整的出生缺陷相关遗传病检测技术体系。本文对目前出生缺陷相关遗传病的产前诊断技术新进展进行了综述。

关键词: 遗传性疾病先天性先天畸形原位杂交荧光产前诊断染色体微阵列分析综述    
Abstract:

Birth defects have become a major public health concern in the world, which can be resulted from the harmful environmental factors, genetic mutations or their co-effects. Prenatal diagnosis or preimplantation diagnosis has been considered as the only effective way for the prevention of the birth of those defects. Besides karyotype analysis and fluorescence in situ hybridization, chromosomal microarray analysis and next generation sequencing or its derivatives are in common use. This article reviews the advances of the newly emerging molecular techniques in prenatal diagnosis of birth defects associated with genetic disorders.

Key words: Genetic diseases, inborn    Congenital abnormalities    In situ hybridization, fluorescence    Prenatal diagnosis    Chromosomes    Microarray analysis    Review
收稿日期: 2017-02-15 出版日期: 2017-06-25
CLC:  R394  
基金资助:

国家自然科学基金(81571500);浙江省自然科学基金(LZ15H040001);浙江省医药卫生科技计划(2016148763)

通讯作者: 金帆(1958-),男,硕士,教授,主任医师,博士生导师,主要从事生殖遗传学研究;E-mail:jinfan@zju.edu.cn     E-mail: jinfan@zju.edu.cn
作者简介: 严恺(1987-),男,硕士,主管检验师,主要从事遗传学诊断工作;E-mail:yankai@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

严恺 等. 出生缺陷相关遗传病产前诊断技术新进展[J]. 浙江大学学报(医学版), 2017, 46(3): 227-232.

YAN Kai, JIN Fan. Advances on prenatal diagnosis of birth defects associated with genetic disorders. Journal of ZheJiang University(Medical Science), 2017, 46(3): 227-232.

链接本文:

http://www.zjujournals.com/xueshu/med/CN/10.3785/j.issn.1008-9292.2017.06.01        http://www.zjujournals.com/xueshu/med/CN/Y2017/V46/I3/227

[1] 中华人民共和国卫生部.中国出生缺陷防治报告(2012)[R/OL].(2012-09-12)[2017-02-10].http://www.moh.gov.cn/wsb/pxwfb/201209/55840.shtml. Ministry of Health of the People's Republic of China. China report on prevention and treatment of birth defects (2012)[R/OL].(2012-09-12)[2017-02-10].http://www.moh.gov.cn/wsb/pxwfb/201209/55840.shtml. (in Chinese)
[2] CHRISTIANSON A, HOWSON C P, MODELL B. Global report on birth defects[M]. White Plains. NY:March of Dimes,2006.
[3] 成胜权.出生缺陷及常见出生缺陷早期诊断和干预[J/CD].发育医学电子杂志,2015,3(1):1-7,13. CHENG Shengquan. Early diagnosis and intervention in birth defects and common birth defect[J/CD].Journal Developmental Medicine (Electronic Version),2015,3(1):1-7,13.(in Chinese)
[4] 王心,尚丽新.出生缺陷的预防[J].人民军医,2016,59(1):90-93. WANG Xin, SHANG Lixin. Prevention of birth defects[J]. People's Military Surgeon,2016,59(1):90-93.(in Chinese)
[5] SPEICHER M R, CARTER N P. The new cytogenetics:blurring the boundaries with molecular biology[J]. Nat Rev Genet,2005,6(10):782-792.
[6] HARPER J C, DE DIE-SMULDERS C, GOOSSENS V, et al. ESHRE PGD consortium data collection Ⅶ:cycles from January to December 2004 with pregnancy follow-up to October 2005[J]. Hum Reprod,2008,23(4):741-755.
[7] MULLIS K, FALOONA F, SCHARF S, et al. Specific enzymatic amplification of DNA in vitro:the polymerase chain reaction. 1986[J]. Biotechnology,1992,24:17-27.
[8] SANGER F. Determination of nucleotide sequences in DNA[J]. Biosci Rep,2004,24(4-5):237-253.
[9] SAIKI R K, GELFAND D H, STOFFEL S, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase[J]. Science,1988,239(4839):487-491.
[10] WESSENDORF S, FRITZ B, WROBEL G, et al. Automated screening for genomic imbalances using matrix-based comparative genomic hybridization[J]. Lab Invest,2002,82(1):47-60.
[11] HEISKANEN M A, BITTNER M L, CHEN Y, et al. Detection of gene amplification by genomic hybridization to cDNA microarrays[J]. Cancer Res,2000,60(4):799-802.
[12] BRADY P D, VERMEESCH J R. Genomic microarrays:a technology overview[J]. Prenat Diagn,2012,32(4):336-343.
[13] ACOG Committee Opinion No.446:array comparative genomic hybridization in prenatal diagnosis[J]. Obstet Gynecol,2009,114(5):1161-1163.
[14] TAN Y Q, TAN K, ZHANG S P, et al. Single-nucleotide polymorphism microarray-based preimplantation genetic diagnosis is likely to improve the clinical outcome for translocation carriers[J]. Hum Reprod,2013,28(9):2581-2592.
[15] HANDYSIDE A H, HARTON G L, MARIANI B, et al. Karyomapping:a universal method for genome wide analysis of genetic disease based on mapping crossovers between parental haplotypes[J]. J Med Genet,2010,47(10):651-658.
[16] NATESAN S A, BLADON A J, COSKUN S, et al. Genome-wide karyomapping accurately identifies the inheritance of single-gene defects in human preimplantation embryos in vitro[J]. Genet Med,2014,16(11):838-845.
[17] YUAN Y, JIANG F, HUA S, et al. Feasibility study of semiconductor sequencing for noninvasive prenatal detection of fetal aneuploidy[J]. Clin Chem,2013,59(5):846-849.
[18] NEVELING K, FEENSTRA I, GILISSEN C, et al. A post-hoc comparison of the utility of sanger sequencing and exome sequencing for the diagnosis of heterogeneous diseases[J]. Hum Mutat,2013,34(12):1721-1726.
[19] LO Y M, CORBETTA N, CHAMBERLAIN P F, et al. Presence of fetal DNA in maternal plasma and serum[J]. Lancet,1997,350(9076):485-487.
[20] CHIU R W, CHAN K C, GAO Y, et al. Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma[J]. Proc Natl Acad Sci U S A,2008,105(51):20458-20463.
[21] FAN H C, BLUMENFELD Y J, CHITKARA U, et al. Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood[J]. Proc Natl Acad Sci U S A,2008,105(42):16266-16271.
[22] PETERS D, CHU T, YATSENKO S A, et al. Noninvasive prenatal diagnosis of a fetal microdeletion syndrome[J]. N Engl J Med,2011,365(19):1847-1848.
[23] EHRICH M, DECIU C, ZWIEFELHOFER T, et al. Noninvasive detection of fetal trisomy 21 by sequencing of DNA in maternal blood:a study in a clinical setting[J]. Am J Obstet Gynecol,2011,204(3):205.e1-11.
[24] PALOMAKI G E, KLOZA E M, LAMBERT-MESSERLIAN G M, et al. DNA sequencing of maternal plasma to detect Down syndrome:an international clinical validation study[J]. Genet Med,2011,13(11):913-920.
[25] CHIU R W, AKOLEKAR R, ZHENG Y W, et al. Non-invasive prenatal assessment of trisomy 21 by multiplexed maternal plasma DNA sequencing:large scale validity study[J]. BMJ,2011,342:c7401.
[26] GONZÁLEZ-GONZÁLEZ M C, TRUJILLO M J, RODRÍGUEZ DE ALBA M, et al. Huntington disease-unaffected fetus diagnosed from maternal plasma using QF-PCR[J]. Prenat Diagn,2003,23(3):232-234.
[27] GONZÁLEZ-GONZÁLEZ M C, GARCÍA-HOYOS M, TRUJILLO M J, et al. Prenatal detection of a cystic fibrosis mutation in fetal DNA from maternal plasma[J]. Prenat Diagn,2002,22(10):946-948.
[28] LV W, WEI X, GUOR, et al. Noninvasive prenatal testing for wilson disease by use of circulating single-molecule amplification and resequencing technology (cSMART)[J]. Clin Chem,2015,61(1):172-181.
[29] RENWICK P, TRUSSLER J, LASHWOOD A, et al. Preimplantation genetic haplotyping:127 diagnostic cycles demonstrating a robust, efficient alternative to direct mutation testing on single cells[J]. Reprod Biomed Online,2010,20(4):470-476.
[30] GUTIÉRREZ-MATEO C, SÁNCHEZ-GARCÍA J F, FISCHER J, et al. Preimplantation genetic diagnosis of single-gene disorders:experience with more than 200 cycles conducted by a reference laboratory in the United States[J]. Fertil Steril,2009,92(5):1544-1556.
[31] 谢平原,胡亮,林戈.二代测序技术在植入前遗传学诊断中的应用[J].中国实用妇科与产科杂志,2016,3(3):247-251,32. XIE Pingyuan, HU Liang, LIN Ge. Application of next-generation sequencing in preimplantation genetic diagnosis[J]. Chinese Journal of Practical Gynecology and Obstetrics,2016,3(3):247-251,32.(in Chinese)

[1] 许晶晶 等. 影像学在肿瘤精准医疗时代的机遇和挑战[J]. 浙江大学学报(医学版), 2017, 46(5): 455-461.
[2] 潘静颖 等. PET-CT与乳腺癌分子病理分型、治疗反应及预后的相关性研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 473-480.
[3] 张思影 等. CT和磁共振参数反应图在肿瘤精准疗效评估中的研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 468-472.
[4] 潘瑶 等. 胰腺癌的影像学精准诊断与评估[J]. 浙江大学学报(医学版), 2017, 46(5): 462-467.
[5] 王梦嫣 等. 耶氏肺孢子菌对磺胺类药物耐药相关基因突变的研究进展[J]. 浙江大学学报(医学版), 2017, 46(5): 563-569.
[6] 李艳蝶 等. NLRP3炎症小体与儿童自身炎症性疾病研究进展[J]. 浙江大学学报(医学版), 2017, 46(4): 449-453.
[7] 陈志强 等. 不同量甲醛固定液对荧光原位杂交法检测乳腺原发性浸润癌HER2基因扩增的影响[J]. 浙江大学学报(医学版), 2017, 46(4): 439-444.
[8] 陈益明 等. 中孕期母血清甲胎蛋白和游离β-hCG筛查胎儿腹裂和脐膨出的效率[J]. 浙江大学学报(医学版), 2017, 46(3): 268-273.
[9] 温弘 等. 产前诊断Joubert综合征一例并文献复习[J]. 浙江大学学报(医学版), 2017, 46(3): 274-278.
[10] 傅晓华 等. 棕色脂肪组织及其与多囊卵巢综合征关系的研究进展[J]. 浙江大学学报(医学版), 2017, 46(3): 315-320.
[11] 傅燕玲 等. 肽类激素Kisspeptin在生殖内分泌领域的应用前景[J]. 浙江大学学报(医学版), 2017, 46(3): 328-333.
[12] 钱叶青 等. 高通量测序技术在临床遗传学中的应用[J]. 浙江大学学报(医学版), 2017, 46(3): 334-337.
[13] 沈丹 等. 多囊卵巢综合征患者子代发生的远期改变[J]. 浙江大学学报(医学版), 2017, 46(3): 300-304.
[14] 朱晖 等. 高龄孕妇外周血胎儿游离DNA产前筛查胎儿常见非整倍体的临床意义[J]. 浙江大学学报(医学版), 2017, 46(3): 256-261.
[15] 洪芳 等. 浙江省新生儿有机酸尿症筛查及随访分析[J]. 浙江大学学报(医学版), 2017, 46(3): 240-247.